1
|
Bradshaw D, Taylor GP. HTLV-1 Transmission and HIV Pre-exposure Prophylaxis: A Scoping Review. Front Med (Lausanne) 2022; 9:881547. [PMID: 35572998 PMCID: PMC9103472 DOI: 10.3389/fmed.2022.881547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
HIV pre-exposure prophylaxis (HIV-PrEP) is effective in reducing the likelihood of HIV acquisition in HIV-negative people at high risk of exposure. Guidelines recommend testing for sexually transmitted infections (STIs) before starting, and periodically on PrEP, including bacterial infections, HIV, hepatitis C virus, and, for those who are non-immune, hepatitis B virus. Diagnosed infections can be promptly treated to reduce onward transmission. HTLV-1 is not mentioned; however, it is predominantly sexually transmitted, causes adult T-cell leukaemia/lymphoma (ATL) or myelopathy in 10% of those infected, and is associated with an increased risk of death in those without any classically HTLV-associated condition. The 2021 WHO Technical Report on HTLV-1 called for the strengthening of global public health measures against its spread. In this scoping review, we, therefore, (1) discuss the epidemiological context of HIV-PrEP and HTLV-1 transmission; (2) present current knowledge of antiretrovirals in relation to HTLV-1 transmission prevention, including nucleos(t)ide reverse transcriptase inhibitors (NRTIs) and integrase strand transfer inhibitors (INSTIs); and (3) identify knowledge gaps where data are urgently required to inform global public health measures to protect HIV-PrEP users from HTLV-1 acquisition. We suggest that systematic seroprevalence studies among PrEP-using groups, including men who have sex with men (MSM), people who inject drugs (PWIDs), and female sex workers (FSWs), are needed. Further data are required to evaluate antiretroviral efficacy in preventing HTLV-1 transmission from in vitro studies, animal models, and clinical cohorts. PrEP delivery programmes should consider prioritizing the long-acting injectable INSTI, cabotegravir, in HTLV-1 endemic settings.
Collapse
Affiliation(s)
- Daniel Bradshaw
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
- National Centre for Human Retrovirology, Imperial College Healthcare NHS Trust, London, United Kingdom
- *Correspondence: Daniel Bradshaw
| | - Graham Philip Taylor
- National Centre for Human Retrovirology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Rueda F, Gasser B, Sánchez-Chardi A, Roldán M, Villegas S, Puxbaum V, Ferrer-Miralles N, Unzueta U, Vázquez E, Garcia-Fruitós E, Mattanovich D, Villaverde A. Functional inclusion bodies produced in the yeast Pichia pastoris. Microb Cell Fact 2016; 15:166. [PMID: 27716225 PMCID: PMC5045588 DOI: 10.1186/s12934-016-0565-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bacterial inclusion bodies (IBs) are non-toxic protein aggregates commonly produced in recombinant bacteria. They are formed by a mixture of highly stable amyloid-like fibrils and releasable protein species with a significant extent of secondary structure, and are often functional. As nano structured materials, they are gaining biomedical interest because of the combination of submicron size, mechanical stability and biological activity, together with their ability to interact with mammalian cell membranes for subsequent cell penetration in absence of toxicity. Since essentially any protein species can be obtained as IBs, these entities, as well as related protein clusters (e.g., aggresomes), are being explored in biocatalysis and in biomedicine as mechanically stable sources of functional protein. One of the major bottlenecks for uses of IBs in biological interfaces is their potential contamination with endotoxins from producing bacteria. RESULTS To overcome this hurdle, we have explored here the controlled production of functional IBs in the yeast Pichia pastoris (Komagataella spp.), an endotoxin-free host system for recombinant protein production, and determined the main physicochemical and biological traits of these materials. Quantitative and qualitative approaches clearly indicate the formation of IBs inside yeast, similar in morphology, size and biological activity to those produced in E. coli, that once purified, interact with mammalian cell membranes and penetrate cultured mammalian cells in absence of toxicity. CONCLUSIONS Structurally and functionally similar from those produced in E. coli, the controlled production of IBs in P. pastoris demonstrates that yeasts can be used as convenient platforms for the biological fabrication of self-organizing protein materials in absence of potential endotoxin contamination and with additional advantages regarding, among others, post-translational modifications often required for protein functionality.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Brigitte Gasser
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Mònica Roldán
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Verena Puxbaum
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, C/Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Barrios CS, Castillo L, Zhi H, Giam CZ, Beilke MA. Human T cell leukaemia virus type 2 tax protein mediates CC-chemokine expression in peripheral blood mononuclear cells via the nuclear factor kappa B canonical pathway. Clin Exp Immunol 2014; 175:92-103. [PMID: 24116893 DOI: 10.1111/cei.12213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 12/22/2022] Open
Abstract
Retroviral co-infections with human immunodeficiency virus type-1 (HIV-1) and human T cell leukaemia virus type 1 (HTLV-1) or type 2 (HTLV-2) are prevalent in many areas worldwide. It has been observed that HIV-1/HTLV-2 co-infections are associated with slower rates of CD4(+) T cell decline and delayed progression to AIDS. This immunological benefit has been linked to the ability of Tax2, the transcriptional activating protein of HTLV-2, to induce the expression of macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4 and regulated upon activation normal T cell expressed and secreted (RANTES)/CCL5 and to down-regulate the expression of the CCR5 co-receptor in peripheral blood mononuclear cells (PBMCs). This study aimed to assess the role of Tax2-mediated activation of the nuclear factor kappa B (NF-κB) signalling pathway on the production of the anti-viral CC-chemokines MIP-1α, MIP-1β and RANTES. Recombinant Tax1 and Tax2 proteins, or proteins expressed via adenoviral vectors used to infect cells, were tested for their ability to activate the NF-κB pathway in cultured PBMCs in the presence or absence of NF-κB pathway inhibitors. Results showed a significant release of MIP-1α, MIP-1β and RANTES by PBMCs after the activation of p65/RelA and p50. The secretion of these CC-chemokines was significantly reduced (P < 0·05) by canonical NF-κB signalling inhibitors. In conclusion, Tax2 protein may promote innate anti-viral immune responses through the activation of the canonical NF-κB pathway.
Collapse
Affiliation(s)
- C S Barrios
- Infectious Diseases Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service 151-I, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
4
|
Shuh M, Beilke M. The human T-cell leukemia virus type 1 (HTLV-1): New insights into the clinical aspects and molecular pathogenesis of adult t-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM). Microsc Res Tech 2005; 68:176-96. [PMID: 16276549 DOI: 10.1002/jemt.20231] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus to be identified in the early 1980s. The isolation and identification of a related virus, HTLV-2, and the distantly related human immunodeficiency virus (HIV) immediately followed. Of the three retroviruses, two are associated definitively with specific diseases, HIV, with acquired immune deficiency syndrome (AIDS) and HTLV-1, with adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). While an estimated 10-20 million people worldwide are infected with HTLV-I, infection is endemic in the Caribbean, parts of Africa, southwestern Japan, and Italy. Approximately 4% of HTLV-I infected individuals develop ATLL, a disease with a poor prognosis. The clinical manifestations of infection and the current biology of HTLV viruses with emphasis on HTLV-1 are discussed in detail. The implications for improvements in diagnosis, treatment, intervention, and vaccination are included, as well as a discussion of the emergence of HTLV-1 and -2 as copathogens among HIV-1-infected individuals.
Collapse
Affiliation(s)
- Maureen Shuh
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana 70118, USA.
| | | |
Collapse
|
5
|
Chesebro B, Nishio J, Perryman S, Cann A, O'Brien W, Chen IS, Wehrly K. Identification of human immunodeficiency virus envelope gene sequences influencing viral entry into CD4-positive HeLa cells, T-leukemia cells, and macrophages. J Virol 1991; 65:5782-9. [PMID: 1920616 PMCID: PMC250239 DOI: 10.1128/jvi.65.11.5782-5789.1991] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Infectious recombinant viruses were constructed from three molecularly cloned human immunodeficiency virus (HIV) strains varying in cell tropism. All recombinants showed a high infectivity titer on phytohemagglutinin-stimulated normal T lymphocytes. However, a 120-bp region of the envelope gene including the area of the V3 hypervariable loop was found to influence infectivity titer on both clone 1022 CD4-positive HeLa cells and CD4-positive CEM leukemia cells. Infectivity for macrophages was more complex. All viruses replicated in macrophages to a low level, but viral sequences both inside and outside the V3 loop region influenced the efficiency of replication. Two experiments showed that the mechanism of restriction of infection of 1022 cells by HIV strain JR-CSF was related to lack of virus entry. First, productive virus infection occurred after transfection of 1022 cells with viral plasmid DNA. Second, the nonpermissive HIV strain JR-CSF could infect 1022 cells when pseudotyped with the envelope of other retroviruses, including human T-cell leukemia virus type I (HTLV-I), HTLV-II, and amphotropic murine leukemia virus. These results demonstrate the possibility that unexpected cell types might be infected with HIV in human patients coinfected with HIV and HTLV-I or HTLV-II.
Collapse
Affiliation(s)
- B Chesebro
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | | | | | | | | | | | | |
Collapse
|
7
|
Wormser GP, Cannon RO, Hartley TM, Forseter G, Horowitz H, Nadelman RB. Co-infection with HIV-I and HTLV-I/II In Intravenous Drug Users in Suburban New York City, With Comparison to Other Geographic Areas. Leuk Lymphoma 1991; 3:435-8. [PMID: 27467436 DOI: 10.3109/10428199109070289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Co-infection with human T-lymphotropic virus types I or II (HTLV-I or -II) may be a cofactor in the progression of human immunodeficiency virus (HIV) infection. We assessed the frequency of simultaneous infection with these retroviruses among intravenous drug users from Westchester County, N.Y., a suburb of New York City. Comparison was made with similar studies in the United States and Europe.
Collapse
Affiliation(s)
- G P Wormser
- a Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - R O Cannon
- b Centre for Infectious Diseases Centres for Disease Control, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - T M Hartley
- b Centre for Infectious Diseases Centres for Disease Control, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | - G Forseter
- a Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - H Horowitz
- a Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - R B Nadelman
- a Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|