1
|
Wolf G, Craigon C, Teoh ST, Essletzbichler P, Onstein S, Cassidy D, Uijttewaal ECH, Dvorak V, Cao Y, Bensimon A, Elling U, Ciulli A, Superti-Furga G. The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells. Cell Chem Biol 2025; 32:291-306.e6. [PMID: 39755121 DOI: 10.1016/j.chembiol.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored. Here, we utilized transporter-focused genetic screens to identify the ATP-binding cassette transporter ABCC1/MRP1 as a key PROTAC resistance factor. Unlike the previously identified inducible PROTAC exporter ABCB1/MDR1, ABCC1 is highly expressed among cancers of various origins and constitutively restricts PROTAC bioavailability. Moreover, in a genome-wide PROTAC resistance screen, we identified candidates involved in processes such as ubiquitination, mTOR signaling, and apoptosis as genetic factors involved in PROTAC resistance. In summary, our findings reveal ABCC1 as a crucial constitutively active efflux pump limiting PROTAC efficacy in various cancer cells, offering insights for overcoming drug resistance.
Collapse
Affiliation(s)
- Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Conner Craigon
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Diane Cassidy
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Esther C H Uijttewaal
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Yuting Cao
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Ariel Bensimon
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Sarogni P, Brindani N, Zamborlin A, Gonnelli A, Menicagli M, Mapanao AK, Munafò F, De Vivo M, Voliani V. Tumor growth-arrest effect of tetrahydroquinazoline-derivative human topoisomerase II-alpha inhibitor in HPV-negative head and neck squamous cell carcinoma. Sci Rep 2024; 14:9150. [PMID: 38644364 PMCID: PMC11033276 DOI: 10.1038/s41598-024-59592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/12/2024] [Indexed: 04/23/2024] Open
Abstract
Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. There is a persisting demand for new approaches to establish more efficient strategies for their treatment. In this regard, the human topoisomerase II (topoII) enzyme is a validated chemotherapeutics target, as topoII regulates vital cellular processes such as DNA replication, transcription, recombination, and chromosome segregation in cells. TopoII inhibitors are currently used to treat some neoplasms such as breast and small cells lung carcinomas. Additionally, topoII inhibitors are under investigation for the treatment of other cancer types, including oral cancer. Here, we report the therapeutic effect of a tetrahydroquinazoline derivative (named ARN21934) that preferentially inhibits the alpha isoform of human topoII. The treatment efficacy of ARN21934 has been evaluated in 2D cell cultures, 3D in vitro systems, and in chick chorioallantoic membrane cancer models. Overall, this work paves the way for further preclinical developments of ARN21934 and possibly other topoII alpha inhibitors of this promising chemical class as a new chemotherapeutic approach for the treatment of oral neoplasms.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Nicoletta Brindani
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- NEST - Scuola Normale Superiore, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Department of Translational Medicine, University of Pisa, 56126, Pisa, Italy
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini, 13, 56017, S. Giuliano Terme, Italy
| | - Ana Katrina Mapanao
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Federico Munafò
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy.
| | - Valerio Voliani
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy.
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
| |
Collapse
|
3
|
Xu MY, Xia ZY, Sun JX, Liu CQ, An Y, Xu JZ, Zhang SH, Zhong XY, Zeng N, Ma SY, He HD, Wang SG, Xia QD. A new perspective on prostate cancer treatment: the interplay between cellular senescence and treatment resistance. Front Immunol 2024; 15:1395047. [PMID: 38694500 PMCID: PMC11061424 DOI: 10.3389/fimmu.2024.1395047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qi-Dong Xia
- *Correspondence: Shao-Gang Wang, ; Qi-Dong Xia,
| |
Collapse
|
4
|
Choi E, Song J, Lee Y, Jeong Y, Jang W. Prioritizing susceptibility genes for the prognosis of male-pattern baldness with transcriptome-wide association study. Hum Genomics 2024; 18:34. [PMID: 38566255 PMCID: PMC10985920 DOI: 10.1186/s40246-024-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Male-pattern baldness (MPB) is the most common cause of hair loss in men. It can be categorized into three types: type 2 (T2), type 3 (T3), and type 4 (T4), with type 1 (T1) being considered normal. Although various MPB-associated genetic variants have been suggested, a comprehensive study for linking these variants to gene expression regulation has not been performed to the best of our knowledge. RESULTS In this study, we prioritized MPB-related tissue panels using tissue-specific enrichment analysis and utilized single-tissue panels from genotype-tissue expression version 8, as well as cross-tissue panels from context-specific genetics. Through a transcriptome-wide association study and colocalization analysis, we identified 52, 75, and 144 MPB associations for T2, T3, and T4, respectively. To assess the causality of MPB genes, we performed a conditional and joint analysis, which revealed 10, 11, and 54 putative causality genes for T2, T3, and T4, respectively. Finally, we conducted drug repositioning and identified potential drug candidates that are connected to MPB-associated genes. CONCLUSIONS Overall, through an integrative analysis of gene expression and genotype data, we have identified robust MPB susceptibility genes that may help uncover the underlying molecular mechanisms and the novel drug candidates that may alleviate MPB.
Collapse
Affiliation(s)
- Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
5
|
Rawat SG, Tiwari RK, Kumar A. Blockade of phosphodiesterase 5 by sildenafil reduces tumor growth and potentiates tumor-killing ability of cisplatin in vivo against T cell lymphoma: Implication of modulated apoptosis, reactive oxygen species homeostasis, glucose metabolism, and pH regulation. ENVIRONMENTAL TOXICOLOGY 2024; 39:1909-1922. [PMID: 38059649 DOI: 10.1002/tox.24074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
In the past years, PDE5 has emerged as a promising therapeutic target for many cancers due to its highly upregulated expression. Interestingly, a recent in vitro study by our group has shown the antitumor and chemopotentiating action of sildenafil against T cell lymphoma. Our study showed that lower doses of sildenafil (50 μM) and cisplatin (0.5 μg/mL) exhibited 4% and 23% cytotoxicity against HuT78 cells, respectively, which was dramatically increased up to 50% when treated with both. Hence, the present study was designed to evaluate the antitumor and chemo-potentiating action of sildenafil in a murine model of T cell lymphoma (popularly called as Dalton's lymphoma [DL]). In the present study, DL-bearing mice were administered with vehicle (PBS), sildenafil (5 mg/kg bw), cisplatin (5 mg/kg bw), and sildenafil and cisplatin followed by evaluation of their impact on tumor growth by analyzing various parameters. The apoptosis was assessed by Wright-Giemsa, annexin-V, and DAPI staining. Reactive oxygen species (ROS) level was examined through DCFDA staining. The expression of genes and proteins were estimated by RT-PCR and Western blotting, respectively. The experimental findings of the study demonstrate for the first time that sildenafil inhibits tumor growth and potentiates tumor inhibitory ability of cisplatin by altering apoptosis, glycolysis, ROS homeostasis, and pH regulation in T cell lymphoma-carrying host. In addition, our investigation also showed amelioration of tumor-induced liver and kidney damage by sildenafil. Overall, the experimental data of our study strongly advocate the use and repurposing of SDF in designing promising chemotherapeutic regimens against malignancies of T cells.
Collapse
Affiliation(s)
- Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Ragheb MA, Soliman MH, Abdelhamid IA, Shoukry MM, Haukka M, Ragab MS. Anticancer behaviour of 2,2'-(pyridin-2-ylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione)-based palladium(II) complex and its DNA, BSA binding propensity and DFT study. J Inorg Biochem 2024; 253:112488. [PMID: 38325158 DOI: 10.1016/j.jinorgbio.2024.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Herein, we report the synthesis and biological evaluation of [Pd(L)(OH2)Cl] complex (where L = 2,2'-(pyridin-2-ylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione) as a novel promising anticancer candidate. The complex was characterized by single-crystal X-ray diffraction and other various spectroscopic techniques. Besides, the optimized structure was determined through DFT calculations revealing that the coordination geometry of [Pd(L)(OH2)Cl] complex is square planar. The binding propensity of [Pd(L)(OH2)Cl] complex with DNA and BSA was assessed by the spectrophotometric method. The antimicrobial profile of the ligand and its [Pd(L)(OH2)Cl] complex was screened against clinically important bacterial strains. [Pd(L)(OH2)Cl] complex showed promising activity against these microorganisms. Pd(L)(OH2)Cl] complex exhibited a potent antiproliferative potential compared to its ligand against different human cancer cells (A549, HCT116, MDA-MB-231, and HepG2) with less toxic effect against normal cells (WI-38). Additionally, [Pd(L)(OH2)Cl] complex exerted its anticancer effects against the most responsive cells (HCT116 cells; IC50 = 11 ± 1 μM) through suppressing their colony-forming capabilities and triggering apoptosis and cell cycle arrest at S phase. Quantitative PCR analysis revealed a remarkable upregulation of the mRNA expression level of p53 and caspase-3 by 4.8- and 5.9-fold, respectively, relative to control. Remarkable binding properties and non-covalent interactions between L and its [Pd(L)(OH2)Cl] complex with the binding sites of different receptors including CDK2, MurE ligase, DNA, and BSA were established using molecular docking. Based on our results, [Pd(L)(OH2)Cl] complex is an intriguing candidate for future investigations as a potential anticancer drug for the treatment of colon cancer.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | | | - Mohamed M Shoukry
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
7
|
Asdemir A, Özgür A. Combination of navitoclax (Bcl-2 and Bcl-xL inhibitor) and Debio-0932 (Hsp90 inhibitor) suppresses the viability of prostate cancer cells via induction of apoptotic signaling pathway. Med Oncol 2024; 41:83. [PMID: 38436810 DOI: 10.1007/s12032-024-02335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Prostate cancer is one of the most common cancers in men. Given the diverse nature of prostate cancer and its tendency to respond differently to various treatments, combination therapies are often employed to enhance outcomes. In this study, the synergetic efficiency of chemotherapeutic drug Navitoclax and heat shock protein 90 (Hsp90) inhibitor Debio-0932 was evaluated in human prostate cancer cell line (PC3). Our results indicated that Navitoclax-Debio-0932 combination exhibited synergistic activity in PC3 cells at concentrations lower than IC50 values. The combination of Navitoclax and Debio-0932 decreased PC3 cell viability in a dose dependent manner at 48 h. To investigate the apoptotic potential of the Navitoclax-Debio-0932 combination against prostate cancer cells, the mRNA and protein expression levels of apoptotic and antiapoptotic markers (Bax, Bcl-2, Bcl-xL, Cyt-c, Apaf-1, Casp-3, Casp-7, and Casp-9) were measured using RT-PCR and ELISA assay. Furthermore, the cleavage activity of Casp-3 was determined by colorimetric assay. The results revealed that Navitoclax-Debio-0932 combination potently induced intrinsic apoptotic pathway in PC3 cells rather than using drugs alone. The combined treatment of Navitoclax and Debio-0932 displayed synergistic cytotoxic and apoptotic effects on prostate cancer cells, presenting a promising approach for combination therapy in prostate cancer.
Collapse
Affiliation(s)
- Aydemir Asdemir
- Faculty of Medicine, Department of Urology, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
8
|
Amerifar M, Arabnozari H, Shokrzadeh M, Habibi E. Evaluation of antioxidant properties and cytotoxicity of brown algae (nizamuddinia zanardinii) in uterine (hela) and pancreatic cancer cell lines (paca-2). Hum Exp Toxicol 2024; 43:9603271241227228. [PMID: 38238028 DOI: 10.1177/09603271241227228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pancreatic cancer and cervical cancer are among the most common cancers. Brown algae have anti-inflammatory, anti-cancer, anti-fungal, antioxidant, and immune-boosting properties. This study investigated the antioxidant properties and the effect of brown algae extract on pancreatic and uterine cancer cells. MATERIALS AND METHODS In this study, Cervical (Hela) and pancreas (Paca-2) cancer cell lines were examined. The algae materials were extracted by sequential maceration method and amount of fucoxanthin content in the sample was determined by using High Performance Liquid Chromatography (HPLC) system. The cytotoxic effect of different concentrations of brown algae was measured by the MTT assay. All statistical calculations for comparing IC50 were analyzed using Graph Pad Prism software. RESULTS the algal sample contained an average of 102.52 ± 0.12 μg of fucoxanthin per 100 g. IC50 for 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide free radical scavenging activity for methanolic extract was 2.02 and 11.98 ± 0.13 respectively. Brown algae in all fractions inhibited cell growth and survival. In Hela cell lines, the methanolic extract was the most effective inhibitor, while in Paca cell lines, hexane and methanolic extracts were particularly potent. The methanolic extract was more toxic than other fractions on Hela and Paca cell lines. CONCLUSION This study highlights brown algae extracts strong anticancer effects on uterine and pancreatic cancer cells, suggesting its potential as a natural anticancer drug. Different fractions of the extract showed superior apoptotic and cytotoxic effects, with higher concentrations leading to increased apoptotic effects and reduced survival rates of cancer cells.
Collapse
Affiliation(s)
- Milad Amerifar
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hesamoddin Arabnozari
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Shokrzadeh
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emran Habibi
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
El-Dash Y, Khalil NA, Ahmed EM, Hassanin SO, Gowifel AMH, Hassan MSA. Synthesis of novel nicotinic acid derivatives of potential antioxidant and anticancer activity. Arch Pharm (Weinheim) 2023; 356:e2300250. [PMID: 37792247 DOI: 10.1002/ardp.202300250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
This study comprises the design and synthesis of novel nicotinic acid-based cytotoxic agents with selective inhibitory efficacy against the vascular endothelial growth factor receptor-2 (VEGFR-2). Screening of novel compounds for cytotoxicity was assessed against 60 human cancer cell lines. The two most active compounds, 5b and 5c, and the reference drugs sorafenib and doxorubicin were investigated against HCT-15, PC-3, and CF-295 cancer cell lines. Compound 5c exhibited the highest cytotoxic potential compared to doxorubicin against the HCT-15 and PC-3 tumor cell lines. Moreover, it exhibited higher cytotoxic potential and selectivity toward the HCT-15 cell panel compared with sorafenib. Compound 5c demonstrated promising VEGFR-2 inhibition (concentration needed to inhibit cell viability by 50%, IC50 = 0.068 μM) and superior VEGFR-2 selectivity over the epidermal growth factor receptor and platelet-derived growth factor receptor-β enzymes. It also reduced the total and phosphorylated VEGFR-2 and induced apoptosis, as evidenced by a 4.3-fold rise in caspase-3 levels. The antioxidant potential of the new compounds was determined via measuring the superoxide dismutase (SOD) levels, among which compound 5c exhibited an SOD level almost comparable to ascorbic acid. These results suggested that compound 5c exhibited dual cytotoxic and antioxidant activities. Docking of 5c into the VEGFR-2 pocket showed a similar binding mode to sorafenib. Moreover, the ADME (absorption, distribution, metabolism, and excretion) profile of 5c outlined drug-likeness. Finally, The density functional theory calculations displayed an increased binding affinity of 5c to the target enzyme.
Collapse
Affiliation(s)
- Yara El-Dash
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nadia A Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Soha O Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Marwa S A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Al Shboul S, El-Sadoni M, Alhesa A, Abu Shahin N, Abuquteish D, Abu Al Karsaneh O, Alsharaiah E, Ismail MA, Tyutyunyk-Massey L, Alotaibi MR, Neely V, Harada H, Saleh T. NOXA expression is downregulated in human breast cancer undergoing incomplete pathological response and senescence after neoadjuvant chemotherapy. Sci Rep 2023; 13:15903. [PMID: 37741850 PMCID: PMC10517932 DOI: 10.1038/s41598-023-42994-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) is a frequently utilized approach to treat locally advanced breast cancer, but, unfortunately, a subset of tumors fails to undergo complete pathological response. Apoptosis and therapy-induced senescence (TIS) are both cell stress mechanisms but their exact role in mediating the pathological response to NAC is not fully elucidated. We investigated the change in expression of PAMIP1, the gene encoding for the pro-apoptotic protein, NOXA, following NAC in two breast cancer gene datasets, and the change in NOXA protein expression in response to NAC in 55 matched patient samples (pre- and post-NAC). PAMIP1 expression significantly declined in post-NAC in the two sets, and in our cohort, 75% of the samples exhibited a downregulation in NOXA post-NAC. Matched samples that showed a decline in NOXA post-NAC were examined for TIS based on a signature of downregulated expression of Lamin-B1 and Ki-67 and increased p16INK4a, and the majority exhibited a decrease in Lamin B1 (66%) and Ki-67 (80%), and increased p16INK4a (49%). Since our cohort consisted of patients that did not develop complete pathological response, such findings have clinical implications on the role of TIS and NOXA downregulation in mediating suboptimal responses to the currently established NAC.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Dua Abuquteish
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Elham Alsharaiah
- Department of Pathology, King Hussein Medical Center, Royal Medical Service, Amman, 11942, Jordan
| | | | | | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Victoria Neely
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
11
|
Elfarnawany A, Dehghani F. Time- and Concentration-Dependent Adverse Effects of Paclitaxel on Non-Neuronal Cells in Rat Primary Dorsal Root Ganglia. TOXICS 2023; 11:581. [PMID: 37505547 PMCID: PMC10385404 DOI: 10.3390/toxics11070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
Paclitaxel is a chemotherapeutic agent used to treat a wide range of malignant tumors. Although it has anti-tumoral properties, paclitaxel also shows significant adverse effects on the peripheral nervous system, causing peripheral neuropathy. Paclitaxel has previously been shown to exert direct neurotoxic effects on primary DRG neurons. However, little is known about paclitaxel's effects on non-neuronal DRG cells. They provide mechanical and metabolic support and influence neuronal signaling. In the present study, paclitaxel effects on primary DRG non-neuronal cells were analyzed and their concentration or/and time dependence investigated. DRGs of Wister rats (6-8 weeks old) were isolated, and non-neuronal cell populations were separated by the density gradient centrifugation method. Different concentrations of Paclitaxel (0.01 µM-10 µM) were tested on cell viability by MTT assay, cell death by lactate dehydrogenase (LDH) assay, and propidium iodide (PI) assay, as well as cell proliferation by Bromodeoxyuridine (BrdU) assay at 24 h, 48 h, and 72 h post-treatment. Furthermore, phenotypic effects have been investigated by using immunofluorescence techniques. Paclitaxel exhibited several toxicological effects on non-neuronal cells, including a reduction in cell viability, an increase in cell death, and an inhibition of cell proliferation. These effects were concentration- and time-dependent. Cellular and nuclear changes such as shrinkage, swelling of cell bodies, nuclear condensation, chromatin fragmentation, retraction, and a loss in processes were observed. Paclitaxel showed adverse effects on primary DRG non-neuronal cells, which might have adverse functional consequences on sensory neurons of the DRG, asking for consideration in the management of peripheral neuropathy.
Collapse
Affiliation(s)
- Amira Elfarnawany
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany;
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany;
| |
Collapse
|
12
|
Chang YL, Chou CH, Li YF, Huang LC, Kao Y, Hueng DY, Tsai CK. Antiproliferative and apoptotic effects of telmisartan in human glioma cells. Cancer Cell Int 2023; 23:111. [PMID: 37291545 DOI: 10.1186/s12935-023-02963-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Glioblastoma is the most common primary central nervous system tumor in adults. Angiotensin II receptor blockers (ARBs) are broadly applied to treat hypertension. Moreover, research has revealed that ARBs have the capacity to suppress the growth of several cancer types. In this study, we assessed the effects of three ARBs with the ability to cross the blood brain barrier (telmisartan, valsartan and fimasartan) on cell proliferation in three glioblastoma multiforme (GBM) cell lines. Telmisartan markedly suppressed the proliferation, migration, and invasion of these three GBM cell lines. Microarray data analysis revealed that telmisartan regulates DNA replication, mismatch repair, and the cell cycle pathway in GBM cells. Furthermore, telmisartan induced G0/G1 phase arrest and apoptosis. The bioinformatic analysis and western blotting results provide evidence that SOX9 is a downstream target of telmisartan. Telmisartan also suppressed tumor growth in vivo in an orthotopic transplant mouse model. Therefore, telmisartan is a potential treatment for human GBM.
Collapse
Affiliation(s)
- Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-Gong Road, Taipei, 11490, Taiwan
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Ying Kao
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-Gong Road, Taipei, 11490, Taiwan.
| |
Collapse
|
13
|
Hazrati A, Mirsanei Z, Heidari N, Malekpour K, Rahmani-Kukia N, Abbasi A, Soudi S. The potential application of encapsulated exosomes: A new approach to increase exosomes therapeutic efficacy. Biomed Pharmacother 2023; 162:114615. [PMID: 37011484 DOI: 10.1016/j.biopha.2023.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cell therapy is one of the methods that have shown promising results in treating diseases in recent decades. However, the use of different types of cells comes with limitations. The application of immune cells in cell therapy can lead to cytokine storms and inappropriate responses to self-antigens. Also, the use of stem cells has the potential to create tumors. Also, cells may not migrate to the injury site after intravenous injection. Therefore, using exosomes from different cells as therapeutic candidates were proposed. Due to their small size and favorable characteristics, such as biocompatibility and immunocompatibility, the easy storage and isolation, exosomes have attracted much attention. They are used in treating many diseases, including cardiovascular diseases, orthopedic diseases, autoimmune diseases, and cancer. However, the results of various studies have shown that the therapeutic efficiency of exosomes (Exo) can be increased by loading different drugs and microRNAs inside them (encapsulated exosomes). Therefore, analyzing studies investigating encapsulated exosomes' therapeutic ability is critical. In this study, we have examined the studies related to the use of encapsulated exosomes in treating diseases such as cancer and infectious diseases and their use in regenerative medicine. Compared to intact exosomes, the results show that the application of encapsulated exosomes has a higher therapeutic ability. Therefore it is suggested to use this method depending on the treatment type to increase the treatment's efficiency.
Collapse
|
14
|
Venkatesham P, Ranjan N, Mudiraj A, Kuchana V, Chedupaka R, Manga V, Babu PP, Vedula RR. New class of fused [3,2-b][1,2,4]triazolothiazoles for targeting glioma in vitro. Bioorg Med Chem Lett 2023; 80:129103. [PMID: 36494051 DOI: 10.1016/j.bmcl.2022.129103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Glioma is aggressive malignant tumor with limited therapeutic interventions. Herein we report the synthesis of fused bicyclic 1,2,4-triazolothiazoles by a one-pot multi-component approach and their activity against C6 rat and LN18 human glioma cell lines. The target compounds 2-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl) isoindoline-1,3-diones and (E)-1-phenyl-N-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl) methanimines were obtained by the reaction of 5-amino-4H-1,2,4-triazole-3-thiol with substituted phenacyl bromide, phthalic anhydride, and different aromatic aldehydes in EtOH/HCl under reflux conditions. In C6 rat glioma cell lines, compounds 4g and 6i showed good cytotoxic activity with IC50 values of 8.09 and 8.74 μM, respectively, resulting in G1 and G2-M phase arrest of the cell cycle and activation of apoptosis by modulating phosphorylation of ERK and AKT pathway.
Collapse
Affiliation(s)
- Papisetti Venkatesham
- Department of Chemistry National Institute of Technology, Warangal, Telangana 506004, India
| | - Nikhil Ranjan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Anwita Mudiraj
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Vinutha Kuchana
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, 500007 Hyderabad, Telangana, India
| | - Raju Chedupaka
- Department of Chemistry National Institute of Technology, Warangal, Telangana 506004, India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, 500007 Hyderabad, Telangana, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| | - Rajeswar Rao Vedula
- Department of Chemistry National Institute of Technology, Warangal, Telangana 506004, India.
| |
Collapse
|
15
|
Kallenbach J, Atri Roozbahani G, Heidari Horestani M, Baniahmad A. Distinct mechanisms mediating therapy-induced cellular senescence in prostate cancer. Cell Biosci 2022; 12:200. [PMID: 36522745 PMCID: PMC9753376 DOI: 10.1186/s13578-022-00941-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is an age-related malignancy in men with a high incidence rate. PCa treatments face many obstacles due to cancer cell resistance and many bypassing mechanisms to escape therapy. According to the intricacy of PCa, many standard therapies are being used depending on PCa stages including radical prostatectomy, radiation therapy, androgen receptor (AR) targeted therapy (androgen deprivation therapy, supraphysiological androgen, and AR antagonists) and chemotherapy. Most of the aforementioned therapies have been implicated to induce cellular senescence. Cellular senescence is defined as a stable cell cycle arrest in the G1 phase and is one of the mechanisms that prevent cancer proliferation. RESULTS In this review, we provide and analyze different mechanisms of therapy-induced senescence (TIS) in PCa and their effects on the tumor. Interestingly, it seems that different molecular pathways are used by cancer cells for TIS. Understanding the complexity and underlying mechanisms of cellular senescence is very critical due to its role in tumorigenesis. The most prevalent analyzed pathways in PCa as TIS are the p53/p21WAF1/CIP1, the p15INK4B/p16INK4A/pRb/E2F/Cyclin D, the ROS/ERK, p27Kip1/CDK/pRb, and the p27Kip1/Skp2/C/EBP β signaling. Despite growth inhibition, senescent cells are highly metabolically active. In addition, their secretome, which is termed senescence-associated secretory phenotype (SASP), affects within the tumor microenvironment neighboring non-tumor and tumor cells and thereby may regulate the growth of tumors. Induction of cancer cell senescence is therefore a double-edged sword that can lead to reduced or enhanced tumor growth. CONCLUSION Thus, dependent on the type of senescence inducer and the specific senescence-induced cellular pathway, it is useful to develop pathway-specific senolytic compounds to specifically targeting senescent cells in order to evict senescent cells and thereby to reduce SASP side effects.
Collapse
Affiliation(s)
- Julia Kallenbach
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Golnaz Atri Roozbahani
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Mehdi Heidari Horestani
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Aria Baniahmad
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| |
Collapse
|
16
|
Lin S, Qin HZ, Li ZY, Zhu H, Long L, Xu LB. Gallic acid suppresses the progression of triple-negative breast cancer HCC1806 cells via modulating PI3K/AKT/EGFR and MAPK signaling pathways. Front Pharmacol 2022; 13:1049117. [PMID: 36523491 PMCID: PMC9744937 DOI: 10.3389/fphar.2022.1049117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/15/2022] [Indexed: 11/04/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a severe threat to women's health because of its aggressive nature, early age of onset, and high recurrence rate. Therefore, in this study, we aimed to evaluate the anti-tumor effects of Gallic acid (GA) on the TNBC HCC1806 cells in vitro. The cell proliferation was detected by MTT and plate clone formation assays, cell apoptosis, cell cycle, and mitochondrial membrane potential (MMP) were analyzed by flow cytometry and Hoechst 33258 staining assays, and the intracellular reactive oxygen species (ROS) accumulation were also investigated. Real-Time PCR and western blot were examined to explore the mechanism of action. The results indicated that GA suppressed HCC1806 cells proliferation and promoted HCC1806 cells apoptosis. Meanwhile, GA treatment changed the morphology of the HCC1806 cells. In addition, GA blocked the HCC1806 cells cycle in the S phase, and it induced cells apoptosis accompanied by ROS accumulation and MMP depolarization. Real-Time PCR results suggested that GA increased Bax, Caspase-3, Caspase-9, P53, JINK and P38 mRNA expression, and decreased Bcl-2, PI3K, AKT and EGFR mRNA expression. Western blotting results suggested that GA increased Bax, cleaved-Caspase-3, cleaved-Caspase-9, P53, P-ERK1/2, P-JNK, P-P38 proteins expression, and decreased Bcl-2, P-PI3K, P-AKT, P-EGFR proteins expression. Furthermore, molecular docking suggested that GA has the high affinity for PI3K, AKT, EGFR, ERK1/2, JNK, and P38. In conclusion, GA could suppress HCC1806 cells proliferation and promote HCC1806 cells apoptosis through the mitochondrial apoptosis pathway and induces ROS generation which further inhibits PI3K/AKT/EGFR and activates MAPK signaling pathways. Our study will provide some new references for using GA in the treatment of TNBC.
Collapse
Affiliation(s)
- Si Lin
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hui-Zhen Qin
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Ze-Yu Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hua Zhu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Li Long
- Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Li-Ba Xu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
17
|
Predictive validity in drug discovery: what it is, why it matters and how to improve it. Nat Rev Drug Discov 2022; 21:915-931. [PMID: 36195754 DOI: 10.1038/s41573-022-00552-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
Successful drug discovery is like finding oases of safety and efficacy in chemical and biological deserts. Screens in disease models, and other decision tools used in drug research and development (R&D), point towards oases when they score therapeutic candidates in a way that correlates with clinical utility in humans. Otherwise, they probably lead in the wrong direction. This line of thought can be quantified by using decision theory, in which 'predictive validity' is the correlation coefficient between the output of a decision tool and clinical utility across therapeutic candidates. Analyses based on this approach reveal that the detectability of good candidates is extremely sensitive to predictive validity, because the deserts are big and oases small. Both history and decision theory suggest that predictive validity is under-managed in drug R&D, not least because it is so hard to measure before projects succeed or fail later in the process. This article explains the influence of predictive validity on R&D productivity and discusses methods to evaluate and improve it, with the aim of supporting the application of more effective decision tools and catalysing investment in their creation.
Collapse
|
18
|
Rostamizadeh B, Jalalizand A, Nasiri R, Ghaedi K. Formulation, nanonisation, and characterization of
Polyrhachis
sp. for enhanced anticancer potential: In vitro studies. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bahar Rostamizadeh
- Department of Plant Protection, Faculty of Agriculture, Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran
| | - Alireza Jalalizand
- Department of Plant Protection, Faculty of Agriculture, Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran
| | - Rozita Nasiri
- Isfahan Clinical Toxicology Research Center Isfahan University of Medical Sciences Isfahan Iran
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology University of Isfahan Isfahan Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology University of Isfahan Isfahan Iran
| |
Collapse
|
19
|
Atramacronoids A−C, three eudesmanolide sesquiterpene-phenol hybrids with an unprecedented C−C linkage from the rhizomes of Atractylodes macrocephala. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Kowalczyk A, Piotrowicz M, Gapińska M, Trzybiński D, Woźniak K, Golding TM, Stringer T, Smith GS, Czerwieniec R, Kowalski K. Chemistry of glycol nucleic acid (GNA): Synthesis, photophysical characterization and insight into the biological activity of phenanthrenyl GNA constituents. Bioorg Chem 2022; 125:105847. [DOI: 10.1016/j.bioorg.2022.105847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
|
21
|
Tamang N, Andrews C, Mavileti SK, Nanduri S, Golakoti NR, Karanam B. Anti-cancer activity of heteroaromatic acetals of andrographolide and its isomers. NEW J CHEM 2022; 46:9745-9754. [PMID: 36093125 PMCID: PMC9454336 DOI: 10.1039/d2nj01055k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Acetals (2a-d, 3a-d, and 6a-d) of andrographolide (1), 14-deoxy-12-hydroxyandrographolide (4), and isoandrographolide (5) were synthesized using benzaldehyde and heteroaromatic aldehydes. All the synthesized derivatives were characterized using 1H-NMR, 13C-NMR, mass spectrometry, UV, and IR. The compound 6d was characterized via a single-crystal X-ray diffraction study. All the compounds were tested against 60 cell lines of NCI. The acetals (2a-d) of andrographolide (1) exhibited better activity than the acetals (3a-d, and 6a-d) of 12-hydroxyandrographolide (4) and isoandrographolide (5). Preliminary studies suggested that acetals synthesized using benzaldehyde improved anticancer activity. Compound 2a showed the highest growth inhibition of 90.97% against the leukaemia cancer cell line CCRF-CEM. Andrographolide and seven selected compounds were tested against the MDA-MB-231 breast cancer cell line. Compound 3b showed the best activity with an IC50 value of 3 μM among all the tested compounds. Furthermore, this compound 3b was subjected to cell cycle analysis and protein expression confirming apoptosis through the disruption of the mitochondrial potential membrane (Δψ m).
Collapse
Affiliation(s)
- Nitesh Tamang
- Department of chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Christopher Andrews
- Department of Biology and Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sai Kiran Mavileti
- Department of chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | - Srinivas Nanduri
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research, Balanagar, 500037, Hyderabad, Telangana, India
| | - Nageswara Rao Golakoti
- Department of chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
| | | |
Collapse
|
22
|
Passeri G, Northcote-Smith J, Perera R, Gubic N, Suntharalingam K. An Osteosarcoma Stem Cell Potent Nickel(II)-Polypyridyl Complex Containing Flufenamic Acid. Molecules 2022; 27:3277. [PMID: 35630754 PMCID: PMC9143476 DOI: 10.3390/molecules27103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Apoptosis resistance is inherent to stem cell-like populations within tumours and is one of the major reasons for chemotherapy failures in the clinic. Necroptosis is a non-apoptotic mode of programmed cell death that could help bypass apoptosis resistance. Here we report the synthesis, characterisation, biophysical properties, and anti-osteosarcoma stem cell (OSC) properties of a new nickel(II) complex bearing 3,4,7,8-tetramethyl-1,10-phenanthroline and two flufenamic acid moieties, 1. The nickel(II) complex 1 is stable in both DMSO and cell media. The nickel(II) complex 1 kills bulk osteosarcoma cells and OSCs grown in monolayer cultures and osteospheres grown in three-dimensional cultures within the micromolar range. Remarkably, 1 exhibits higher potency towards osteospheres than the metal-based drugs used in current osteosarcoma treatment regimens, cisplatin and carboplatin, and an established anti-cancer stem cell agent, salinomycin (up to 7.7-fold). Cytotoxicity studies in the presence of prostaglandin E2 suggest that 1 kills OSCs in a cyclooxygenase-2 (COX-2) dependent manner. Furthermore, the potency of 1 towards OSCs decreased significantly upon co-treatment with necrostatin-1 or dabrafenib, well-known necroptosis inhibitors, implying that 1 induces necroptosis in OSCs. To the best of our knowledge, 1 is the first compound to implicate both COX-2 and necroptosis in its mechanism of action in OSCs.
Collapse
|
23
|
Sakthidhasan P, Kumar PS, Viswanathan MBG. Apoptotic and Antiproliferative Potential of GAPDH from Mallotus
philippensis Seed on Human Lung Carcinoma: In Vitro and In Vivo
Approach. Protein Pept Lett 2022; 29:340-349. [DOI: 10.2174/0929866529666220302104935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Aim:
The anticancer potential of a purified seed protein from Mallotus philippensis is
scientifically evaluated and reported here.
Background:
Seeds of Mallotus philippensis are used to treat various diseases in the indigenous
systems of medicine in India.
Objectives:
The present study deals with the isolation, purification, identification, and screening of
protein of interest that exhibit maximum activity against lung cancer cells from the seed crude
protein of Mallotus philippensis.
Methods:
Size-exclusion with HPLC was used to purify crude protein (15 mg) from M. philippensis
seeds. Protein of interest was identified using the LC-MS/MS method and analyzed by in vitro
(A549 cell lines) in vivo (B16-F10 cells from melanoma cancer-induced Wistar rats) to estimate
anticancer activity.
Results:
SDS-PAGE was applied to isolate and purify elution III (480 μg/ml). Elution III LCMS/
MS data were used to search the UniProt database and were eventually matched with
glyceraldehyde 3-phosphate dehydrogenase (GAPDH). MTT assay of GAPDH-treated A549 cells
exhibited an IC50 of 3.03 ± 0.39 μg (24 h) and 1.93 ± 0.19 μg (48 h). AO/EtBr staining showed
early and late apoptotic characteristics such as cell membrane blebbing, chromatin condensation,
and the formation of apoptotic bodies. Hoechst staining confirmed the death of cells by exhibiting
bright blue fluorescent, condensed, and fragmented nuclei. GAPDH-treated rats by 10 and 20 mg/kg
bw significantly increased body weight by 29.50 ± 3.06 and 31.33 ± 2.69, respectively, and
decreased melanoma metastasis in the lungs by 66.79% and 86.57%, respectively. Further, GAPDH
treatment significantly increased the levels of SOD, CAT, and GPx and reduced GST and GSH.
Histopathological analysis confirmed nuclear alteration in the lung tissue of the treated groups only.
Conclusion:
Apoptotic potential of GAPDH against lung carcinoma has been confirmed in the
present investigation.
Collapse
Affiliation(s)
- Periasamy Sakthidhasan
- Department of Botany, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Perumal Sathish Kumar
- Department of Internal
Medicine, Division of Gastroenterology, University of Nebraska Medical Center, Omaha 68105, Nebraska, USA
| | | |
Collapse
|
24
|
Hamad D, El-Sayed H, Ahmed W, Sonbol H, Ramadan MAH. GC-MS Analysis of Potentially Volatile Compounds of Pleurotus ostreatus Polar Extract: In vitro Antimicrobial, Cytotoxic, Immunomodulatory, and Antioxidant Activities. Front Microbiol 2022; 13:834525. [PMID: 35250951 PMCID: PMC8894875 DOI: 10.3389/fmicb.2022.834525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 01/28/2023] Open
Abstract
One strategy to manage resistant pathogens and develop potential anticancer drugs is the search for new, promising, and cost-effective medicinal benefits in the field of bioactive metabolites derived from mushrooms. In the current study, Egyptian cultivated Pleurotus ostreatus fruiting bodies polar extract was prepared to evaluate its antimicrobial activities as well as its cytotoxic effect on various cancer cell lines. The Pleurotus ostreatus polar extract (PoPE) was characterized by its phenolic and flavonoid content. The phenolics and flavonoids of PoPE were 6.94 and 0.15 mg/g, respectively. P. ostreatus polar extract showed potent antimicrobial activity against four pathogens, including Candida albicans, Staphylococcus aureus, Micrococcus luteus, and Escherichia coli. PoPE was found to inhibit Fusarium oxysporum (47%), Fusarium solani (28%) as well as Rhizoctonia solani (21%). PoPE was found to be 13 times more selective and toxic to MCF-7 cells than Vero normal cells, with the lowest IC50 value (4.5 μg/mL), so they were selected to examine the potential cytotoxic effects of PoPE. In MCF-7 cells, PoPE appeared to promote cell cycle arrest in the sub-G1 stage, as well as apoptosis. It significantly increased TNF-α production while decreasing IL-6 levels. PoPE’s total antioxidant capacity, lipid peroxide, and glutathione reductase activity were recorded 0.14 ± 0.02 mM/L, 15.60 ± 0.015 nmol/mL, and 9.50 ± 1.30 U/L, respectively. The existence of different bioactive metabolites was investigated via GC-MS, which confirmed the presence of 15 compounds with well-known biological activity.
Collapse
Affiliation(s)
- Doaa Hamad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Heba El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Helwan, Egypt
| | - Wafaa Ahmed
- Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- *Correspondence: Hana Sonbol,
| | | |
Collapse
|
25
|
Zhang Y, Yang Y, Yan C, Li J, Zhang P, Liu R, He J, Chang YX. A review of the ethnopharmacology, phytochemistry and pharmacology of Cynanchumatratum. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114748. [PMID: 34662666 DOI: 10.1016/j.jep.2021.114748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried roots and rhizomes of Cynanchum atratum Bunge is named 'Baiwei' according to traditional Chinese medicine theory. It is also named Cynanchi atrati Radix in Chinese Pharmacopoeia. Cynanchi atrati Radix is famous for its medicinal value of clearing away heat, relieving drenching, detoxifying and treating abscesses. It was commonly used in some Asian countries for the treatment of fever, vasoconstrictive syncope, lymphangitis and other diseases, obviously due to the effect of C21 steroidal glycosides. THE AIM OF THE REVIEW The review concentrates on the botany, ethnopharmacology, phytochemistry, pharmacology and toxicology of Cynanchum atratum. We also discuss expectations for prospective research and implementation of this herb. MATERIALS AND METHODS Relevant information about C. atratum was gained from ancient books and records, Doctoral and master's Theses, Science Direct, Pubmed, Wiley, CNKI, WanFang DATA, Google Scholar and other domestic and foreign literature. Some electronic databases have been included. RESULTS As a member of the Apocynaceae family, C. atratum possesses its up-and-coming biological characteristics. It is widely reported for treating of postpartum fatigue, vomiting, urine drops, nephritis, urinary tract infection, edema, bronchitis and rheumatic low back pain. By now, over 100 compounds have been identified from C. atratum, including C21 steroidal glycosides, acetophenones, alkaloids, volatile oil and other ingredients. Activities such as anti-inflammatory, anti-tumor, anti-virus, antibacterial, anti-forgetful and others have been corroborated in vivo and in vitro. In addition, many of the active ingredients, such as Cynatratoside A, Cynanversicoside A, B, D, G, p-hydroxyacetophenone, 2,4-dihydroxyacetophenone and some volatile oils have been used as quality markers. CONCLUSION All kinds of research conducted on C.atratum, especially in field of ethnopharmacological use, phytochemicals and pharmacology have been reviewed. The herb has been used over the years in treating nephritis, urinary tract infection, bronchitis and rheumatic lumbocrural pain. Many studies have been carried out to identify compounds that play a leading role in drug activity. However, the mechanism of drug therapy remains unclear. The evidence used to prove the quality standard of medicinal materials is obviously inadequate. Besides, safety evaluation is necessary for clinical medication. Similarly, the separation of steroidal saponins and the development of new drugs will also need further discussion.
Collapse
Affiliation(s)
- Yaqian Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuqiao Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chaozhuo Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Peng Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratories of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
26
|
Anti-Cancer Effects of α-Cubebenoate Derived from Schisandra chinensis in CT26 Colon Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030737. [PMID: 35164001 PMCID: PMC8839175 DOI: 10.3390/molecules27030737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
Abstract
α-Cubebenoate derived from Schisandra chinensis has been reported to possess anti-allergic, anti-obesity, and anti-inflammatory effects and to exhibit anti-septic activity, but its anti-cancer effects have not been investigated. To examine the anti-cancer activity of α-cubebenoate, we investigated its effects on the proliferation, apoptosis, and metastasis of CT26 cells. The viabilities of CT26 cells (a murine colorectal carcinoma cell line) and HCT116 cells (a human colon cancer cell line) were remarkably and dose-dependently diminished by α-cubebenoate, whereas the viability of CCD-18Co cells (a normal human fibroblast cell line) were unaffected. Furthermore, α-cubebenoate treatment increased the number of apoptotic CT26 cells as compared with Vehicle-treated cells and increased Bax, Bcl-2, Cas-3, and Cleaved Cas-3 protein levels by activating the MAP kinase signaling pathway. α-Cubebenoate also suppressed CT26 migration by regulating the PI3K/AKT signaling pathway. Furthermore, similar reductions were observed in the expression levels of some migration-related proteins including VEGFA, MMP2, and MMP9. Furthermore, reduced VEGFA expression was found to be accompanied by the phosphorylations of FAK and MLC in the downstream signaling pathway of adhesion protein. The results of the present study provide novel evidence that α-cubebenoate can stimulate apoptosis and inhibit metastasis by regulating the MAPK, PI3K/AKT, and FAK/MLC signaling pathways.
Collapse
|
27
|
Biological evaluation of complexes of cyclopentadienyl M(CO) 3+ (M = Re, 99mTc) with high blood-brain barrier penetration potential as brain cancer agents. Invest New Drugs 2022; 40:497-505. [PMID: 35024984 DOI: 10.1007/s10637-022-01211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
To address the major medical need for effective chemotherapeutics/diagnostics for brain cancer, in this work three cyclopentadienyl M(CO)3+ (M = Re, 99mTc) complexes, which cross the blood-brain barrier (BBB) in high % and are designed to mimic the anticancer agent 2-phenylbenzothiazole, are in vitro and in vivo evaluated for anticancer action. The study includes cytotoxicity and uptake studies in cancer and healthy neuronal cell lines, mechanistic investigation of potential anticancer pathways, and biodistribution studies in mice bearing glioblastoma xenografts. The stable Re complexes exhibit selective uptake and significant antiproliferative effect, particularly against U-251 MG glioblastoma cells, with no significant toxicity in healthy neurons, demonstrating the suitability of this type of complexes to serve as selective therapeutic/imaging agents for brain cancer. Furthermore, they result in the generation of elevated Reactive Oxygen Species (ROS) levels, and lead to significant G2/M arrest followed by apoptosis. Biodistribution studies in U-251 MG xenograft bearing mice with the radioactive 99mTc complex that exhibits the highest BBB penetration, show retention at the tumor-site offering a diagnostic prospect and, in addition, indicating the capability of the Re analogue to accumulate at the tumor site for therapeutic action. Overall, the complexes demonstrate significant anticancer properties that, combined with their high BBB penetration potential, render them strong candidates for further evaluation as brain cancer agents.
Collapse
|
28
|
Raju L, Jacob MS, Rajkumar E. Don’t dust off the dust! – A facile synthesis of graphene quantum dots derived from indoor dust towards their cytotoxicity and antibacterial activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02876j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents a feasible and sustainable way for producing crystalline graphene quantum dots derived from indoor dust particles using a simple eco-friendly hydrothermal procedure.
Collapse
Affiliation(s)
- Liju Raju
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Tambaram East, Chennai, Tamilnadu, India
| | - Megha Sara Jacob
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Tambaram East, Chennai, Tamilnadu, India
| | - Eswaran Rajkumar
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Tambaram East, Chennai, Tamilnadu, India
| |
Collapse
|
29
|
Mahanty S, Rathinasamy K, Suresh D. Spectral Characterization of Purpurin Dye and Its Application in pH Sensing, Cell Imaging and Apoptosis Detection. J Fluoresc 2022; 32:247-256. [PMID: 34731386 DOI: 10.1007/s10895-021-02836-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Purpurin (1,2,4-trihydroxy-9,10-anthraquinone) is a natural red dye obtained from the red madder plant that is widely used in food and dyeing industries. The present study investigated the characteristics of purpurin and its application as a pH-sensitive probe to detect the pH of solutions and intracellular pH of mammalian and bacterial cells. Purpurin exhibited high pH-sensitive behavior, low analytes interference, high stability with pKa of 4.6 and visible colorimetric change. 1H NMR and FTIR studies indicated protonation of phenolic hydroxyl group under acidic condition with hypsochromic shift in the absorption and fluorescence spectra relative to that of basic condition. Cell culture studies using HeLa cells revealed that purpurin is well tolerated by the cells and the fluorescent imaging result indicated excellent cell permeability with possible use of the dye to detect the pH fluctuations in living cells under various physiological conditions such as apoptosis. Microbiological studies indicated that the dye could be used for visualization of bacteria under acidic condition.
Collapse
Affiliation(s)
- Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tamil Nadu, 613 401, Thanjavur, India
| |
Collapse
|
30
|
Cantor SB. Revisiting the BRCA-pathway through the lens of replication gap suppression: "Gaps determine therapy response in BRCA mutant cancer". DNA Repair (Amst) 2021; 107:103209. [PMID: 34419699 PMCID: PMC9049047 DOI: 10.1016/j.dnarep.2021.103209] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
The toxic lesion emanating from chemotherapy that targets the DNA was initially debated, but eventually the DNA double strand break (DSB) ultimately prevailed. The reasoning was in part based on the perception that repairing a fractured chromosome necessitated intricate processing or condemned the cell to death. Genetic evidence for the DSB model was also provided by the extreme sensitivity of cells that were deficient in DSB repair. In particular, sensitivity characterized cells harboring mutations in the hereditary breast/ovarian cancer genes, BRCA1 or BRCA2, that function in the repair of DSBs by homologous recombination (HR). Along with functions in HR, BRCA proteins were found to prevent DSBs by protecting stalled replication forks from nuclease degradation. Coming full-circle, BRCA mutant cancer cells that gained resistance to genotoxic chemotherapy often displayed restored DNA repair by HR and/or restored fork protection (FP) implicating that the therapy was tolerated when DSB repair was intact or DSBs were prevented. Despite this well-supported paradigm that has been the impetus for targeted cancer therapy, here we argue that the toxic DNA lesion conferring response is instead single stranded DNA (ssDNA) gaps. We discuss the evidence that persistent ssDNA gaps formed in the wake of DNA replication rather than DSBs are responsible for cell killing following treatment with genotoxic chemotherapeutic agents. We also highlight that proteins, such as BRCA1, BRCA2, and RAD51 known for canonical DSB repair also have critical roles in normal replication as well as replication gap suppression (RGS) and repair. We review the literature that supports the idea that widespread gap induction proximal to treatment triggers apoptosis in a process that does not need or stem from DSB induction. Lastly, we discuss the clinical evidence for gaps and how to exploit them to enhance genotoxic chemotherapy response.
Collapse
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, LRB 415, 364 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
31
|
Free manipulation system for nanorobot cluster based on complicated multi-coil electromagnetic actuator. Sci Rep 2021; 11:19756. [PMID: 34611180 PMCID: PMC8492874 DOI: 10.1038/s41598-021-98957-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Chemotherapy is an important method in the field of cancer treatment and often follows surgery and/or radiotherapy to remove as many tumor cells as possible. In particular, among the chemotherapy methods, treatment using electromagnetic-based actuation systems is considered an effective method owing to the remote control of nanorobots. The existing electromagnetic-based actuation systems, however, have certain disadvantages such as the lack of degrees of freedom and the difficulty of manipulating large numbers of nanorobots (i.e., nanorobot clusters). Herein, we report that nanorobot clusters can be manipulated with high degrees of freedom through a simple parameter alpha that easily controls the gradient of the magnetic field of a multi-coil electromagnetic actuation system. The simulation results show that the gradient of the magnetic field is controlled using an introduced parameter, alpha, and the corresponding velocity is also controlled. Not only the velocity of the nanorobot cluster but also the unrestricted spatial control is enabled in two- and three-dimensions. We believe this study highlights an efficient method of electromagnetic control for cluster-based drug delivery.
Collapse
|
32
|
Kim HY, Jung H, Kim HM, Jeong HJ. Surfactin exerts an anti-cancer effect through inducing allergic reactions in melanoma skin cancer. Int Immunopharmacol 2021; 99:107934. [PMID: 34233232 DOI: 10.1016/j.intimp.2021.107934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Surfactin is a mast cell degranulator, that increases the immune response via the degranulation of mast cells. Recently, numerous studies reported that allergic reactions play an important role in the reduction of melanoma development. So, this study aimed to investigate the anti-cancer effects of surfactin in a melanoma skin cancer in vivo model and a melanoma cell line, B16F10. Oral administration of surfactin significantly increased survival rate and reduced tumor growth and tumor weight on melanoma skin cancer in vivo model. Surfactin significantly increased infiltration of mast cells and levels of histamine. Surfactin significantly enhanced levels of IgE and immune-enhancing mediators, such as interferon-γ, interleukin (IL)-2, IL-6, IL-12, and tumor necrosis factor-α in serum and melanoma tissues. Activities of caspase-3, 8, and 9 were significantly enhanced by oral administration of surfactin. In vitro model, surfactin significantly increased B16F10 cell death via activation of caspase-3, 8, and 9 in a dose-dependent manner. Overall, our results indicate that surfactin has a significant anti-cancer effect on melanoma skin cancer through indirectly or directly inducing apoptosis of B16F10 melanoma cells. Also, these findings suggest that it will contribute to a novel perception into the role of allergic reactions in melanoma.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Hanchul Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea; Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea.
| |
Collapse
|
33
|
Zhao X, Chen F. Propofol induces the ferroptosis of colorectal cancer cells by downregulating STAT3 expression. Oncol Lett 2021; 22:767. [PMID: 34589146 PMCID: PMC8442167 DOI: 10.3892/ol.2021.13028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Propofol is a commonly used intravenous anesthetic agent that can also suppress the proliferation of various human cancer types, including colorectal cancer (CRC). The present study aimed to investigate whether propofol could induce the ferroptosis of CRC cells by regulating signal transducer and activator of transcription 3 (STAT3). STAT3 expression in normal and CRC tissues was measured. Human normal colonic epithelial NCM460 cells and human CRC SW480 cells were exposed to different concentrations of propofol and then cell viability was detected. SW480 cells were transfected with a vector overexpressing STAT3 and treated with propofol, and the cell viability, colony formation, cell proliferation, iron level, ROS production and ferroptosis of these cells and control cells were evaluated. Overall, the results showed that STAT3 was highly expressed in CRC tissues. Propofol exerted no marked effect on NCM460 cell viability, but inhibited SW480 cell viability in a concentration-dependent manner. Meanwhile, STAT3 was downregulated by propofol in a concentration-dependent manner. Propofol also inhibited CRC cell proliferation and colony formation, and enhanced cellular iron and ROS levels. Additionally, the expression of proteins involved in ferroptosis was also altered by propofol, including the upregulation of CHAC1 and PTGS2 expression in CRC cells, and the inhibition of GPX4 expression. However, STAT3 overexpression blocked the effect of propofol on CRC cells. In conclusion, propofol may trigger the ferroptosis of CRC cells by downregulating STAT3 expression.
Collapse
Affiliation(s)
- Xining Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Fei Chen
- Department of Anesthesiology, Mindong Hospital Affiliated to Fujian Medical University, Fu'an, Fujian 355000, P.R. China
| |
Collapse
|
34
|
Hu F, Huang Y, Xiao Y, Li Y, Luo X, Qian X, Yang Y. A dual-channel Hill-type small-molecule pH probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3012-3016. [PMID: 34212163 DOI: 10.1039/d1ay00868d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By combining a Hill-type pH probe and a pH-insensitive naphthalimide fluorophore, we synthesized a FRET-based ratiometric pH probe (PHHF), exhibiting a reduced pH transition width, representing a unique approach for development of sensitive probes for detection of biorelevant pH changes.
Collapse
Affiliation(s)
- Fang Hu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yunxia Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yansheng Xiao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yanchun Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xiao Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
35
|
Çiftçi G, Temel HE, Yurttaş L. Apoptotic Effect of Novel Benzimidazole Derivatives Bearing Pyridyl/Pyrimidinyl Piperazine Moiety. Anticancer Agents Med Chem 2021; 22:1780-1792. [PMID: 34238172 DOI: 10.2174/1871520621666210708095110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazole derivatives bearing pyridyl/pyrimidinyl piperazine moiety has attracted attention in medicinal chemistry and modern drug discovery since it exhibited a variety of biological activities, including anticancer activity. OBJECTIVE In this study, we have designed and synthesized novel 1-[2-oxo-2-(4-substituted phenyl)ethyl]benzimidazol-2-yl)methyl 4-(2-pyridyl/pyrimidin-2-yl)piperazine-1-carbodithioate derivatives (2a-m). We also investigated their anticancer activities against A549 lung adenocarcinoma and C6 rat glioma cell lines and selectivity against NIH/3T3 mouse embryonic fibroblast cell lines. Cholinesterase inhibition effects of these compounds were also measured to investigate the relationship between anticancer activity and cholinesterases. METHOD The cytotoxic activities of these acquired thirteen final compounds were screened using MTT assay on A549, C6, and NIH/3T3 cell lines. Cell proliferation ELISA, BRDU (colorimetric) assay was used for measuring proliferation in replicative cells in which DNA synthesis occurs. Flow cytometric analysis was used for measuring apoptotic cell percentages, caspase 3 activity, and mitochondrial membrane depolarised cell percentages. RESULTS Compounds 2e, 2f, and 2k have been established as the most active antitumor agents with selective cytotoxicities (76.58±6.43, 55.13±5.75, and 32.94±3.02 µM respectively for A549; 86.48±3.60, 97.12±30.21, and 59.29±3.95 µM respectively for C6), high DNA synthesis inhibition rates and high apoptotic cell percentages on both cell lines. CONCLUSION The results have shown that compounds 2e, 2f, and 2k have potential anticancer agents against A549 and C6 cell lines.
Collapse
Affiliation(s)
- Gulsen Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Halide Edip Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| |
Collapse
|
36
|
Ameh-Mensah C, Duduyemi BM, Bedu-Addo K, Atta Manu E, Opoku F, Titiloye N. The Analysis of bcl-2 in Association with p53 and Ki-67 in Triple Negative Breast Cancer and Other Molecular Subtypes in Ghana. JOURNAL OF ONCOLOGY 2021; 2021:7054134. [PMID: 34188682 PMCID: PMC8195641 DOI: 10.1155/2021/7054134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Little is known about the role of apoptosis in the tumorigenesis and prognosis of breast cancer in Ghana. Chemotherapeutic drug efficacy partially relates to apoptosis induction, rendering it a vital target in cancer therapy with unique biomarker opportunities that have not been exploited. Aberrations in this pathway are central to tumorigenesis, tumor progression, overall tumor growth, and regression during treatment therapies. Antiapoptotic bcl-2 (gene) and p53 are known to play roles in apoptosis while Ki-67 is a proliferative marker. The aim of our study is to determine the association of bcl-2 (protein) with p53 and Ki-67 in 203 consecutive breast cancer cases over a 10-year period. METHOD A retrospective cross-sectional study on archival FFPE tissue blocks over a 9-year period with abstraction of clinicopathologic data. Two hundred and three consecutive and suitable FFPE blocks were selected for tissue microarray (TMA) construction, and IHC (bcl-2 (protein), Ki-67, p53, cyclin D, pan cytokeratins A and E, ER, PR, and HER2/neu) was done. Expressions of bcl-2 (protein), p53, and Ki-67 were related to histological grade, lymphovascular invasion, and molecular subtypes. SPSS version 23 was used to analyze results. RESULTS Most of our cases were in the fifth decade of life (31%); invasive carcinoma of no special type (NST) was predominant (87%); histological grade III (38%) was the highest; and Luminal A (19.8%), Luminal B (9.9%), HER2 (16%), and TNBC (54.3%) constituted the molecular classes. bcl-2 expression was found in 38% of the cases. Our cases also showed mutation in p53 (36.7%) and ki-67 expression (62.5%). bcl-2 (protein) and p53 significantly correlated with Luminal B and TNBC (p < 0.01). Ki-67 also correlated significantly with Luminal A and B and HER2 overexpression (p < 0.01). Premenopausal age (40-49) and histological grade inversely correlated with bcl-2 (protein) expression. p53 statistically correlated with Ki-67 (p < 0.05). CONCLUSION Our results show high expression of bcl-2 (protein) suggesting an important role of apoptosis in Ghanaian breast cancer cases. bcl-2 (protein), p53, and Ki-67 expressions emerged interdependently from this research and can thus be manipulated in prediction and prognosis of breast cancers in our setting.
Collapse
Affiliation(s)
- Charity Ameh-Mensah
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Babatunde Moses Duduyemi
- Departments of Pathology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Anatomic Pathology, University of Sierra Leone Teaching Hospital Complex College of Medicine & Allied Health Sciences, Freetown, Sierra Leone
| | - Kweku Bedu-Addo
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elijah Atta Manu
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francis Opoku
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nicholas Titiloye
- Departments of Pathology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
37
|
Costales P, Ríos-Lombardía N, Lorenzo-Herrero S, Morís F, González-Sabín J. Novel chiral naphthalimide-cycloalkanediamine conjugates: Design, synthesis and antitumor activity. Bioorg Chem 2021; 112:104859. [PMID: 33836453 DOI: 10.1016/j.bioorg.2021.104859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
A novel series of enantiopure naphthalimide-cycloalkanediamine conjugates were designed, synthetized and evaluated for in vitro cytotoxicity against human colon adenocarcinoma (LoVo), human lung adenocarcinoma (A549), human cervical carcinoma (Hela) and human promyelocytic leukemia cell lines (HL-60). The cytotoxicity of the compounds was highly dependent on size and relative stereochemistry of the cycloalkyl ring as well as length of the spacer. By contrast, any kind of enantioselection was observed for each pair of enantiomers. Flow cytometric analysis indicated that compounds 22 and 23 could effectively induce G2/M arrest in the four previous cell lines despite a mild apoptotic effect.
Collapse
Affiliation(s)
- Paula Costales
- EntreChem SL, Vivero Ciencias de la Salud, Santo Domingo de Guzmán, 33011 Oviedo, Spain
| | | | - Seila Lorenzo-Herrero
- EntreChem SL, Vivero Ciencias de la Salud, Santo Domingo de Guzmán, 33011 Oviedo, Spain
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, Santo Domingo de Guzmán, 33011 Oviedo, Spain
| | - Javier González-Sabín
- EntreChem SL, Vivero Ciencias de la Salud, Santo Domingo de Guzmán, 33011 Oviedo, Spain.
| |
Collapse
|
38
|
Ravikumar KS, Ramya H, Ajith TA, Shah MA, Janardhanan KK. Bioactive extract of Fomitopsis pinicola rich in 11-α- acetoxykhivorin mediates anticancer activity by cytotoxicity, induction of apoptosis, inhibition of tumor growth, angiogenesis and cell cycle progression. J Funct Foods 2021; 78:104372. [DOI: 10.1016/j.jff.2021.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
TRIM27 Functions as a Novel Oncogene in Non-Triple-Negative Breast Cancer by Blocking Cellular Senescence through p21 Ubiquitination. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:910-923. [PMID: 33251042 PMCID: PMC7666371 DOI: 10.1016/j.omtn.2020.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
In the current study, we aimed to explore the correlation between TRIM27 and breast cancer prognosis, as well as the functions of TRIM27 in breast cancer and their underlying mechanisms. Bioinformatics analyses were used to examine the correlation between TRIM27 and breast cancer prognosis. Moreover, TRIM27 knockdown and overexpression in breast cancer cells were performed to investigate its functions in breast cancer. Tamoxifen (TAM) was applied to evaluate the influence of TRIM27 on chemoresistance of breast cancer cells, while co-immunoprecipitation (coIP) was performed to identify the E3 ubiquitin ligase capability of TRIM27. High expression of TRIM27 was found in non-triple-negative breast cancer (non-TNBC) tumor tissues and was positively correlated with the mortality of non-TNBC patients. Moreover, TRIM27 could suppress non-TNBC cell apoptosis and senescence, promote cell viability and tumor growth, counteract the anti-cancer effects of TAM, and mediate ubiquitination of p21. In addition, EP300 could enhance the expression of TRIM27 and its transcription promoter H3K27ac. TRIM27, through ubiquitination of p21, might serve as a prognostic biomarker for non-TNBC prognosis. TRIM27 functions as a novel oncogene in non-TNBC cellular processes, especially suppressing cell senescence and interfering with non-TNBC chemoresistance.
Collapse
|
40
|
The copper(II) complexes of new anthrahydrazone ligands: In vitro and in vivo antitumor activity and structure-activity relationship. J Inorg Biochem 2020; 212:111208. [DOI: 10.1016/j.jinorgbio.2020.111208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022]
|
41
|
Kowsalya E, MosaChristas K, Jaquline CRI, Balashanmugam P, Devasena T. Gold nanoparticles induced apoptosis via oxidative stress and mitochondrial dysfunctions in MCF‐7 breast cancer cells. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elumalai Kowsalya
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous) University of Madras Chennai India
| | - Kithiyon MosaChristas
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous) University of Madras Chennai India
| | - Chinna Rani Inbaraj Jaquline
- Department of Plant Biology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous) University of Madras Chennai India
| | | | | |
Collapse
|
42
|
Li ZW, Zhong CY, Wang XR, Li SN, Pan CY, Wang X, Sun XY. Synthesis and Evaluation of the Antitumor Activity of Novel 1-(4-Substituted phenyl)-2-ethyl Imidazole Apoptosis Inducers In Vitro. Molecules 2020; 25:E4293. [PMID: 32962127 PMCID: PMC7570620 DOI: 10.3390/molecules25184293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Novel imidazole derivatives were designed, prepared, and evaluated in vitro for antitumor activity. The majority of the tested derivatives showed improved antiproliferative activity compared to the positive control drugs 5-FU and MTX. Among them, compound 4f exhibited outstanding antiproliferative activity against three cancer cell lines and was considerably more potent than both 5-FU and MTX. In particular, the selectivity index indicated that the tolerance of normal L-02 cells to 4f was 23-46-fold higher than that of tumor cells. This selectivity was significantly higher than that exhibited by the positive control drugs. Furthermore, compound 4f induced cell apoptosis by increasing the protein expression levels of Bax and decreasing those of Bcl-2 in a time-dependent manner. Therefore, 4f could be a potential candidate for the development of a novel antitumor agent.
Collapse
Affiliation(s)
- Zhen-Wang Li
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Chun-Yan Zhong
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Xiao-Ran Wang
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Shi-Nian Li
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Chun-Yuan Pan
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Xin Wang
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Xian-Yu Sun
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| |
Collapse
|
43
|
Tahmasvand R, Bayat P, Vahdaniparast SM, Dehghani S, Kooshafar Z, Khaleghi S, Almasirad A, Salimi M. Design and synthesis of novel 4-thiazolidinone derivatives with promising anti-breast cancer activity: Synthesis, characterization, in vitro and in vivo results. Bioorg Chem 2020; 104:104276. [PMID: 32992280 DOI: 10.1016/j.bioorg.2020.104276] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Novel lead compounds as anticancer agents with the ability to circumvent emerging drug resistance have recently gained a great deal of interest. Thiazolidinones are among such compounds with well-established biological activity in the field of oncology. Here, we designed, synthesized and characterized a series of thiazolidinone structures (8a-8k). The results of anti-proliferative assay led to the discovery of compound 8j with a high potent cytotoxic effect using colon, liver and breast cancer cells. Furthermore, MDA-MB-231 and 4T1 cell lines were used to represent triple negative breast cancer (TNBC). Next, a number of in vitro and in vivo evaluations were carried out to demonstrate the potential activity against TNBC and also elucidate the possible mechanism of cell death induction. Our in vitro outcomes exhibited an impressive anticancer activity for compound 8j toward MDA-MB-231 cells through inducing apoptosis and a remarkable anti-metastatic feature via suppressing MMP-9 expression as well. Consistently, the in vivo and immunohistopathologic evaluations demonstrated that this compound significantly inhibited the 4T1 induced tumor growth and its metastasis to the lung. Altogether, among numerous thiazolidinone derivatives, compound 8j might represent a promising anticancer agent for TNBC, which is a major concern in the developed and developing countries.
Collapse
Affiliation(s)
- Raheleh Tahmasvand
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Peyman Bayat
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyyed Mahmood Vahdaniparast
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soudeh Dehghani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Kooshafar
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Almasirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
44
|
Korček M, Sekerešová M, Makarevich AV, Gavurová H, Olexíková L, Pivko J, Barreto L. Morphological and functional alterations of the prostate tissue during clinical progression in hormonally-naïve, hormonally-treated and castration-resistant patients with metastatic prostate cancer. Oncol Lett 2020; 20:201. [PMID: 32963607 PMCID: PMC7491063 DOI: 10.3892/ol.2020.12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Since commony used tools in oncological practice for the diagnosis of castration-resistent prostatic acinar adenocarcinoma are based on clinical criteria, such as castrate testosterone level, continuous rise in serum prostate-specific antigen, progression of preexisting disease or appearance of new metastases, it is important to identify reliable histopathological markers for the identification of this disease. Therefore, the aim of the present study was to determine the association between results from histological analysis, ultrastructural analysis and apoptosis in the prostate of patients with metastatic acinar prostatic adenocarcinoma (mPC). Patients were treated with androgen deprivation therapy (ADT), abiraterone acetate (Abi) therapy or received no treatment. Prostate tissue samples were divided into four groups as follows: i) Group 1, tissues from patients with benign prostatic hyperplasia (adenocarcinoma negative); ii) group 2, tissues from patients with metastatic hormone naïve prostate cancer; iii) group 3, tissues from patients with mPC treated with ADT; and iv) group 4, tissues from patients with metastatic castration-resistant prostate cancer treated with ADT and Abi. Immunohistochemical, terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling (TUNEL) and ultrastructural assays using light, fluorescence and transmission electron microscopy, respectively, were used to analyze prostate tissue samples. The results demonstrated that ADT and Abi therapy caused histological and ultrastructural changes in prostate tissues. In groups 3 and 4, benign and malignant tissues were affected by the hormonal therapy. Histologically, the malignant epithelium after ADT therapy in groups 3 and 4 presented with a loss of glandular architecture, nuclear and nucleolar shrinkage, chromatin condensation and cytoplasmic clearing. At the ultrastructural level, compact hypertrophic and hyperchromatic nuclei with numerous invaginations were observed in groups 2, 3 and 4. In addition, the incidence of abnormal mitochondria in malignant cells of these groups was high. Group 4 was characterized by the presence of malignant mesenchyme-like cells in the prostatic stroma, arranged in small groups surrounded by collagen fibrils. Furthermore, the cytoplasm of these cells contained filaments. A decrease in the number of apoptotic cells using TUNEL assays in the examined samples was observed with increasing disease progression. The findings from the present study suggest that the duration of treatment with ADT and progression of the disease were associated with apoptosis dysregulation.
Collapse
Affiliation(s)
- Michal Korček
- Department of Urology, Faculty Hospital Nitra, 94901 Nitra, Slovak Republic
| | - Monika Sekerešová
- Department of Pathology, Faculty Hospital Nitra, 94901 Nitra, Slovak Republic
| | - Alexander V Makarevich
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre, 95141 Lužianky-near-Nitra, Slovak Republic
| | - Helena Gavurová
- Department of Pathology, Faculty Hospital Nitra, 94901 Nitra, Slovak Republic
| | - Lucia Olexíková
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre, 95141 Lužianky-near-Nitra, Slovak Republic
| | - Juraj Pivko
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre, 95141 Lužianky-near-Nitra, Slovak Republic
| | - Lenka Barreto
- Department of Urology, Faculty Hospital Nitra, 94901 Nitra, Slovak Republic
| |
Collapse
|
45
|
Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, Chen N. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 2020; 203:112627. [PMID: 32702586 DOI: 10.1016/j.ejmech.2020.112627] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ginseng has been used as a well-known traditional Chinese medicine since ancient times. Ginsenosides as its main active constituents possess a broad scope of pharmacological properties including stimulating immune function, enhancing cardiovascular health, increasing resistance to stress, improving memory and learning, developing social functioning and mental health in normal persons, and chemotherapy. Ginsenoside Rh2 (Rh2) is one of the major bioactive ginsenosides from Panax ginseng. When applied to cancer treatment, Rh2 not only exhibits the anti-proliferation, anti-invasion, anti-metastasis, induction of cell cycle arrest, promotion of differentiation, and reversal of multi-drug resistance activities against multiple tumor cells, but also alleviates the side effects after chemotherapy or radiotherapy. In the past decades, nearly 200 studies on Rh2 in the treatment of cancer have been published, however no specific reviews have been conducted by now. So the purpose of this review is to provide a systematic summary and analysis of the anticancer effects and the potential mechanisms of Rh2 extracted from Ginseng then give a future prospects about it. In the end of this paper the metabolism and derivatives of Rh2 also have been documented.
Collapse
Affiliation(s)
- Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shifeng Chu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Meiyu Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Xin Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yani Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Naihong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| |
Collapse
|
46
|
Eskandari A, Flamme M, Xiao Z, Suntharalingam K. The Bulk Osteosarcoma and Osteosarcoma Stem Cell Activity of a Necroptosis-Inducing Nickel(II)-Phenanthroline Complex. Chembiochem 2020; 21:2854-2860. [PMID: 32415808 DOI: 10.1002/cbic.202000231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022]
Abstract
We report the anti-osteosarcoma and anti-osteosarcoma stem cell (OSC) properties of a nickel(II) complex, 1. Complex 1 displays similar potency towards bulk osteosarcoma cells and OSCs, in the micromolar range. Notably, 1 displays similar or better OSC potency than the clinically approved platinum(II) anticancer drugs cisplatin and carboplatin in two- and three-dimensional osteosarcoma cell cultures. Mechanistic studies revealed that 1 induces osteosarcoma cell death by necroptosis, an ordered form of necrosis. The nickel(II) complex, 1 triggers necrosome-dependent mitrochondrial membrane depolarisation and propidium iodide uptake. Interestingly, 1 does not evoke necroptosis by elevating intracellular reactive oxygen species (ROS) or hyperactivation of poly ADP ribose polymerase (PARP-1). ROS elevation and PARP-1 activity are traits that have been observed for established necroptosis inducers such as shikonin, TRAIL and glutamate. Thus the necroptosis pathway evoked by 1 is distinct. To the best of our knowledge, this is the first report into the anti-osteosarcoma and anti-OSC properties of a nickel complex.
Collapse
Affiliation(s)
- Arvin Eskandari
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Marie Flamme
- Department of Structural Biology and Chemistry, Institut Pasteur, Paris, 75015, France
| | - Zhiyin Xiao
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | |
Collapse
|
47
|
Abozaid OAR, Moawed FSM, Farrag MA, Kawara RSM. Synergistic Effect of Benzethonium Chloride Combined with Endoxan against Hepatocellular Carcinoma in Rats through Targeting Apoptosis Signaling Pathway. Asian Pac J Cancer Prev 2020; 21:1709-1716. [PMID: 32592368 PMCID: PMC7568871 DOI: 10.31557/apjcp.2020.21.6.1709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/25/2022] Open
Abstract
Combination therapy has been the trendy of care, particularly in cancer remedy, since it is a rational approach to increase response and tolerability and to diminish resistance. Hence, there is a growing interest in combining anticancer drugs to maximizing efficacy with minimum systemic toxicity through the delivery of lower drug doses. Therefore, in the present study, the value of combination between benzethonium chloride (benzo) and endoxan (endo) as anti-tumor drug sensitization of hepatocellular carcinoma HCC treatment were detected both in vitro and in vivo. Crystal violet test was performed to detect the proliferation of HepG2 cells treated with benzo or/and endo. In addition, the HCC rat model was established by diethylnitrosamine (DEN) administration. The antitumor effect was enhanced with the combined treatment of the two drugs, particularly in the group with benzo and endo. The results confirmed that the HCC condition was developed in response to lower expressions of caspase 3 and P53 which, in turn, was due to the overexpression of Bcl-2, and downregulation of cytochrome C. The treatment with benzo combined with endo caused significant activation of caspase-3 mediated apoptotic signals that could be responsible for its anti-HCC potential. Meantime, benzo combined with endo treatments could reduce the hepatocellular carcinogenesis by reducing the expression of MMP-9. Therefore, benzo and endo treatments may be a hopeful therapeutic drug for HCC. Also, more studies are recommended to feat the idea of this research for medical use.
Collapse
Affiliation(s)
- Omayma A R Abozaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mostafa A Farrag
- Radiation Biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Ragaa S M Kawara
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Egypt
| |
Collapse
|
48
|
Down-regulation of Bcl2 and Survivin, and up-regulation of Bax involved in copper (II) phenylthiosemicarbazone complex-induced apoptosis in leukemia stem-like KG1a cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Li D, Li LF, Zhang ZF, Yan J, Li SZ. Coordination Polymers Constructed from the 3,3′,5,5′-Biphenyltetracarboxylic Acid Ligand and Their Application for Anti-Lung Cancer Reagents. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620050157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Jana S, Madhu Krishna B, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. SOX9: The master regulator of cell fate in breast cancer. Biochem Pharmacol 2020; 174:113789. [PMID: 31911091 PMCID: PMC9048250 DOI: 10.1016/j.bcp.2019.113789] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
SRY-related high-mobility group box 9 (SOX9) is an indispensable transcription factor that regulates multiple developmental pathways related to stemness, differentiation, and progenitor development. Previous studies have demonstrated that the SOX9 protein directs pathways involved in tumor initiation, proliferation, migration, chemoresistance, and stem cell maintenance, thereby regulating tumorigenesis as an oncogene. SOX9 overexpression is a frequent event in breast cancer (BC) subtypes. Of note, the molecular mechanisms and functional regulation underlying SOX9 upregulation during BC progression are still being uncovered. The focus of this review is to appraise recent advances regarding the involvement of SOX9 in BC pathogenesis. First, we provide a general overview of SOX9 structure and function, as well as its involvement in various kinds of cancer. Next, we discuss pathways of SOX9 regulation, particularly its miRNA-mediated regulation, in BC. Finally, we describe the involvement of SOX9 in BC pathogenesis via its regulation of pathways involved in regulating cancer hallmarks, as well as its clinical and therapeutic importance. In general, this review article aims to serve as an ample source of knowledge on the involvement of SOX9 in BC progression. Targeting SOX9 activity may improve therapeutic strategies to treat BC, but precisely inhibiting SOX9 using drugs and/or small peptides remains a huge challenge for forthcoming cancer research.
Collapse
Affiliation(s)
- Samir Jana
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|