1
|
Cheng R, Li D, Duan DY, Parry R, Cheng TY, Liu L. Egg protein profile and dynamics during embryogenesis in Haemaphysalis flava ticks. Ticks Tick Borne Dis 2023; 14:102180. [PMID: 37011496 DOI: 10.1016/j.ttbdis.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Tick eggs contain all essential proteins for embryogenesis, and egg proteins are a potential reservoir of tick-protective antigens. However, the protein profile and dynamics during embryonic development remain unknown. This study aimed to depict the protein profile and dynamics in tick embryogenesis, further providing protein candidates for targeted interventions. Eggs from Haemaphysalis flava ticks were incubated at 28 °C and 85% relative humidity. On days 0 (newly laid eggs without incubation), 7, 14 and 21, eggs were collected, dewaxed and subject to protein extraction. Extracted proteins were digested by filter-aided sample preparation and analyzed by liquid chromatography-tandem mass spectrometry (LC/MS-MS). MS data were searched against an in-house H. flava protein database for tick-derived protein identification. Abundances of 40 selected high-confidence proteins were further quantified by LC-parallel reaction monitoring (PRM)/MS analysis throughout egg incubation. A total of 93 high-confidence proteins were identified in eggs on 0-day incubation. Identified proteins belonged to seven functional categories: transporters, enzymes, proteinase inhibitors, immunity-related proteins, cytoskeletal proteins, heat shock proteins and uncharacterized proteins. The enzyme category contained the most types of proteins. Neutrophil elastase inhibitors represented the most abundant proteins in terms of intensity-based absolute-protein-quantification. LC-PRM/MS revealed that the abundances of 20 proteins increased including enolase, calreticulin, actin, GAPDH et cetera, and the abundances of 11 proteins decreased including vitellogenins, neutrophil elastase inhibitor, carboxypeptidase Q, et cetera from 0- to 21-day incubation. This study provides the most comprehensive egg protein profile and dynamics during tick embryogenesis. Further investigations are needed to test the tick-control efficacy by targeting the egg proteins.
Collapse
|
2
|
Qiu ZX, Li Y, Li MM, Wang WY, Zhang TT, Liu JZ. Investigation of three enzymes and their roles in the embryonic development of parthenogenetic Haemaphysalis longicornis. Parasit Vectors 2020; 13:46. [PMID: 32005284 PMCID: PMC6995198 DOI: 10.1186/s13071-020-3916-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The tick Haemaphysalis longicornis exhibits two separate reproductive populations: bisexual and parthenogenetic, which have diploid and triploid karyotypes, respectively. The parthenogenetic population can undergo engorgement without copulation and produce viable female-only offspring with a longer incubation period than the bisexual population. Three enzymes, cathepsin B, cathepsin D and acid phosphatase, were found to be involved in vitellin degradation during the embryonic development of bisexual H. longicornis. However, the expression and activity profiles of these enzymes during the embryonic development of parthenogenetic ticks remain unknown. In the present study, the transcriptional expression profile, enzyme activity and roles in embryogenesis of the three enzymes during the embryonic development of parthenogenetic H. longicornis were investigated. METHODS Quantitative real-time polymerase chain reaction (qPCR) and fluorescence detection were used to analyze the dynamic changes in the three enzymes during embryogenesis. The roles of the three enzymes during embryogenesis were also explored using RNA interference (RNAi). RESULTS The three enzymes were all expressed during embryonic development in parthenogenetic H. longicornis. The expression of cathepsin B was highest on day 15, whereas that of cathepsin D was highest on day 3 and the peak of acid phosphatase expression occurred on day 9. The activity of cathepsin B was highest on day 3 and lowest on day 5, then gradually increased and remained stable. Cathepsin D activity was highest on day 1 and showed a gradually decreasing trend, whereas acid phosphatase showed the opposite trend and reached a peak on day 23. RNA interference experiments in engorged female ticks revealed that there was no significant difference in the number of eggs laid, but the hatching rate of the eggs was significantly decreased. CONCLUSION The three enzymes all play important roles in embryonic development of H. longicornis, but the expression patterns and changes in the activity of the enzymes in the bisexual and parthenogenetic populations are different. The results will help a better understanding of the similarities and differences underlying embryonic development in the bisexual and parthenogenetic populations and contribute to the future exploration of the development of the parthenogenetic population of H. longicornis.
Collapse
Affiliation(s)
- Zhao-Xi Qiu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yuan Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Meng-Meng Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wen-Ying Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tian-Tian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
3
|
Tafur-Gómez GA, Patarroyo Salcedo JH, Vargas MI, Araújo L, Fidelis CF, Prates-Patarroyo PA, Cortes-Vecino JA, Portela RW. Intestinal changes and performance parameters in ticks feeding on calves immunized with subunits of immunogens against Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:91-107. [PMID: 31845063 DOI: 10.1007/s10493-019-00451-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
We describe the intestinal changes and biological parameters of the tick species Rhipicephalus microplus exposed to the immune response of calves vaccinated with two subunits of immunogens. The first group of Bos taurus calves was immunized with a synthetic peptide (SBm7462), whereas the second group received an inoculum for synthetic control. The third group was immunized with a recombinant peptide (rSBm7462); an inoculum was injected into a fourth group of calves for recombinant control. Each formulation was administered to these calves during three times at intervals of 30 days. At 21 days after the last immunization, the calves were challenged using a total of 4500 larvae per animal. Indirect ELISA was realized to identify the kinetics of IgGs from samples of calves studied. Naturally detaching ticks were collected for analyses of biological performance and histological changes in the midgut. We dissected randomly detached ticks. The midgut of each of these ticks was removed and processed routinely for histology, stained with hematoxylin-eosin (H&E) and slow Giemsa. Slides were also subjected to immunohistochemistry. The antibody response showed significant induction of high-affinity IgGs in calves immunized with both peptides in comparison to calves of the control groups. Histological changes included damage of the intestinal epithelium in ticks fed on immunized hosts and intense immunostaining in midgut cells, using the serum of calves immunized with recombinant peptide. There were significant differences in all biological performing parameters of ticks detached from vaccinated calves in comparison with ticks of the control groups. We identified reductions of 87.7 and 93.5% in engorged ticks detached from calves immunized with a synthetic and recombinant peptides, respectively, a 28 and 8.60% lower egg mass in groups immunized with synthetic and recombinant peptides, respectively, and a 38.4% reduction of the value of nutrient index/tick in the group immunized with the recombinant peptide. Our findings show that the immune response induced by small peptides in cattle can modify the digestion and metabolism of ticks fed on vaccinated animals, resulting in changes in tick performance.
Collapse
Affiliation(s)
| | - Joaquín H Patarroyo Salcedo
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil.
| | - Marlene I Vargas
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Leandro Araújo
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Cintia F Fidelis
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Pablo A Prates-Patarroyo
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Jesus A Cortes-Vecino
- Laboratorio de Parasitología Veterinaria, Departamento de Salud Animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, 11001, Colombia
| | - Ricardo W Portela
- Departamento de Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Salvador, BA, CEP 40110-903, Brasil
| |
Collapse
|
4
|
Waltero C, de Abreu LA, Alonso T, Nunes-da-Fonseca R, da Silva Vaz I, Logullo C. TOR as a Regulatory Target in Rhipicephalus microplus Embryogenesis. Front Physiol 2019; 10:965. [PMID: 31417424 PMCID: PMC6684781 DOI: 10.3389/fphys.2019.00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Embryogenesis is a metabolically intensive process carried out under tightly controlled conditions. The insulin signaling pathway regulates glucose homeostasis and is essential for reproduction in metazoan model species. Three key targets are part of this signaling pathway: protein kinase B (PKB, or AKT), glycogen synthase kinase 3 (GSK-3), and target of rapamycin (TOR). While the role of AKT and GSK-3 has been investigated during tick embryonic development, the role of TOR remains unknown. In this study, TOR and two other downstream effectors, namely S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), were investigated in in vitro studies using the tick embryonic cell line BME26. First, we show that exogenous insulin can stimulate TOR transcription. Second, TOR chemical inhibition led to a decrease in BME26 cell viability, loss of membrane integrity, and downregulation of S6K and 4E-BP1 transcription. Conversely, treating BME26 cells with chemical inhibitors of AKT or GSK-3 did not affect S6K and 4E-BP1 transcription, showing that TOR is specifically required to activate its downstream targets. To address the role of TOR in tick reproduction, in vivo studies were performed. Analysis of relative transcription during different stages of tick embryonic development showed different levels of transcription for TOR, and a maternal deposition of S6K and 4E-BP1 transcripts. Injection of TOR double-stranded RNA (dsRNA) into partially fed females led to a slight delay in oviposition, an atypical egg external morphology, decreased vitellin content in eggs, and decreased larval hatching. Taken together, our data show that the TOR signaling pathway is important for tick reproduction, that TOR acts as a regulatory target in Rhipicephalus microplus embryogenesis and represents a promising target for the development of compounds for tick control.
Collapse
Affiliation(s)
- Camila Waltero
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Thayná Alonso
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Centro de Biotecnologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Xavier MA, Tirloni L, Pinto AFM, Diedrich JK, Yates JR, Mulenga A, Logullo C, da Silva Vaz I, Seixas A, Termignoni C. A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 2018; 8:4698. [PMID: 29549327 PMCID: PMC5856802 DOI: 10.1038/s41598-018-23090-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/06/2018] [Indexed: 01/22/2023] Open
Abstract
Ticks are arthropod ectoparasites of importance for public and veterinary health. The understanding of tick oogenesis and embryogenesis could contribute to the development of novel control methods. However, to date, studies on the temporal dynamics of proteins during ovary development were not reported. In the present study we followed protein profile during ovary maturation. Proteomic analysis of ovary extracts was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using shotgun strategy, in addition to dimethyl labelling-based protein quantification. A total of 3,756 proteins were identified, which were functionally annotated into 30 categories. Circa 80% of the annotated proteins belong to categories related to basal metabolism, such as protein synthesis and modification machineries, nuclear regulation, cytoskeleton, proteasome machinery, transcriptional machinery, energetic metabolism, extracellular matrix/cell adhesion, immunity, oxidation/detoxification metabolism, signal transduction, and storage. The abundance of selected proteins involved in yolk uptake and degradation, as well as vitellin accumulation during ovary maturation, was assessed using dimethyl-labelling quantification. In conclusion, proteins identified in this study provide a framework for future studies to elucidate tick development and validate candidate targets for novel control methods.
Collapse
Affiliation(s)
- Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Antônio F M Pinto
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Carlos Logullo
- Laboratório de Sanidade Animal, Laboratório de Química e Função de Proteínas e Peptídeos and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Characterization of a glycine-rich protein from Rhipicephalus microplus: tissue expression, gene silencing and immune recognition. Parasitology 2017; 145:927-938. [DOI: 10.1017/s0031182017001998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractSalivary molecules, as glycine-rich proteins (GRPs), are essential to tick attachment and feeding on the host and are suggested to be involved in the host's immune system evasion, therefore representing natural candidates in the search for protective vaccine antigens. This work shows the molecular characterization of a GRP from Rhipicephalus microplus (RmGRP). The cDNA and putative amino acid sequences were analysed, as well as the transcription level in tick tissues/developmental stages, showing the highest levels of gene expression in 1-day-old larvae and salivary glands of fully engorged females. RmGRP gene silencing resulted in a lower hatching rate of larvae from treated females. In addition, recombinant RmGRP (rRmGRP) was recognized by sera from naturally and experimentally infested bovines, displaying considerable differences among the individuals tested. rRmGRP was recognized by anti-saliva and anti-salivary glands sera, while anti-rRmGRP serum recognized RmGRP in saliva and salivary glands, indicating its secretion into the host. The data collected indicate that RmGRP may present roles other than in the tick–host relationship, especially in embryo development. In addition, the high expression in adult females, antigenicity and presence of shared characteristics with other tick protective GRPs turns RmGRP a potential candidate to compose an anti-tick vaccine cocktail.
Collapse
|
7
|
Seixas A, Alzugaray MF, Tirloni L, Parizi LF, Pinto AFM, Githaka NW, Konnai S, Ohashi K, Yates Iii JR, Termignoni C, da Silva Vaz I. Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 2017; 9:72-81. [PMID: 29054547 DOI: 10.1016/j.ttbdis.2017.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Abstract
The vitellogenin receptor (VgR), which belongs to the low-density lipoprotein receptors (LDLR) family, regulates the absorption of yolk protein accumulated in developing oocytes during oogenesis. In the present study, the full sequence of Rhipicephalus microplus VgR (RmVgR) and the partial sequence of Rhipicephalus appendiculatus VgR (RaVgR) ORF were determined and cloned. The RmVgR amino acid sequence contains the five highly conserved structural motifs characteristic of LDLR superfamily members, the same overall structure as observed in other species. Phylogenetic analysis separated VgRs in two major groups, corresponding to receptors from acarines and insects. Consistent with observations from other arthropods, RmVgR was specifically expressed in the ovarian tissue and its peak of expression occurs in females that are detaching from the host. Silencing with RmVgR dsRNA reduced VgR expression, which resulted in reduced fertility, evidenced by a decrease in the number of larvae. The present study confirms RmVgR is a specific receptor involved in yolk protein uptake and oocyte maturation in R. microplus, playing an important role in tick reproduction.
Collapse
Affiliation(s)
- Adriana Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil.
| | - María Fernanda Alzugaray
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43421, Campus do Vale, Caixa Postal 15005, Porto Alegre, RS, 91501-970, Brazil; Departamento de Microbiología, Facultad de Veterinaria, Universidad de la Republica, Alberto Lasplaces 1550 a 1620, Montevideo, Código Postal 11600, Uruguay.
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43421, Campus do Vale, Caixa Postal 15005, Porto Alegre, RS, 91501-970, Brazil.
| | - Luis Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43421, Campus do Vale, Caixa Postal 15005, Porto Alegre, RS, 91501-970, Brazil.
| | - Antonio Frederico Michel Pinto
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 90037 USA; Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil
| | - Naftaly Wang'ombe Githaka
- Tick Unit, Animal and Human Health Program, International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
| | - Satoru Konnai
- Department of Disease Control, Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan.
| | - Kazuhiko Ohashi
- Department of Disease Control, Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan.
| | - John R Yates Iii
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 90037 USA.
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43421, Campus do Vale, Caixa Postal 15005, Porto Alegre, RS, 91501-970, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43421, Campus do Vale, Caixa Postal 15005, Porto Alegre, RS, 91501-970, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre, RS, 91540-000, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Oldiges DP, Parizi LF, Zimmer KR, Lorenzini DM, Seixas A, Masuda A, da Silva Vaz I, Termignoni C. A Rhipicephalus (Boophilus) microplus cathepsin with dual peptidase and antimicrobial activity. Int J Parasitol 2012; 42:635-45. [PMID: 22584130 DOI: 10.1016/j.ijpara.2012.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/08/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
The cattle tick, Rhipicephalus (Boophilus) microplus, is a haematophagous arthropod responsible for considerable losses in the livestock industry. Immunological control with vaccines is a promising alternative to replace chemical acaricides. Due to their importance in parasite physiology, cysteine endopeptidases are potential targets. In a previous study, native Vitellin Degrading Cysteine Endopeptidase (VTDCE) was successfully tested as a vaccine antigen for bovines against R. microplus. In this work, nucleotide and amino acid VTDCE sequences were obtained from cDNA databanks, based on data from Edman sequencing and mass spectrometry. Subsequently, cloning and expression, purification, immunological and biochemical characterisation of the recombinant protein were performed to determine the biological importance of VTDCE. By Western blot, polyclonal antibodies produced against recombinant VTDCE recognised native VTDCE. Interestingly, molecular analysis showed that the VTDCE sequence has similarity to antimicrobial peptides. Indeed, experimental results revealed that VTDCE has an antimicrobial activity which is independent of endopeptidase activity. We believe that this is the first known study to show that an arthropod enzyme has antimicrobial activity.
Collapse
Affiliation(s)
- Daiane P Oldiges
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Vitellin- and hemoglobin-digesting enzymes in Rhipicephalus (Boophilus) microplus larvae and females. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:326-35. [DOI: 10.1016/j.cbpb.2010.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 11/21/2022]
|
10
|
Pohl PC, Sorgine MHF, Leal AT, Logullo C, Oliveira PL, da Silva Vaz I, Masuda A. An extraovarian aspartic protease accumulated in tick oocytes with vitellin-degradation activity. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:392-9. [DOI: 10.1016/j.cbpb.2008.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 11/30/2022]
|
11
|
Seixas A, Leal AT, Nascimento-Silva MCL, Masuda A, Termignoni C, da Silva Vaz I. Vaccine potential of a tick vitellin-degrading enzyme (VTDCE). Vet Immunol Immunopathol 2008; 124:332-40. [PMID: 18490061 DOI: 10.1016/j.vetimm.2008.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/07/2008] [Accepted: 04/09/2008] [Indexed: 11/25/2022]
Abstract
VTDCE (Vitelin-Degrading Cysteine Endopeptidase) is a peptidase with an active role in Rhipicephalus (Boophilus) microplus embryogenesis. VTDCE is found in the tick's eggs and was shown to be the most active protein in vitellin (VT) hydrolysis of the three peptidases already characterized in R. microplus eggs (Boophilus Yolk pro-cathepsin (BYC), Tick Heme Binding Aspartic Proteinase (THAP) and VTDCE). VTDCE activity was assessed in vitro using the natural substrate and a synthetic substrate (N-Cbz-Phe-Arg-MCA). The activity was inhibited by anti-VTDCE antibodies. In the present study, it was shown that VTDCE acts differently from BYC and THAP in VT hydrolysis and that the vaccination of bovines with VTDCE induces a partial protective immune response against R. microplus infestation. Immunized bovines challenged with R. microplus larvae presented an overall protection of 21%, and a reduction in the weight of fertile eggs of 17.6% was observed. The data obtained indicate that VTDCE seems to be important for tick physiology, and that it induces partial protective immune response when inoculated in bovines. This suggests that VTDCE can be useful to improve the protective capacity observed for other antigens.
Collapse
Affiliation(s)
- Adriana Seixas
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Prédio 43421, Porto Alegre, RS 91501-970, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Estrela A, Seixas A, Termignoni C. A cysteine endopeptidase from tick (Rhipicephalus (Boophilus) microplus) larvae with vitellin digestion activity. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:410-6. [PMID: 17765577 DOI: 10.1016/j.cbpb.2007.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/22/2022]
Abstract
The hard tick Rhipicephalus (Boophilus) microplus is a blood-sucking ectoparasite. R. microplus free-living stage comprises egg development, hatching, and subsequent larval development until encountering a host. In order to complete the embryological development, this tick relies on yolk reserve substances, mainly vitellin (Vt), which is still present in the larval stage. The present study demonstrates presence and digestion of Vt in unfed R. microplus larvae. An increasing proteolytic activity is observed in larval development, as well as a decrease in total protein and in Vt content. Partial purification and characterization of a R. microplus larval cysteine endopeptidase (RmLCE) with Vt-degrading activity is also described. RmLCE has optimal activity at 37 degrees C at pH 5.0, being unstable at pH > or =7.5. This enzyme is active upon fluorogenic peptide substrates and is able to degrade Vt, its putative natural substrate. These results indicate that RmLCE has a role in supporting the nutritional needs of unfed R. microplus larva through Vt proteolysis, allowing survival until the first blood meal.
Collapse
Affiliation(s)
- Andréia Estrela
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | |
Collapse
|
13
|
Tellam RL, Kemp D, Riding G, Briscoe S, Smith D, Sharp P, Irving D, Willadsen P. Reduced oviposition of Boophilus microplus feeding on sheep vaccinated with vitellin. Vet Parasitol 2002; 103:141-56. [PMID: 11751009 DOI: 10.1016/s0304-4017(01)00573-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The most abundant protein present in Boophilus microplus eggs, vitellin, was isolated and purified as a non-covalent complex of six glyco-polypeptides of Mr 44-107kDa. The protein complex bound haem. Immuno-blots demonstrated that antibodies raised to vitellin recognised a 200kDa polypeptide in the haemolymph of adult female ticks. This is consistent with the general proposal that in arthropods vitellin is derived by proteolytic processing from a large precursor protein, vitellogenin. In parallel with this study, an 80kDa glycoprotein (GP80) was independently purified from larvae of B. microplus using efficacy in vaccination trials as an assay. Antibodies to GP80 also recognised a 200kDa protein in the haemolymph of ticks and a major 87kDa polypeptide present in the vitellin complex. Conversely, antibodies to purified vitellin recognised GP80. The amino-terminal amino acid sequences of the 87kDa vitellin polypeptide and GP80 were identical for at least the first 11 residues and internal peptide sequences from both polypeptides were co-located in a single but incomplete deduced amino sequence of B. microplus vitellogenin. Thus, GP80 is a processed product from vitellogenin and highly related to but not completely identical with the 87kDa vitellin polypeptide. Vaccination trials in the model host sheep were performed with purified vitellin and GP80. Sheep vaccinated with either purified vitellin or GP80 returned significantly reduced numbers of engorged female ticks with decreased weights and reduced oviposition. In contrast, sheep vaccinated with recombinant hexahis-GP80, which was incorrectly folded and not glycosylated showed no significant effects on ticks. It was concluded that vitellin and GP80 could induce immune responses that partially protect sheep from the tick, B. microplus. However, critical protective epitopes are associated with the folding of the protein and/or the oligosaccharides attached to it.
Collapse
Affiliation(s)
- R L Tellam
- CSIRO Livestock Industries, Molecular Animal Genetics Centre, Gehrmann Research laboratories, Research Road, The University of Queensland, St Lucia 4067, Qld, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Del Pino FA, Brandelli A, Termignoni C, Gonzales JC, Henriques JA, Dewes H. Purification and characterization of beta-N-acetylhexosaminidase from bovine tick Boophilus microplus (Ixodide) larvae. Comp Biochem Physiol B Biochem Mol Biol 1999; 123:193-200. [PMID: 10425723 DOI: 10.1016/s0305-0491(99)00057-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
beta-N-Acetylhexosaminidase (HEX, E.C. 3.2.1.52) from larvae of the ixodid tick Boophilus microplus was purified to capillary zone electrophoresis homogeneity, and characterized. Enzyme purification was carried out by sequential liquid chromatography on Sephadex G-200, p-aminobenzyl-N-acetyl-beta-D-thioglucosamine affinity, and Mono-Q FPLC columns. Purification was about 1600-fold, with a yield of 10%, as determined with p-nitrophenyl-N-acetylglucosaminide as substrate. The enzyme presented optimum pH 4.7, and optimum temperature 65 degrees C. The molecular weight of non-denatured enzyme was estimated as 127,000 by gel filtration chromatography, and 60,000 in SDS-PAGE. The tick hexosaminidase presented glycosyl residues, as evidenced by binding to Concanavalin-A. Among several p-nitrophenyl glycosides tested as substrate, HEX was active only on p-nitrophenyl-N-acetylglucosaminide and p-nitrophenyl-N-acetylgalactosaminide. The purified enzyme presented immunogenicity in rabbit, and the correspondent antibodies inhibited about 90% of its original, in vitro activity.
Collapse
Affiliation(s)
- F A Del Pino
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Toro-Ortiz RD, Vaz Junior IS, Gonzales JC, Masuda A. Monoclonal antibodies against Boophilus microplus and their effects on tick reproductive efficiency. Vet Parasitol 1997; 69:297-306. [PMID: 9195739 DOI: 10.1016/s0304-4017(96)01107-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Four monoclonal antibodies (mAbs) against extracts of embryo and gut tissue obtained from fully engorged Boophilus microplus were produced. The mAb BrBml reacted with different instars and tissues, the BrBm2 recognized only antigens present in gut extract and the mAbs BrBm3 and BrBm4 recognized vitellin. The effect of inoculation of these mAbs into fully engorged Boophilus microplus females was also evaluated. The mAbs BrBm1 and BrBm2 caused a decrease in oviposition of approximately 50% and 70%, respectively, and the mAbs BrBm3 and BrBm4 did not affect reproductive efficiency. This assay may be useful as a low-cost test to provide preliminary information on the possible effects of anti-tick antibodies in damaging ticks before attempting cattle vaccination experiments.
Collapse
Affiliation(s)
- R D Toro-Ortiz
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|