1
|
Sawyer AL, Hankamer BD, Ross IL. Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter. PLANTA 2015; 241:1287-1302. [PMID: 25672503 DOI: 10.1007/s00425-015-2249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
A 44-base-pair region in the Chlamydomonas reinhardtii LHCBM9 promoter is essential for sulphur responsiveness. The photosynthetic light-harvesting complex (LHC) proteins play essential roles both in light capture, the first step of photosynthesis, and in photoprotective mechanisms. In contrast to the other LHC proteins and the majority of photosynthesis proteins, the Chlamydomonas reinhardtii photosystem II-associated LHC protein, LHCBM9, was recently reported to be up-regulated under sulphur deprivation conditions, which also induce hydrogen production. Here, we examined the sulphur responsiveness of the LHCBM9 gene at the transcriptional level, through promoter deletion analysis. The LHCBM9 promoter was found to be responsive to sulphur deprivation, with a 44-base-pair region between nucleotide positions -136 and -180 relative to the translation start site identified as essential for this response. Anaerobiosis was found to enhance promoter activity under sulphur deprivation conditions, however, alone was unable to induce promoter activity. The study of LHCBM9 is of biological and biotechnological importance, as its expression is linked to photobiological hydrogen production, theoretically the most efficient process for biofuel production, while the simplicity of using an S-deprivation trigger enables the development of a novel C. reinhardtii-inducible promoter system based on LHCBM9.
Collapse
Affiliation(s)
- Anne L Sawyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
2
|
Matsuo T, Ishiura M. Chlamydomonas reinhardtiias a new model system for studying the molecular basis of the circadian clock. FEBS Lett 2011; 585:1495-502. [DOI: 10.1016/j.febslet.2011.02.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 01/31/2011] [Accepted: 02/21/2011] [Indexed: 12/31/2022]
|
3
|
New Insights into the Circadian Clock in Chlamydomonas. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:281-314. [DOI: 10.1016/s1937-6448(10)80006-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Jacobshagen S, Kessler B, Rinehart CA. At least four distinct circadian regulatory mechanisms are required for all phases of rhythms in mRNA amount. J Biol Rhythms 2009; 23:511-24. [PMID: 19060260 DOI: 10.1177/0748730408325753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the advent of techniques to investigate gene expression on a large scale, numerous circadian rhythms in mRNA amount have been reported. These rhythms generally differ in amplitude and phase. The authors investigated how far a parameter not regulated by the circadian clock can influence the phase of a rhythm in RNA amount arising from a circadian rhythm of transcription. Using a discrete-time approach, they modeled a sinusoidal rhythm in transcription with various constant exponential RNA decay rates. They found that the slower the RNA degradation, the later the phase of the RNA amount rhythm compared with the phase of the transcriptional rhythm. However, they also found that the phase of the RNA amount rhythm is limited to a timeframe spanning the first quarter of the period following the phase of the transcriptional rhythm. This finding is independent of the amplitude and vertical shift of the transcriptional rhythm or even of the way constant RNA degradation is modeled. The authors confirmed their results with a continuous-time model, which allowed them to derive a simple formula relating the phase of the RNA amount rhythm solely to the phase and period of its sinusoidal transcriptional rhythm and its constant RNA half-life. This simple formula even holds true for the best sinusoidal approximations of a nonsinusoidal rhythm of transcription and RNA amount. When expanding the model to include additional events with constant exponential kinetics, such as RNA processing, they found that each event expands the phase limit by another quarter of the period when it occurs in sequence but not when it occurs as a competing process. However, the limit expansion comes at the price of minuscule amplitudes. When using a discrete-time approach to model constant rates of transcription with a sinusoidal RNA half-life, the authors found that the phase of the RNA amount rhythm is unaffected by changes in the constant rate of transcription. In summary, their data show that at least 4 distinct circadian regulatory mechanisms are required to allow for all phases in rhythms of RNA amount, one for each quarter of the period.
Collapse
Affiliation(s)
- Sigrid Jacobshagen
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101-1080, USA.
| | | | | |
Collapse
|
5
|
Grossman AR. In the Grip of Algal Genomics. TRANSGENIC MICROALGAE AS GREEN CELL FACTORIES 2008; 616:54-76. [DOI: 10.1007/978-0-387-75532-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
|
7
|
Im CS, Eberhard S, Huang K, Beck CF, Grossman AR. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:1-16. [PMID: 16972865 DOI: 10.1111/j.1365-313x.2006.02852.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phototropin (PHOT) is a photoreceptor involved in a variety of blue-light-elicited physiological processes including phototropism, chloroplast movement and stomatal opening in plants. The work presented here tests whether PHOT is involved in expression of light-regulated genes in Chlamydomonas reinhardtii. When C. reinhardtii was transferred from the dark to very low-fluence rate white light, there was a substantial increase in the level of transcripts encoding glutamate-1-semialdehyde aminotransferase (GSAT), phytoene desaturase (PDS) and light-harvesting polypeptides (e.g. LHCBM6). Increased levels of these transcripts were also elicited by low-intensity blue light, and this blue-light stimulation was suppressed in three different RNAi strains that synthesize low levels of PHOT. The levels of GSAT and LHCBM6 transcripts also increased following exposure of algal cells to low-intensity red light (RL). The red-light-dependent increase in transcript abundance was not affected by the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, implying that the influence of RL on transcript accumulation was not controlled by cytoplasmic redox conditions, and that a red-light photoreceptor(s) may be involved in regulating the levels of transcripts from specific photosynthesis-related genes in C. reinhardtii. Interestingly, elevated GSAT and LHCBM6 transcript levels in RL were significantly reduced in the PHOT RNAi strains, which raises the possibility of co-action between blue and RL signaling pathways. Microarray experiments indicated that the levels of several transcripts for photosystem (PS) I and II polypeptides were also modulated by PHOT. These data suggest that, in C. reinhardtii, (i) PHOT is involved in blue-light-mediated changes in transcript accumulation, (ii) synchronization of the synthesis of chlorophylls (Chl), carotenoids, Chl-binding proteins and other components of the photosynthetic apparatus is achieved, at least in part, through PHOT-mediated signaling, and (iii) a red-light photoreceptor can also influence levels of certain transcripts associated with photosynthetic function, although its action requires normal levels of PHOT.
Collapse
Affiliation(s)
- Chung-Soon Im
- Department of Plant Biology, Carnegie Institution, Stanford, CA 94306, USA.
| | | | | | | | | |
Collapse
|
8
|
Kucho KI, Okamoto K, Tabata S, Fukuzawa H, Ishiura M. Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2005; 57:889-906. [PMID: 15952072 DOI: 10.1007/s11103-005-3248-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 03/05/2005] [Indexed: 05/02/2023]
Abstract
Circadian rhythms are self-sustaining oscillations whose period length under constant conditions is about 24 h. Circadian rhythms are widespread and involve functions as diverse as human sleep-wake cycles and cyanobacterial nitrogen fixation. In spite of a long research history, knowledge about clock-controlled genes is limited in Chlamydomonas reinhardtii. Using a cDNA macroarray containing 10 368 nuclear-encoded genes, we examined global circadian regulation of transcription in Chlamydomonas. We identified 269 candidates for circadianly expressed gene. Northern blot analysis confirmed reproducible and sustainable rhythmicity for 12 genes. Most genes exhibited peak expression at the transition point between day and night. One hundred and eighteen genes were assigned predicted annotations. The functions of the cycling genes were diverse and included photosynthesis, respiration, cellular structure, and various metabolic pathways. Surprisingly, 18 genes encoding chloroplast ribosomal proteins showed a coordinated circadian pattern of expression and peaked just at the beginning of subjective day. The co-regulation of genes bearing a similar function was also observed in genes involved in cellular structure. They peaked at the end of the subjective night, which is when the regeneration of cell walls and flagella in daughter cells occurs. Expression of the chlamyopsin gene, which encodes an opsin-type photoreceptor, also exhibited circadian rhythm.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Center for Gene Research, , Nagoya University, Furo-cho, 464-8602, Nagoya, Chikusa-ku, Japan
| | | | | | | | | |
Collapse
|
9
|
Abstract
This review focuses on the biosynthesis of pigments in the unicellular alga Chlamydomonas reinhardtii and their physiological and regulatory functions in the context of information gathered from studies of other photosynthetic organisms. C. reinhardtii is serving as an important model organism for studies of photosynthesis and the pigments associated with the photosynthetic apparatus. Despite extensive information pertaining to the biosynthetic pathways critical for making chlorophylls and carotenoids, we are just beginning to understand the control of these pathways, the coordination between pigment and apoprotein synthesis, and the interactions between the activities of these pathways and those for other important cellular metabolites branching from these pathways. Other exciting areas relating to pigment function are also emerging: the role of intermediates of pigment biosynthesis as messengers that coordinate metabolism in the chloroplast with nuclear gene activity, and the identification of photoreceptors and their participation in critical cellular processes including phototaxis, gametogenesis, and the biogenesis of the photosynthetic machinery. These areas of research have become especially attractive for intensive development with the application of potent molecular and genomic tools currently being applied to studies of C. reinhardtii.
Collapse
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305, USA.
| | | | | |
Collapse
|
10
|
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution, Department of Plant Biology, Stanford, California 94305, USA.
| |
Collapse
|
11
|
Mittag M, Kiaulehn S, Johnson CH. The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? PLANT PHYSIOLOGY 2005; 137:399-409. [PMID: 15710681 PMCID: PMC1065344 DOI: 10.1104/pp.104.052415] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/04/2004] [Accepted: 10/07/2004] [Indexed: 05/17/2023]
Affiliation(s)
- Maria Mittag
- Institut für Allgemeine Botanik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
12
|
Barros MP, Pinto E, Sigaud-Kutner TCS, Cardozo KHM, Colepicolo P. Rhythmicity and oxidative/nitrosative stress in algae. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010400028666] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Fuhrmann M, Hausherr A, Ferbitz L, Schödl T, Heitzer M, Hegemann P. Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. PLANT MOLECULAR BIOLOGY 2004. [PMID: 15604722 DOI: 10.1007/s11103-005-2150-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
For monitoring the expression profile of selected nuclear genes in Chlamydomonas reinhardtii in response to altered environmental parameters or during cell cycle, in the past many RNA or protein samples had to be taken and analyzed by RNA hybridization or protein immunoblotting. Here we report the synthesis of a gene that codes for the luciferase of Renilla reniformis (RLuc) and is adapted to the nuclear codon usage of C. reinhardtii . This crluc gene was expressed alone or as a fusion to the zeocin resistance gene ble under control of different promoter variants. Luciferase activity was monitored in living cells, increased with the promoter strength and paralleled the amount of expressed protein. Under control of the Lhcb-1 promoter the Luc-activity in synchronized cultures was dependent on the dark-light cycle. Additionally, crluc was placed under control of the Chop-2 promoter and activity was measured under different light conditions. Chop-2 promoter activity was found to be most pronouced under low-light and dark conditions, further supporting that channelrhodopsin-2 is most active in dark-adapted cells. We conclude that crluc is a reliable tool for convenient monitoring of nuclear gene expression in C. reinhardtii .
Collapse
Affiliation(s)
- Markus Fuhrmann
- Institut für Biochemie I, Universität Regensburg, 93040 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z. Chlamydomonas reinhardtii at the crossroads of genomics. EUKARYOTIC CELL 2004; 2:1137-50. [PMID: 14665449 PMCID: PMC326643 DOI: 10.1128/ec.2.6.1137-1150.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305. Biology Department, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Reisdorph NA, Small GD. The CPH1 gene of Chlamydomonas reinhardtii encodes two forms of cryptochrome whose levels are controlled by light-induced proteolysis. PLANT PHYSIOLOGY 2004; 134:1546-54. [PMID: 15064387 PMCID: PMC419830 DOI: 10.1104/pp.103.031930] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 10/26/2003] [Accepted: 01/21/2004] [Indexed: 05/19/2023]
Abstract
Cryptochromes are proteins related to DNA photolyases and have been shown to function as blue-light photoreceptors and to play important roles in circadian rhythms in both plants and animals. The CPH1 gene from Chlamydomonas reinhardtii was originally predicted to encode a putative cryptochrome protein of 867 amino acids with a predicted molecular mass of 91 kD (Small et al., 1995). However, western blotting with antibodies specific to the CPH1 protein revealed the presence of two proteins that migrate at apparent molecular mass of approximately 126 and 143 kD. A reexamination of the assigned intron-exon boundaries has shown that the previously assigned intron 7 is in fact part of exon 7 which leads to a predicted protein of 1,007 amino acids corresponding to a size of 104.6 kD. The two forms of CPH1 that migrate slower on SDS-PAGE presumably result from unknown posttranslational modifications. In C. reinhardtii cells synchronized by light to dark cycles, the two slow migrating forms of CPH1 protein accumulate in the dark and disappear rapidly in the light. Both red and blue light are effective at inducing the degradation of the CPH1 proteins. Proteasomes are implicated because degradation is inhibited by MG132, a proteasome inhibitor. Studies with deletion mutants indicate that the C-terminal region is important for both the posttranslational modification and the protein's stability under both light and dark conditions.
Collapse
Affiliation(s)
- Nichole A Reisdorph
- Cellular and Molecular Biology Group, University of South Dakota, Vermillion, South Dakota 57069, USA
| | | |
Collapse
|
16
|
Durnford DG. Structure and Regulation of Algal Light-Harvesting Complex Genes. PHOTOSYNTHESIS IN ALGAE 2003. [DOI: 10.1007/978-94-007-1038-2_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Fuhrmann M. Expanding the molecular toolkit for Chlamydomonas reinhardtii--from history to new frontiers. Protist 2002; 153:357-64. [PMID: 12627865 DOI: 10.1078/14344610260450082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Abstract
Chlamydomonas reinhardtii has been used as an experimental model organism for circadian rhythm research for more than 30 yr. Some of the physiological rhythms of this alga are well established, and several clock mutants have been isolated. The cloning of clock genes from these mutant strains by positional cloning is under way and should give new insights into the mechanism of the circadian clock. In a spectacular space experiment, the question of the existence of an endogenous clock vs. an exogenous mechanism has been studied in this organism. With the emergence of molecular analysis of circadian rhythms in plants in 1985, a circadian gene expression pattern of several nuclear and chloroplast genes was detected. Evidence is now accumulating that shows circadian control at the translational level. In addition, the gating of the cell cycle by the circadian clock has been analyzed. This review focuses on the different aspects of circadian rhythm research in C. reinhardtii over the past 30 yr. The suitability of Chlamydomonas as a model system in chronobiology research and the adaptive significance of the observed rhythms will be discussed.
Collapse
Affiliation(s)
- Ralf Werner
- University of Hamburg, Institute for General Botany and Botanical Garden, Department of Cell Biology, Germany.
| |
Collapse
|
19
|
Abstract
Circadian rhythms have been described in a variety of microalgae. In each group, some model organisms arose and most detailed studies have been done with them. They include the cyanobacterium ("blue-green alga") Synechococcus and eukaryotic microalgae Gonyaulax polyedra (Dinophyta), Chlamydomonas reinhardtii (Chlorophyta), and Euglena gracilis (Euglenophyta). This review focuses on recent approaches to depict molecular components of the circadian system and the mechanisms of regulation in these organisms. In Synechococcus, the identification of the kailocus, which represents a central part of its oscillatory system, is discussed, as well as diverse approaches based on a luminescent reporter gene, which is driven by a clock-controlled cyanobacterial promoter. In eukaryotic microalgae, the diversity of genes/proteins that are controlled by the circadian clock is described and the kind of regulation (transcriptional and translational control) is emphasized. The role and function of conserved clock-controlled RNA-binding proteins such as CCTR from Gonyaulaxor Chlamy 1 from Chlamydomonas are discussed.
Collapse
Affiliation(s)
- M Mittag
- Botanisches Institut, Ludwig-Maximilians-Universität-München, Germany
| |
Collapse
|
20
|
Harris EH. CHLAMYDOMONAS AS A MODEL ORGANISM. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:363-406. [PMID: 11337403 DOI: 10.1146/annurev.arplant.52.1.363] [Citation(s) in RCA: 430] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unicellular green alga Chlamydomonas offers a simple life cycle, easy isolation of mutants, and a growing array of tools and techniques for molecular genetic studies. Among the principal areas of current investigation using this model system are flagellar structure and function, genetics of basal bodies (centrioles), chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. A genome project has begun with compilation of expressed sequence tag data and gene expression studies and will lead to a complete genome sequence. Resources available to the research community include wild-type and mutant strains, plasmid constructs for transformation studies, and a comprehensive on-line database.
Collapse
Affiliation(s)
- Elizabeth H Harris
- Developmental, Cell and Molecular Biology Group, Biology Department, Duke University, Durham, North Carolina 27708-1000; e-mail:
| |
Collapse
|
21
|
Abstract
Photosynthesis is one of the important processes that enable life on earth. To optimize photosynthesis reactions during a solar day, most of them are timed to be active during the light phase. This includes the components of the thylakoid membranes in chloroplasts. Prominent representatives are the proteins of the light-harvesting complex (LHC). The synthesis of both the Lhc mRNA and the LHC protein occurs during the day and is regulated by the circadian clock, exhibiting the following pattern: increasing levels after sunrise, reaching a maximum around noon, and decreasing levels in the afternoon. To elucidate the involved control elements and regulatory circuits, the following strategies were applied: (1) analysis of promoters of Lhc genes, (2) analysis of DNA binding proteins, and (3) screening and investigation of mutants. The most promising elements found so far that may be involved in mediating the circadian rhythmicity of Lhc mRNA oscillations are a myb-like transcription factor CCA1 (Wang et al. 1997) and the corresponding DNA binding sequence (Piechulla et al. 1998).
Collapse
Affiliation(s)
- B Piechulla
- University of Rostock, Department of Molecular Physiology of Plants and Microorganisms, Rostock, Germany
| |
Collapse
|
22
|
|
23
|
[3] High-frequency nuclear transformation of Chlamydomonas reinhardtii. Methods Enzymol 1998. [DOI: 10.1016/s0076-6879(98)97005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|