1
|
Haq ME, Mira MM, Duncan RW, Hill RD, Stasolla C. Seed-specific expression of the class 2 Phytoglobin (Pgb2) increases seed oil in Brassica napus. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154032. [PMID: 37392526 DOI: 10.1016/j.jplph.2023.154032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
To examine the function of phytoglobin 2 (Pgb2) on seed oil level in the oil-producing crop Brassica napus L., we generated transgenic plants in which BnPgb2 was over-expressed in the seeds using the cruciferin1 promoter. Over-expression of BnPgb2 elevated the amount of oil, which showed a positive relationship with the level of BnPgb2, without altering the oil nutritional value, as evidenced by the lack of major changes in composition of fatty acids (FA), and key agronomic traits. Two key transcription factors, LEAFY COTYLEDON1 (LEC1) and WRINKLED1 (WRI1), known to promote the synthesis of fatty acids (FA) and potentiate oil accumulation, were induced in BnPgb2 over-expressing seeds. The concomitant induction of several enzymes of sucrose metabolism, SUCROSE SYNTHASE1 (SUS) 1 and 3, FRUCTOSE BISPHOSPHATE ALDOLASE (FPA), and PHOSPHOGLYCERATE KINASE (PGK), and starch synthesis, ADP-GLUCOSE PHOSPHORYLASE (AGPase) suggests that BnPgb2 favors sugar mobilization for FA production. The two plastid FA biosynthetic enzymes SUBUNIT A OF ACETYL-CoA CARBOXYLASE (ACCA2), and MALONYL-CoA:ACP TRANSACYLASE (MCAT) were also up-regulated by the over-expression of BnPgb2. The requirement of BnPgb2 for oil deposition was further evidenced in natural germplasm by the higher levels of BnPgb2 in seeds of high-oil genotypes relative to their low-oil counterparts.
Collapse
Affiliation(s)
- Md Ehsanul Haq
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2Z2, MB, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2Z2, MB, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2Z2, MB, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2Z2, MB, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2Z2, MB, Canada.
| |
Collapse
|
2
|
Huang A, Coutu C, Harrington M, Rozwadowski K, Hegedus DD. Engineering a feedback inhibition-insensitive plant dihydrodipicolinate synthase to increase lysine content in Camelina sativa seeds. Transgenic Res 2021; 31:131-148. [PMID: 34802109 PMCID: PMC8821502 DOI: 10.1007/s11248-021-00291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Camelina sativa (camelina) is emerging as an alternative oilseed crop due to its short growing cycle, low input requirements, adaptability to less favorable growing environments and a seed oil profile suitable for biofuel and industrial applications. Camelina meal and oil are also registered for use in animal and fish feeds; however, like meals derived from most cereals and oilseeds, it is deficient in certain essential amino acids, such as lysine. In higher plants, the reaction catalyzed by dihydrodipicolinate synthase (DHDPS) is the first committed step in the biosynthesis of lysine and is subject to regulation by lysine through feedback inhibition. Here, we report enhancement of lysine content in C. sativa seed via expression of a feedback inhibition-insensitive form of DHDPS from Corynebacterium glutamicums (CgDHDPS). Two genes encoding C. sativa DHDPS were identified and the endogenous enzyme is partially insensitive to lysine inhibition. Site-directed mutagenesis was used to examine the impact of alterations, alone and in combination, present in lysine-desensitized DHDPS isoforms from Arabidopsis thaliana DHDPS (W53R), Nicotiana tabacum (N80I) and Zea mays (E84K) on C. sativa DHDPS lysine sensitivity. When introduced alone, each of the alterations decreased sensitivity to lysine; however, enzyme specific activity was also affected. There was evidence of molecular or structural interplay between residues within the C. sativa DHDPS allosteric site as coupling of the W53R mutation with the N80V mutation decreased lysine sensitivity of the latter, but not to the level with the W53R mutation alone. Furthermore, the activity and lysine sensitivity of the triple mutant (W53R/N80V/E84T) was similar to the W53R mutation alone or the C. glutamicum DHDPS. The most active and most lysine-insensitive C. sativa DHDPS variant (W53R) was not inhibited by free lysine up to 1 mM, comparable to the C. glutamicums enzyme. Seed lysine content increased 13.6 -22.6% in CgDHDPS transgenic lines and 7.6–13.2% in the mCsDHDPS lines. The high lysine-accumulating lines from this work may be used to produce superior quality animal feed with improved essential amino acid profile.
Collapse
Affiliation(s)
- Alex Huang
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Myrtle Harrington
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Kevin Rozwadowski
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
3
|
Breeding Canola ( Brassica napus L.) for Protein in Feed and Food. PLANTS 2021; 10:plants10102220. [PMID: 34686029 PMCID: PMC8539702 DOI: 10.3390/plants10102220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Interest in canola (Brassica napus L.). In response to this interest, scientists have been tasked with altering and optimizing the protein production chain to ensure canola proteins are safe for consumption and economical to produce. Specifically, the role of plant breeders in developing suitable varieties with the necessary protein profiles is crucial to this interdisciplinary endeavour. In this article, we aim to provide an overarching review of the canola protein chain from the perspective of a plant breeder, spanning from the genetic regulation of seed storage proteins in the crop to advancements of novel breeding technologies and their application in improving protein quality in canola. A review on the current uses of canola meal in animal husbandry is presented to underscore potential limitations for the consumption of canola meal in mammals. General discussions on the allergenic potential of canola proteins and the regulation of novel food products are provided to highlight some of the challenges that will be encountered on the road to commercialization and general acceptance of canola protein as a dietary protein source.
Collapse
|
4
|
Canedo-Téxon A, Ramón-Farias F, Monribot-Villanueva JL, Villafán E, Alonso-Sánchez A, Pérez-Torres CA, Ángeles G, Guerrero-Analco JA, Ibarra-Laclette E. Novel findings to the biosynthetic pathway of magnoflorine and taspine through transcriptomic and metabolomic analysis of Croton draco (Euphorbiaceae). BMC PLANT BIOLOGY 2019; 19:560. [PMID: 31852435 PMCID: PMC6921603 DOI: 10.1186/s12870-019-2195-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 12/10/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Croton draco is an arboreal species and its latex as well as some other parts of the plant, are traditionally used in the treatment of a wide range of ailments and diseases. Alkaloids, such as magnoflorine, prevent early atherosclerosis progression while taspine, an abundant constituent of latex, has been described as a wound-healer and antitumor-agent. Despite the great interest for these and other secondary metabolites, no omics resources existed for the species and the biosynthetic pathways of these alkaloids remain largely unknown. RESULTS To gain insights into the pathways involved in magnoflorine and taspine biosynthesis by C. draco and identify the key enzymes in these processes, we performed an integrated analysis of the transcriptome and metabolome in the major organs (roots, stem, leaves, inflorescences, and flowers) of this species. Transcript profiles were generated through high-throughput RNA-sequencing analysis while targeted and high resolution untargeted metabolomic profiling was also performed. The biosynthesis of these compounds appears to occur in the plant organs examined, but intermediaries may be translocated from the cells in which they are produced to other cells in which they accumulate. CONCLUSIONS Our results provide a framework to better understand magnoflorine and taspine biosynthesis in C. draco. In addition, we demonstrate the potential of multi-omics approaches to identify candidate genes involved in the biosynthetic pathways of interest.
Collapse
Affiliation(s)
- Anahí Canedo-Téxon
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, 91070 Xalapa, Veracruz, México
| | - Feliza Ramón-Farias
- Universidad Veracruzana (Campus Peñuela-Córdoba), Amatlán de los Reyes, 94945 Veracruz, México
| | | | - Emanuel Villafán
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, 91070 Xalapa, Veracruz, México
| | - Alexandro Alonso-Sánchez
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, 91070 Xalapa, Veracruz, México
| | - Claudia Anahí Pérez-Torres
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, 91070 Xalapa, Veracruz, México
- Catedrático CONACyT en el Instituto de Ecología A.C, Veracruz, México
| | - Guillermo Ángeles
- Instituto de Ecología A.C., Red de Ecología Funcional, 91070 Xalapa, Veracruz, México
| | | | - Enrique Ibarra-Laclette
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, 91070 Xalapa, Veracruz, México
| |
Collapse
|
5
|
Zhang Y, Schernthaner J, Labbé N, Hefford MA, Zhao J, Simmonds DH. Improved protein quality in transgenic soybean expressing a de novo synthetic protein, MB-16. Transgenic Res 2014; 23:455-67. [PMID: 24435987 DOI: 10.1007/s11248-013-9777-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/16/2013] [Indexed: 11/28/2022]
Abstract
To improve soybean [Glycine max (L.) Merrill] seed nutritional quality, a synthetic gene, MB-16 was introduced into the soybean genome to boost seed methionine content. MB-16, an 11 kDa de novo protein enriched in the essential amino acids (EAAs) methionine, threonine, lysine and leucine, was originally developed for expression in rumen bacteria. For efficient seed expression, constructs were designed using the soybean codon bias, with and without the KDEL ER retention sequence, and β-conglycinin or cruciferin seed specific protein storage promoters. Homozygous lines, with single locus integrations, were identified for several transgenic events. Transgene transmission and MB-16 protein expression were confirmed to the T5 and T7 generations, respectively. Quantitative RT-PCR analysis of developing seed showed that the transcript peaked in growing seed, 5-6 mm long, remained at this peak level to the full-sized green seed and then was significantly reduced in maturing yellow seed. Transformed events carrying constructs with the rumen bacteria codon preference showed the same transcription pattern as those with the soybean codon preference, but the transcript levels were lower at each developmental stage. MB-16 protein levels, as determined by immunoblots, were highest in full-sized green seed but the protein virtually disappeared in mature seed. However, amino acid analysis of mature seed, in the best transgenic line, showed a significant increase of 16.2 and 65.9 % in methionine and cysteine, respectively, as compared to the parent. This indicates that MB-16 elevated the sulfur amino acids, improved the EAA seed profile and confirms that a de novo synthetic gene can enhance the nutritional quality of soybean.
Collapse
Affiliation(s)
- Yunfang Zhang
- Eastern Cereals and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A0C6, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Teerawanichpan P, Xia Q, Caldwell SJ, Datla R, Selvaraj G. Protein storage vacuoles of Brassica napus zygotic embryos accumulate a BURP domain protein and perturbation of its production distorts the PSV. PLANT MOLECULAR BIOLOGY 2009; 71:331-43. [PMID: 19714473 DOI: 10.1007/s11103-009-9541-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 07/20/2009] [Indexed: 05/09/2023]
Abstract
BNM2is a prototypical member of the enigmatic BURP domain protein family whose members contain the signature FX6-7GX10-28PX25-31CX11-12X2SX45-56CHX10 CHX25-29CHX2TX15-16PX5CH in the C-terminus. This protein family occurs only in plants, and the cognate genes vary very widely in their expression contexts in vegetative and reproductive tissues. None of theBURP family members has been assigned any biochemical function. BNM2 was originally discovered as a gene expressed in microspore derived embryos (MDE) of Brassica napus but we found that MDE do not contain the corresponding protein. We show that BNM2 protein production is confined to the seeds and localized to the protein storage vacuoles (PSV) even though the transcript is found in vegetative parts and floral buds as well. In developing seeds, transcript accumulation precedes protein appearance by more than 18 days. RNA accumulation peaks at approximately 20 days post anthesis (DPA) whereas protein accumulation reaches its maximum at approximately 40 DPA. Transgenic expression of BNM2 does not abrogate this regulation to yield ectopic protein production or to alter the temporal aspect ofBNM2 accumulation. Overexpression ofBNM2 led to spatial distortion of storage protein accumulation within PSV and to some morphological alterations of PSVs. However, the overall storage protein content was not altered.
Collapse
MESH Headings
- Brassica napus/genetics
- Brassica napus/growth & development
- Brassica napus/metabolism
- Brassica napus/ultrastructure
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Plant Leaves/genetics
- Plant Leaves/growth & development
- Plant Leaves/metabolism
- Plant Leaves/ultrastructure
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Proteins/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/ultrastructure
- Reverse Transcriptase Polymerase Chain Reaction
- Seed Storage Proteins/genetics
- Seed Storage Proteins/metabolism
- Seed Storage Proteins/physiology
- Seeds/genetics
- Seeds/metabolism
- Seeds/ultrastructure
- Sequence Analysis, DNA
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Prapapan Teerawanichpan
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada
| | | | | | | | | |
Collapse
|
7
|
Wan L, Ross A, Yang J, Hegedus D, Kermode A. Phosphorylation of the 12 S globulin cruciferin in wild-type and abi1-1 mutant Arabidopsis thaliana (thale cress) seeds. Biochem J 2007; 404:247-56. [PMID: 17313365 PMCID: PMC1868800 DOI: 10.1042/bj20061569] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cruciferin (a 12 S globulin) is the most abundant storage protein in the seeds of Arabidopsis thaliana (thale cress) and other crucifers, sharing structural similarity with the cupin superfamily of proteins. Cruciferin is synthesized as a precursor in the rough endoplasmic reticulum. Subunit assembly is accompanied by structural rearrangements involving proteolysis and disulfide-bond formation prior to deposition in protein storage vacuoles. The A. thaliana cv. Columbia genome contains four cruciferin loci, two of which, on the basis of cDNA analysis, give rise to three alternatively spliced variants. Using MS, we confirmed the presence of four variants encoded by genes At4g28520.1, At5g44120.3, At1g03880.1 and At1g3890.1 in A. thaliana seeds. Two-dimensional gel electrophoresis, along with immunological detection using anti-cruciferin antiserum and antibodies against phosphorylated amino acid residues, revealed that cruciferin was the major phosphorylated protein in Arabidopsis seeds and that polymorphism far exceeded that predicted on the basis of known isoforms. The latter may be attributed, at least in part, to phosphorylation site heterogeneity. A total of 20 phosphorylation sites, comprising nine serine, eight threonine and three tyrosine residues, were identified by MS. Most of these are located on the IE (interchain disulfide-containing) face of the globulin trimer, which is involved in hexamer formation. The implications of these findings for cruciferin processing, assembly and mobilization are discussed. In addition, the protein phosphatase 2C-impaired mutant, abi1-1, was found to exhibit increased levels of cruciferin phosphorylation, suggesting either that cruciferin may be an in vivo target for this enzyme or that abi1-1 regulates the protein kinase/phosphatase system required for cruciferin phosphorylation.
Collapse
Affiliation(s)
- Lianglu Wan
- *Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada S7N 0W9
- †Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Andrew R. S. Ross
- *Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada S7N 0W9
- To whom correspondence should be addressed (email )
| | - Jingyi Yang
- *Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada S7N 0W9
- †Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Dwayne D. Hegedus
- *Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada S7N 0W9
- ‡Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada S7N 0X2
| | - Allison R. Kermode
- †Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
8
|
Tsuwamoto R, Fukuoka H, Takahata Y. Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. PLANTA 2007; 225:641-52. [PMID: 16977456 DOI: 10.1007/s00425-006-0388-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 08/22/2006] [Indexed: 05/08/2023]
Abstract
To understand the mechanism in induction of embryogenesis from microspores of Brassica napus, we isolated exhaustively the genes expressed differentially during the early stage of microspore culture. A subtracted cDNA library composed of up-regulated genes during androgenic initiation was produced by suppression subtractive hybridization followed by differential screening by dot blot hybridization, and a total of 136 non-redundant expressed sequence tags were identified. Analysis of the potential functions of the genes showed that 64% of these genes were homologous to known genes, and the remaining ones have not been previously reported to participate in embryogenesis. Many embryo-specific genes were contained in the isolated genes, for example, genes cording lipid transfer protein, napin, cruciferin, oleosin, and phytosulfokine. Real-time RT-PCR analysis for 15 selected genes, which are understood to not be related with embryogenesis, demonstrated that all genes were expressed highly in the early stage of microspore embryogenesis. A few genes also showed higher expression in microspores cultured in non-embryogenic condition or in later stages of embryos. A principal component analysis based on expression profiles of the 15 genes demonstrated that these genes were classified into 2 groups, one characterized by their high expression in initiation of embryogenesis, and the other characterized by their expression in the early to middle stage of embryogenesis. The expressions of these genes were confirmed in zygotic embryos. The identification and characterization of the genes isolated in the present study provide novel information on microspore embryogenesis in Brassica.
Collapse
Affiliation(s)
- Ryo Tsuwamoto
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | | | | |
Collapse
|
9
|
Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:401-412X. [PMID: 10607293 DOI: 10.1046/j.1365-313x.1999.00611.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A bacterial phytoene synthase (crtB) gene was overexpressed in a seed-specific manner and the protein product targeted to the plastid in Brassica napus (canola). The resultant embryos from these transgenic plants were visibly orange and the mature seed contained up to a 50-fold increase in carotenoids. The predominant carotenoids accumulating in the seeds of the transgenic plants were alpha and beta-carotene. Other precursors such as phytoene were also detected. Lutein, the predominant carotenoid in control seeds, was not substantially increased in the transgenics. The total amount of carotenoids in these seeds is now equivalent to or greater than those seen in the mesocarp of oil palm. Other metabolites in the isoprenoid pathway were examined in these seeds. Sterol levels remained essentially the same, while tocopherol levels decreased significantly as compared to non-transgenic controls. Chlorophyll levels were also reduced in developing transgenic seed. Additionally, the fatty acyl composition was altered with the transgenic seeds having a relatively higher percentage of the 18 : 1 (oleic acid) component and a decreased percentage of the 18 : 2 (linoleic acid) and 18 : 3 (linolenic acid) components. This dramatic increase in flux through the carotenoid pathway and the other metabolic effects are discussed.
Collapse
|
10
|
Frommer WB, Kwart M, Hirner B, Fischer WN, Hummel S, Ninnemann O. Transporters for nitrogenous compounds in plants. PLANT MOLECULAR BIOLOGY 1994; 26:1651-1670. [PMID: 7858208 DOI: 10.1007/bf00016495] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|