1
|
Harris TM, Price EP, Sarovich DS, Nørskov-Lauritsen N, Beissbarth J, Chang AB, Smith-Vaughan HC. Comparative genomic analysis identifies X-factor (haemin)-independent Haemophilus haemolyticus: a formal re-classification of ' Haemophilus intermedius'. Microb Genom 2020; 6. [PMID: 31860436 PMCID: PMC7067038 DOI: 10.1099/mgen.0.000303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The heterogeneous and highly recombinogenic genus Haemophilus comprises several species, some of which are pathogenic to humans. All share an absolute requirement for blood-derived factors during growth. Certain species, such as the pathogen Haemophilus influenzae and the commensal Haemophilus haemolyticus, are thought to require both haemin (X-factor) and nicotinamide adenine dinucleotide (NAD, V-factor), whereas others, such as the informally classified 'Haemophilus intermedius subsp. intermedius', and Haemophilus parainfluenzae, only require V-factor. These differing growth requirements are commonly used for species differentiation, although a number of studies are now revealing issues with this approach. Here, we perform large-scale phylogenomics of 240 Haemophilus spp. genomes, including five 'H. intermedius' genomes generated in the current study, to reveal that strains of the 'H. intermedius' group are in fact haemin-independent H. haemolyticus (hiHh). Closer examination of these hiHh strains revealed that they encode an intact haemin biosynthesis pathway, unlike haemin-dependent H. haemolyticus and H. influenzae, which lack most haemin biosynthesis genes. Our results suggest that the common ancestor of modern-day H. haemolyticus and H. influenzae lost key haemin biosynthesis loci, likely as a consequence of specialized adaptation to otorhinolaryngeal and respiratory niches during their divergence from H. parainfluenzae. Genetic similarity analysis demonstrated that the haemin biosynthesis loci acquired in the hiHh lineage were likely laterally transferred from a H. parainfluenzae ancestor, and that this event probably occurred only once in hiHh. This study further challenges the validity of phenotypic methods for differentiating among Haemophilus species, and highlights the need for whole-genome sequencing for accurate characterization of species within this taxonomically challenging genus.
Collapse
Affiliation(s)
- Tegan M Harris
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Erin P Price
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Derek S Sarovich
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | | | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Anne B Chang
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Heidi C Smith-Vaughan
- School of Medicine, Griffith University, Gold Coast, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| |
Collapse
|
2
|
Zhao A, Han F. Crystal structure of Arabidopsis thaliana glutamyl-tRNA Glu reductase in complex with NADPH and glutamyl-tRNA Glu reductase binding protein. PHOTOSYNTHESIS RESEARCH 2018; 137:443-452. [PMID: 29785497 DOI: 10.1007/s11120-018-0518-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
In higher plants, the tetrapyrrole biosynthesis pathway starts from the reaction catalyzed by the rate-limiting enzyme, glutamyl-tRNAGlu reductase (GTR). In Arabidopsis thaliana, GTR is controlled by post-transcriptional regulators such as GTR binding protein (GBP), which stimulates AtGTR activity. The NADPH-binding domain of AtGTR undergoes a substantial movement upon GBP binding. Here, we report the crystal structure of AtGTR-NADPH-GBP ternary complex. NADPH binding causes slight structural changes compared with the AtGTR-GBP binary complex, and possibly take a part of the space needed by the substrate glutamyl-tRNAGlu. The highly reactive sulfhydryl group of the active-site residue Cys144 shows an obvious rotation, which may facilitate the hydride transfer from NADPH to the thioester intermediate to form glutamate-1-semialdehyde. Furthermore, Lys271, Lys274, Ser275, Asn278, and Gln282 of GBP participate in the interaction between AtGTR and GBP, and the stimulating effect of GBP decreased when all of these residues were mutated to Ala. When the Cys144 of AtGTR was mutated to Ser, AtGTR activity could not be detected even in the presence of GBP.
Collapse
Affiliation(s)
- Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feng Han
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Soares ARM, Taniguchi M, Chandrashaker V, Lindsey JS. Primordial oil slick and the formation of hydrophobic tetrapyrrole macrocycles. ASTROBIOLOGY 2012; 12:1055-1068. [PMID: 23095096 PMCID: PMC3491618 DOI: 10.1089/ast.2012.0857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/26/2012] [Indexed: 06/01/2023]
Abstract
The functional end products of the extant biosynthesis of tetrapyrrole macrocycles in photosynthetic organisms are hydrophobic: chlorophylls and bacteriochlorophylls. A model for the possible prebiogenesis of hydrophobic analogues of nature's photosynthetic pigments was investigated by reaction of acyclic reactants in five media: aqueous solution (pH 7, 60°C, 24 h); aqueous solution containing 0.1 M decanoic acid (which forms a turbid suspension of vesicles); or aqueous solution accompanied by dodecane, mesitylene, or a five-component organic mixture (each of which forms a phase-separated organic layer). The organic mixture was composed of equimolar quantities of decanoic acid, dodecane, mesitylene, naphthalene, and pentyl acetate. The reaction of 1,5-dimethoxy-3-methylpentan-2,4-dione and 1-aminobutan-2-one to give etioporphyrinogens was enhanced in the presence of decanoic acid, affording (following chemical oxidation) etioporphyrins (tetraethyltetramethylporphyrins) in yields of 1.4-10.8% across the concentration range of 3.75-120 mM. The yield of etioporphyrins was greater in the presence of the five-component organic mixture (6.6% at 120 mM) versus that with dodecane or mesitylene (2.1% or 2.9%, respectively). The reaction in aqueous solution with no added oil-slick constituents resulted in phase separation-where the organic reactants themselves form an upper organic layer-and the yield of etioporphyrins was 0.5-2.6%. Analogous reactions leading to uroporphyrins (hydrophilic, eight carboxylic acids) or coproporphyrins (four carboxylic acids) were unaffected by the presence of decanoic acid or dodecane, and all yields were at most ∼2% or ∼8%, respectively. Taken together, the results indicate a facile means for the formation of highly hydrophobic constituents of potential value for prebiotic photosynthesis.
Collapse
Affiliation(s)
- Ana R M Soares
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
4
|
Zappa S, Li K, Bauer CE. The tetrapyrrole biosynthetic pathway and its regulation in Rhodobacter capsulatus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 675:229-50. [PMID: 20532744 PMCID: PMC2883787 DOI: 10.1007/978-1-4419-1528-3_13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The purple anoxygenic photosynthetic bacterium Rhodobacter capsulatus is capable of growing in aerobic or anaerobic conditions, in the dark or using light, etc. Achieving versatile metabolic adaptations from respiration to photosynthesis requires the use of tetrapyrroles such as heme and bacteriochlorophyll, in order to carry oxygen, to transfer electrons, and to harvest light energy. A third tetrapyrrole, cobalamin (vitamin B(12)), is synthesized and used as a cofactor for many enzymes. Heme, bacteriochlorophyll, and vitamin B(12) constitute three major end products of the tetrapyrrole biosynthetic pathway in purple bacteria. Their respective synthesis involves a plethora of enzymes, several that have been characterized and several that are uncharacterized, as described in this review. To respond to changes in metabolic requirements, the pathway undergoes complex regulation to direct the flow of tetrapyrrole intermediates into a specific branch(s) at the expense of other branches of the pathway. Transcriptional regulation of the tetrapyrrole synthesizing enzymes by redox conditions and pathway intermediates is reviewed. In addition, we discuss the involvement of several transcription factors (RegA, CrtJ, FnrL, AerR, HbrL, Irr) as well as the role of riboswitches. Finally, the interdependence of the tetrapyrrole branches on each other synthesis is discussed.
Collapse
Affiliation(s)
- Sébastien Zappa
- Biology Department, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
5
|
La Rocca N, Rascio N, Oster U, Rüdiger W. Inhibition of lycopene cyclase results in accumulation of chlorophyll precursors. PLANTA 2007; 225:1019-29. [PMID: 17039370 DOI: 10.1007/s00425-006-0409-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 09/11/2006] [Indexed: 05/12/2023]
Abstract
Free porphyrins and their magnesium complexes, including chlorophylls, are potent photo-sensitizers. Plants usually accumulate these compounds bound to proteins together with protective compounds like carotenoids. Besides their protective role, carotenoids can play a structural role in these complexes. To analyze the effect of impaired carotenogenesis on plastid membranes we applied to barley seedlings the bleaching herbicide 2-(4-chlorophenylthio)triethylamine (CPTA) as a specific inhibitor for the cyclization of lycopene. To avoid interference with photo-oxidation, the essential experiments were performed on seedlings grown in darkness. While the amount of total carotenoids decreased, we found accumulation of more 6-carotene than lycopene in darkness clearly showing that CPTA inhibits the lycopene beta-cyclase more effectively than the lycopene epsilon-cyclase. The CPTA treatment resulted in accumulation of non-photoactive protochlorophyllide a; the amount of photoactive protochlorophyllide and NADPH:protochlorophyllide oxidoreductase remained constant. Further, the level of Mg protophorphyrin and its monomethyl ester increased to an extent similar to that obtained by application of 5-aminolevulinic acid (ALA). The perturbation of the ultrastructure of etioplast inner membranes, observed after CPTA-treatment, was not found after ALA-treatment; this excluded the accumulated tetrapyrroles as responsible for the perturbation. By contrast, the down-regulation of Lhcb and RbcS genes found after CPTA-treatment was compatible with the presumed role of Mg protophorphyrin as "plastid signal" for regulation of nuclear gene expression. Possible mechanisms for enhancement of tetrapyrrole accumulation by non-cyclic carotenoids are discussed.
Collapse
Affiliation(s)
- Nicoletta La Rocca
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | | | | | | |
Collapse
|
6
|
Abstract
The importance of chlorophyll (Chl) to the process of photosynthesis is obvious, and there is clear evidence that the regulation of Chl biosynthesis has a significant role in the regulation of assembly of the photosynthetic apparatus. The understanding of Chl biosynthesis has rapidly advanced in recent years. The identification of genetic loci associated with each of the biochemical steps has been accompanied by a greater appreciation of the role of Chl biosynthesis intermediates in intracellular signaling. The purpose of this review is to provide a source of information for all the steps in Chl and bacteriochlorophyll a biosynthesis, with an emphasis on steps that are believed to be key regulation points.
Collapse
Affiliation(s)
- David W Bollivar
- Department of Biology, Illinois Wesleyan University, Bloomington, IL 61702-2900, USA.
| |
Collapse
|
7
|
Bollivar DW, Clauson C, Lighthall R, Forbes S, Kokona B, Fairman R, Kundrat L, Jaffe EK. Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer. BMC BIOCHEMISTRY 2004; 5:17. [PMID: 15555082 PMCID: PMC535902 DOI: 10.1186/1471-2091-5-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 11/22/2004] [Indexed: 12/02/2022]
Abstract
Background The enzyme porphobilinogen synthase (PBGS), which is central to the biosynthesis of heme, chlorophyll and cobalamins, has long been known to use a variety of metal ions and has recently been shown able to exist in two very different quaternary forms that are related to metal ion usage. This paper reports new information on the metal ion independence and quaternary structure of PBGS from the photosynthetic bacterium Rhodobacter capsulatus. Results The gene for R. capsulatus PBGS was amplified from genomic DNA and sequencing revealed errors in the sequence database. R. capsulatus PBGS was heterologously expressed in E. coli and purified to homogeneity. Analysis of an unusual phylogenetic variation in metal ion usage by PBGS enzymes predicts that R. capsulatus PBGS does not utilize metal ions such as Zn2+, or Mg2+, which have been shown to act in other PBGS at either catalytic or allosteric sites. Studies with these ions and chelators confirm the predictions. A broad pH optimum was determined to be independent of monovalent cations, approximately 8.5, and the Km value shows an acidic pKa of ~6. Because the metal ions of other PBGS affect the quaternary structure, gel permeation chromatography and analytical ultracentrifugation experiments were performed to examine the quaternary structure of metal ion independent R. capsulatus PBGS. The enzyme was found to be predominantly hexameric, in contrast with most other PBGS, which are octameric. A protein concentration dependence to the specific activity suggests that the hexameric R. capsulatus PBGS is very active and can dissociate to smaller, less active, species. A homology model of hexameric R. capsulatus PBGS is presented and discussed. Conclusion The evidence presented in this paper supports the unusual position of the R. capsulatus PBGS as not requiring any metal ions for function. Unlike other wild-type PBGS, the R. capsulatus protein is a hexamer with an unusually high specific activity when compared to other octameric PBGS proteins.
Collapse
Affiliation(s)
- David W Bollivar
- Department of Biology, Illinois Wesleyan University, P.O. Box 2900, Bloomington, IL 61702-2900, USA
| | - Cheryl Clauson
- Department of Biology, Illinois Wesleyan University, P.O. Box 2900, Bloomington, IL 61702-2900, USA
| | - Rachel Lighthall
- Department of Biology, Illinois Wesleyan University, P.O. Box 2900, Bloomington, IL 61702-2900, USA
| | - Siiri Forbes
- Department of Biology, Illinois Wesleyan University, P.O. Box 2900, Bloomington, IL 61702-2900, USA
| | - Bashkim Kokona
- Biology Department, Haverford College, Haverford, PA 19041, USA
| | - Robert Fairman
- Biology Department, Haverford College, Haverford, PA 19041, USA
| | - Lenka Kundrat
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Eileen K Jaffe
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
8
|
Møller MG, Petersen BL, Kannangara CG, Stummann BM, Henningsen KW. Chlorophyll Biosynthetic Enzymes and Plastid Membrane Structures in Mutants of Barley (Hordeum vulgare L.). Hereditas 2004. [DOI: 10.1111/j.1601-5223.1997.00181.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Drazic G, Bogdanovic M. Gabaculine does not inhibit cytokinin-stimulated biosynthesis of chlorophyll in Pinus nigra seedlings in the dark. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 154:23-29. [PMID: 10725555 DOI: 10.1016/s0168-9452(99)00236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chlorophyll (Chl) accumulation was monitored during black pine (Pinus nigra L.) seed germination for 14 days in the light and in the dark in the presence of gabaculine (GAB) and cytokinin in order to elucidate the regulation of gymnosperm seedling greening in the dark, primarily at the level of aminolevulinic acid formation. In the light, GAB inhibited chlorophyll accumulation in a manner dependent on concentration and developmental stage, and in the dark it showed no effect. Cytokinin, 10(-5) M benzyl adenine (BA) partly overcame GAB-induced inhibition in the light, mainly during earlier developmental stages. In the seedlings grown in the dark, an equal quantity of Chl accumulated in the presence of cytokinin with and without GAB and it was approximately 20-40% higher than in the control seedlings or in the seedlings grown only in the presence of GAB. 5-Amino-levulinic acid (ALA) synthesis was equal in the light and in the dark in seedlings of the same age and seedlings treated with GAB grown in the dark. In the light, GAB inhibited ALA synthetic activity. The results indicate that ALA synthesis is not a rate-limiting step within Chl biosynthesis in pine seedlings grown in the dark.
Collapse
Affiliation(s)
- G Drazic
- Institute for the Application of Nuclear Energy, Banatska 31b, 11080, Zemun, Yugoslavia
| | | |
Collapse
|
10
|
|
11
|
Yang HS, Hoober JK. Divergent pathways for δ-aminolevulinic acid synthesis in two species ofArthrobacter. FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07948.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|