1
|
Ścibior A, Hus I, Mańko J, Jawniak D. Evaluation of the level of selected iron-related proteins/receptors in the liver of rats during separate/combined vanadium and magnesium administration. J Trace Elem Med Biol 2020; 61:126550. [PMID: 32464446 DOI: 10.1016/j.jtemb.2020.126550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The current knowledge about the effects of vanadium (V) on iron (Fe)-related proteins and Fe homeostasis (which is regulated at the systemic, organelle, and cellular levels) is still insufficient. OBJECTIVE This fact and our earlier results prompted us to conduct studies with the aim to explain the mechanism of anemia accompanied by a rise in hepatic and splenic Fe deposition in rats receiving sodium metavanadate (SMV) separately and in combination with magnesium sulfate (MS). RESULTS We demonstrated for the first time that SMV (0.125 mg V/mL) administered to rats individually and in conjunction with MS (0.06 mg Mg/mL) for 12 weeks did not cause significant differences in the hepatic hepcidin (Hepc) and hemojuvelin (HJV) concentrations, compared to the control. In comparison with the control, there were no significant changes in the concentration of transferrin receptor 1 (TfR1) in the liver of rats treated with SMV and MS alone (in both cases only a downward trend of 14% and 15% was observed). However, a significant reduction in the hepatic TfR1 level was found in rats receiving SMV and MS simultaneously. In turn, the concentration of transferrin receptor 2 (TfR2) showed an increasing trend in the liver of rats treated with SMV and/or MS. CONCLUSIONS The experimental data suggest that the pathomechanism of the SMV-induced anemia is not associated with the effect of V on the concentration of Hepc in the liver, as confirmed by the unaltered hepatic HJV and TfR1 levels. Therefore, further studies are needed in order to check whether anemia that developed in the rats at the SMV administration (a) results from the inhibitory effect of V on erythropoietin (EPO) production, (b) is related to the effect of V on the induction of matriptase-2 (TMPRSS6) expression, or (c) is associated with the influence of this metal on haem synthesis.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Poland.
| | - Iwona Hus
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Joanna Mańko
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| | - Dariusz Jawniak
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| |
Collapse
|
2
|
Ścibior A, Kurus J. Vanadium and Oxidative Stress Markers - In Vivo Model: A Review. Curr Med Chem 2019; 26:5456-5500. [PMID: 30621554 DOI: 10.2174/0929867326666190108112255] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
This review article is an attempt to summarize the current state of knowledge of the impact of Vanadium (V) on Oxidative Stress (OS) markers in vivo. It shows the results of our studies and studies conducted by other researchers on the influence of different V compounds on the level of selected Reactive Oxygen Species (ROS)/Free Radicals (FRs), markers of Lipid peroxidation (LPO), as well as enzymatic and non-enzymatic antioxidants. It also presents the impact of ROS/peroxides on the activity of antioxidant enzymes modulated by V and illustrates the mechanisms of the inactivation thereof caused by this metal and reactive oxygen metabolites. It also focuses on the mechanisms of interaction of V with some nonenzymatic compounds of the antioxidative system. Furthermore, we review the routes of generation of oxygen-derived FRs and non-radical oxygen derivatives (in which V is involved) as well as the consequences of FR-mediated LPO (induced by this metal) together with the negative/ positive effects of LPO products. A brief description of the localization and function of some antioxidant enzymes and low-molecular-weight antioxidants, which are able to form complexes with V and play a crucial role in the metabolism of this element, is presented as well. The report also shows the OS historical background and OS markers (determined in animals under V treatment) on a timeline, collects data on interactions of V with one of the elements with antioxidant potential, and highlights the necessity and desirability of conducting studies of mutual interactions between V and antioxidant elements.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Joanna Kurus
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
SINGH DIGVIJAY, DATT CHANDER, MISHRA AKASH, SHIVANI SWATI, GUPTA RITIKA, MANI VEENA. Effect of dietary vanadium supplementation on growth performance, mineral balance and antioxidant activity in male Sahiwal calves. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i5.90024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study was aimed to examine the effect of supplementation of sodium metavandate (NaVO3) as source of vanadium on DMI intake, growth performance, antioxidant activity, level of mineral in plasma and their balance in male Sahiwal calves. The vanadium content in maize (Zea mays) and bajra (Pennisetum glaucum) grains was 58 ppb and 55 ppb while in berseem (Trifolium alexandrinum) and mustard (Brassica campestris) fodder it was 8.37 and 7.24 ppm, respectively. Male Sahiwal calves (20) of comparable age (6±0.82 months) and body weight (71±8.06 kg) were randomly allotted to 4 different treatments with replication of 5 animals in each. Supplementation was done with 0, 2, 4 and 8 ppm of vanadium in groups T1, T2, T3 and T4, respectively, for 120 days. Blood samples were collected at monthly intervals to examine antioxidant activity in blood, plasma and mineral levels. Feed consumption (DM intake, DM intake% BW) and growth rate did not show any significant effect of vanadium supplementation. Glutathione peroxidase activity was higher in groups T3 and T4 as compared to T1 and T2 whereas, SOD and catalase activity was similar in all the groups. Excretion and absorption patterns of Ca, P, Cu and Fe and their plasma levels were similar in different groups. However, vanadium and Zn balance and their plasma levels increased due to vanadium supplementation. The present study revealed that in growing calves, vanadium supplementation showed enhanced glutathione peroxidise activity, plasma Zn and vanadium levels.
Collapse
|
4
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
5
|
Kaurav MS, Sahu PK, Sahu PK, Messali M, Almutairi SM, Sahu PL, Agarwal DD. An efficient, mild and metal free l-proline catalyzed construction of fused pyrimidines under microwave conditions in water. RSC Adv 2019; 9:3755-3763. [PMID: 35518091 PMCID: PMC9060310 DOI: 10.1039/c8ra07517d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/10/2019] [Indexed: 02/03/2023] Open
Abstract
One-pot condensation of 4-hydroxy coumarins, aldehydes and urea/thiourea to build C-C and C-N bonds is described. Fused pyrimidines have been synthesized under mild reaction conditions using l-proline. The protocol has been performed rapidly and efficiently in water under metal free conditions. Heterocyclic derivatives have been synthesized using the present methodology and avoid the use of hazardous solvents over conventional organic solvents. A proposed mechanism could be established for three component reactions. The present study reveals the first case in which l-proline has been explored as a homogeneous catalyst in the synthesis of fused pyrimidines in water under microwave irradiation. This synthesis involves simple workup and acceptable efficiency. The most notable feature of this protocol is the ability of the catalyst to influence asymmetric induction in the reaction.
Collapse
Affiliation(s)
- Manvendra S Kaurav
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Pramod K Sahu
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Praveen K Sahu
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Mouslim Messali
- Department of Chemistry, Taibah University 30002 Al-Madina Al-Mounawara Saudi Arabia
| | - Saud M Almutairi
- King Abdulaziz City for Science and Technology P. O. Box 6086 Riyadh 11442 Saudi Arabia
| | - Puran L Sahu
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare Sector-23, Raj Nagar Ghaziabad 201002 India
- National Dope Testing Laboratory (NDTL), Ministry of Youth Affair & Sports, Government of India J. L. N. Stadium Complex East Gate No. 10, Lodi Road New Delhi-3 India
| | - Dau D Agarwal
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| |
Collapse
|
6
|
Sahu PK, Sahu PK, Kaurav MS, Messali M, Almutairi SM, Sahu PL, Agarwal DD. One-pot facile and mild construction of densely functionalized pyrimidines in water via consecutive C-C and C-S bonds formation. RSC Adv 2018; 8:33952-33959. [PMID: 35548808 PMCID: PMC9086688 DOI: 10.1039/c8ra04363a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/07/2018] [Indexed: 11/21/2022] Open
Abstract
Fused pyrimidines composed of alternating heteroatoms and a pyrimidine moiety were synthesized efficiently using readily available starting material 4-hydroxycoumarin, aromatic aldehydes, and urea/thiourea at room temperature. Acid, metal salts, and surfactants were screened for their influence on catalytic activity in three-component reactions and sodium lauryl sulphate (SLS) was used as the best catalyst with different concentrations. Screening results of catalyst loading from our investigation showed that good to excellent yields were obtained with 10 mol%. Our method efficiently synthesized heterocycles and avoided the use of hazardous solvents and conventional organic solvents. Our procedure which involves a surfactant is operationally simple, environmentally benign, has excellent yields, short reaction times, and synthetically is as efficient as conventional procedures using organic solvents.
Collapse
Affiliation(s)
- Pramod K Sahu
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Praveen K Sahu
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Manvendra S Kaurav
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| | - Mouslim Messali
- Department of Chemistry, Taibah University 30002 Al-Madina Al-Mounawara Saudi Arabia
| | - Saud M Almutairi
- King Abdulaziz City for Science and Technology Riyadh 11442 P. O. Box 6086 Saudi Arabia
| | - Puran L Sahu
- Indian Pharmacopoeia Commission Ministry of Health and Family Welfare Sector-23, Raj Nagar Ghaziabad 201002 India
| | - Dau D Agarwal
- School of Studies in Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
- Department of Industrial Chemistry, Jiwaji University Gwalior-474011 Madhya Pradesh India
| |
Collapse
|
7
|
Evaluation of lipid peroxidation and the level of some elements in rat erythrocytes during separate and combined vanadium and magnesium administration. Chem Biol Interact 2018; 293:1-10. [PMID: 30028963 DOI: 10.1016/j.cbi.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022]
Abstract
The impact of vanadium (V) and magnesium (Mg) as sodium metavanadate (SMV, 0.125 mg V/ml) and magnesium sulfate (MS, 0.06 mg Mg/ml) on lipid peroxidation (LPO) and selected elements in the rat erythrocytes (RBCs) was investigated. Relationships between some indices determined in RBC were also studied. SMV alone (Group II) elevated the malondialdehyde level (MDARBC) (by 95% and 60%), compared with the control (Group I) and MS-supplemented rats (Group III), respectively, reduced the concentration of CuRBC (by 23.5%), in comparison with Group I, but did not change the levels of NaRBC, KRBC, and CaRBC, whereas MS alone (Group III) only reduced the CuRBC concentration (by 22%), compared with Group I. The SMV + MS combination (Group IV) reduced and elevated the CuRBC (by 24%) and CaRBC (by 111%) concentrations, respectively, in comparison with Groups I and III, and these changes were induced by the V-Mg antagonistic and synergistic interaction, respectively. The combined SMV + MS effect also enhanced the MDARBC level, compared with Groups I (by 79%) and III (by 47%) and slightly limited its concentration, compared with Group II, which, in turn, resulted from the distinct trend toward the V-Mg antagonistic interaction. We can conclude that V (as SMV) is able to stimulate LPO in rat RBCs and that V-Mg interactive effects are involved in changes in CuRBC, CaRBC, and MDARBC. Further studies are needed to elucidate the exact mechanisms of the V-Mg antagonistic/synergistic interactions and to provide insight into the biochemical mechanisms of changes in rats suffering from anemia [1], characterized by a disrupted antioxidant barrier in RBCs [2] and an intensified free radical process in these cells.
Collapse
|
8
|
L Rezk N. Vanadium in Therapy and Toxicity; Mini-Review and Recommendation of Further Study. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/mojbb.2017.03.00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Domingo JL, Gómez M. Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food Chem Toxicol 2016; 95:137-41. [PMID: 27417449 DOI: 10.1016/j.fct.2016.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
In the second part of the 1980s, and in the 1990s, a number of investigators demonstrated -mainly in streptozotocin-induced (STZ) diabetic rats-that the vanadate and vanadyl forms of vanadium possessed a number of insulin-like effects in various cells. It was hypothesized that oral vanadium could be an alternative treatment to parenteral insulin in the therapy of diabetes mellitus. However, the long-term and/or chronic administration of vanadium compounds should also mean tissue vanadium accumulation and risks of toxicity. The purpose of this review was to revise the current-state-of-the-art on the use of vanadium in the treatment of human diabetes. It has been conducted more than three decades after the first report on the beneficial insulin-mimetic effects of oral vanadium administration in STZ-diabetic rats. Although the antidiabetic effects of vanadium in STZ-diabetic rodents are well supported, in the few studies on human patients with positive results, that are available in the literature, vanadium compounds were administered during very short periods. We conclude that vanadium administration for the treatment of human diabetes is misplaced.
Collapse
Affiliation(s)
- José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Mercedes Gómez
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
10
|
Scibior A, Zaporowska H, Wolińska A, Ostrowski J. Antioxidant enzyme activity and lipid peroxidation in the blood of rats co-treated with vanadium (V(+5)) and chromium (Cr (+3)). Cell Biol Toxicol 2010; 26:509-26. [PMID: 20352315 DOI: 10.1007/s10565-010-9160-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 03/15/2010] [Indexed: 11/26/2022]
Abstract
Selected biochemical parameters were studied in the blood of outbred, male Wistar rats which daily received to drink deionized water (Group I, control) or solutions of: sodium metavanadate (SMV; 0.100 mg V/mL)-Group II; chromium chloride (CC; 0.004 mg Cr/mL)-Group III; and SMV-CC (0.100 mg V and 0.004 mg Cr/mL)-Group IV for a 12-week period. The diet and fluid intake, body weight gain, and food efficiency ratio (FER) diminished significantly in the rats of Groups II and IV, compared with Groups I and III. The plasma total antioxidant status (TAS) as well as the MDA and the L: -ascorbic acid level in the erythrocytes (RBCs) remained unchanged in all the groups, whereas the plasma L: -ascorbic acid concentration decreased markedly in Group II, compared with Group III. The activities of Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), cellular glutathione peroxidase (cGSH-Px), and glutathione reductase (GR) in RBCs remained unaltered in all the treated rats. However, the activity of glutathione S-transferase (GST) and the content of reduced glutathione (GSH) in RBCs decreased and increased, respectively, in Groups II, III, and IV, compared with Group I. A vanadium-chromium interaction which affected the GST activity was also found. To summarize, SMV and CC administered separately or in combination in drinking water for 12 weeks did not alter either lipid peroxidation (LPO) or the activities of Cu,Zn-SOD, CAT, cGSH-Px, and GR, which allows a conclusion that both metals in the doses ingested did not reveal their pro-oxidant potential on RBCs.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Department of Cell Biology, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Kraśnicka Ave 102, 20-718, Lublin, Poland.
| | | | | | | |
Collapse
|
11
|
Chakraborty T, Chatterjee A, Rana A, Dhachinamoorthi D, Kumar P A, Chatterjee M. Carcinogen-induced early molecular events and its implication in the initiation of chemical hepatocarcinogenesis in rats: Chemopreventive role of vanadium on this process. Biochim Biophys Acta Mol Basis Dis 2007; 1772:48-59. [PMID: 17174075 DOI: 10.1016/j.bbadis.2006.10.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 09/19/2006] [Accepted: 10/16/2006] [Indexed: 11/24/2022]
Abstract
Carcinogen-induced formation of DNA adducts and other types of DNA lesions are the critical molecular events in the initiation of chemical carcinogenesis and modulation of such events by chemopreventive agents could be an important step in limiting neoplastic transformation in vivo. Vanadium, a dietary micronutrient has been found to be effective in several types of cancers both in vivo and in vitro and also possesses profound anticarcinogenicity against rat models of mammary, colon and hepatocarcinogenesis. Presently, we report the chemopreventive potential of vanadium on diethylnitrosamine (DEN)-induced early DNA damages in rat liver. Hepatocarcinogenesis was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal (i.p.) injection of DEN (200 mg/kg body weight) at week 4. There was a significant induction of tissue-specific ethylguanines, steady elevation of modified DNA bases 8-hydroxy-2'-deoxyguanosines (8-OHdGs) (P<0.0001; 89.93%) along with substantial increment of the extent of single-strand breaks (SSBs) (P<0.0001) following DEN exposure. Supplementation of 0.5 ppm of vanadium throughout the experiment abated the formations of O(6)-ethylguanines and 7-ethylguanines (P<0.0001; 48.71% and 67.54% respectively), 8-OHdGs (P<0.0001; 81.37%), length:width (L:W) of DNA mass (P<0.01; 62.12%) and the mean frequency of tailed DNA (P<0.001; 53.58%), and hepatic nodulogenesis in preneoplastic rat liver. The study indicates that 0.5 ppm vanadium is potentially and optimally effective, as derived from dose-response studies, in limiting early molecular events and preneoplastic lesions, thereby modulating the initiation stage of hepatocarcinogenesis. Vanadium is chemopreventive against DEN-induced genotoxicity and resulting hepatocellular transformation in rats.
Collapse
Affiliation(s)
- Tridib Chakraborty
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, PO Box 17028, Calcutta-700032, India
| | | | | | | | | | | |
Collapse
|
12
|
Kobayashi K, Himeno S, Satoh M, Kuroda J, Shibata N, Seko Y, Hasegawa T. Pentavalent vanadium induces hepatic metallothionein through interleukin-6-dependent and -independent mechanisms. Toxicology 2006; 228:162-70. [DOI: 10.1016/j.tox.2006.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/18/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
|
13
|
Soussi A, Croute F, Soleilhavoup JP, Kammoun A, El-Feki A. Impact du thé vert sur l'effet oxydatif du métavanadate d'ammonium chez le rat male pubère. C R Biol 2006; 329:775-84. [PMID: 17027638 DOI: 10.1016/j.crvi.2006.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 06/03/2006] [Accepted: 07/11/2006] [Indexed: 12/22/2022]
Abstract
Transitional metals, as vanadium, are known to exert noxious effects by generating oxidative stress. Addition of antioxidants in the diet could decrease the cytotoxic effect related to the oxidative stress. The present study, carried out in Wistar rats, is a contribution to the evaluation of protective effects of green tea Camellia sinensis, which is known to be rich in antioxidant compounds (polyphenols...). Rats were divided into four groups: (C) was control, (V) was given ammonium metavanadate (AMV), (TH) was given herbal tea as drink (66 g/l) and TH + V was given tea and metavanadate. Group (TH) was given herbal tea one month before vanadium treatment. Metavanadate was daily i.p. injected (5 mg NH4VO3/kg body weight) for 10 days. (C) and (TH) groups received i.p. injections of 0.9% NaCl during the same period. Changes in lipid peroxidation levels (TBARS) in kidney, liver and testes, serum concentrations of vitamins E and A and superoxidismutase (SOD) and catalase (CAT) activities in blood cells were determined. One month pre-treatment with green tea, followed by 10 days of treatment (TH) did not change TBARS in liver and testes as compared to controls, but induced a clear decrease of TBARS in kidneys. Intraperitoneal administration of AMV to rats (V) induced a time-dependant increase of TBARS in kidney, liver and testes that was lowered in rats (V + TH) drinking tea. Vitamin E concentrations were found to be drastically decreased from day 1 to 10 in rats (V). Vitamin A concentration was decreased at day 10 only. Drinking tea lowered AMV inhibitory effects in rats (V + TH), and conversely an increase of vitamins A and E concentrations were found at day 10. SOD and catalase activities were found increased in the blood cells from day 1 to day 5 and conversely decreased at day 10. In contrast, associated to green tea, AMV did not affect SOD and catalase activities compared to controls.
Collapse
Affiliation(s)
- Ahlem Soussi
- Laboratoire d'écophysiologie animale, faculté des sciences de Sfax, BP 802, 3018 Sfax, Tunisie
| | | | | | | | | |
Collapse
|
14
|
Chakraborty T, Pandey N, Chatterjee A, Ghosh B, Rana B, Chatterjee M. Molecular basis of anticlastogenic potential of vanadium in vivo during the early stages of diethylnitrosamine-induced hepatocarcinogenesis in rats. Mutat Res 2006; 609:117-28. [PMID: 16942905 DOI: 10.1016/j.mrgentox.2006.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 03/17/2006] [Accepted: 04/06/2006] [Indexed: 12/14/2022]
Abstract
Carcinogen-induced DNA base modification and subsequent DNA lesions are the critical events for the expression of premalignant phenotype of the cell. We have therefore investigated the chemopreventive efficacy of a vanadium salt against diethylnitrosamine (DEN)-induced early DNA and chromosomal damages in rat liver. Hepatocarcinogenesis was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal injection of DEN (200mg/kg body weight). 8-Hydroxy-2'-deoxyguanosines (8-OHdGs), strand-breaks and DNA-protein crosslinks (DPCs) were measured by HPLC, comet assay and spectrofluorimetry, respectively. There was a significant and steady elevation of modified bases 8-OHdGs along with substantial increments of the extent of single-strand-breaks (SSBs), DPCs and chromosomal aberrations (CAs) following DEN exposure. Supplementation of vanadium as ammonium metavanadate (NH(4)VO(3), +V oxidation state) at a dose of 0.5ppm in terms of the salt weight throughout the experiment abated the formations of 8-OHdGs (P<0.0001; 79.54%), tailed DNA (P<0.05; 31.55%) and length:width of DNA mass (P<0.02; 61.25%) in preneoplastic rat liver. Vanadium treatment also inhibited DPCs (P<0.0001; 58.47%) and CAs (P<0.001; 45.17%) studied at various time points. The results indicate that the anticlastogenic potential of vanadium in vivo might be due to the observed reductions in liver-specific 8-OHdGs, SSBs and/or DPCs by this trace metal. We conclude that, vanadium plays a significant role in limiting DEN-induced genotoxicity and clastogenicity during the early stages of hepatocarcinogenesis in rats.
Collapse
Affiliation(s)
- Tridib Chakraborty
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, PO Box 17028, Calcutta 700032, India
| | | | | | | | | | | |
Collapse
|
15
|
Scibior A, Zaporowska H, Ostrowski J. Selected haematological and biochemical parameters of blood in rats after subchronic administration of vanadium and/or magnesium in drinking water. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 51:287-95. [PMID: 16783625 DOI: 10.1007/s00244-005-0126-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 12/04/2005] [Indexed: 05/10/2023]
Abstract
The purpose of these studies was to evaluate the effect of selected vanadium and magnesium doses on certain haematological and biochemical blood parameters in rats. Outbred 2-month-old, albino male Wistar rats received for a period of 6 weeks, as a sole drinking liquid, the following water solutions: group II, sodium metavanadate (SMV) at a concentration of 0.125 mg V/mL; group III, magnesium sulphate (MS) at a concentration of 0.06 mg Mg/mL; and group IV, SMV-MS solution at the same concentrations. The control group received at this time deionized water to drink. It was calculated that group II ingested with drinking water about 10.7 mg V/kg b. w./24 h, group III 6 mg Mg/kg b. w./24 h, and group IV about 9 mg V and 4.5 mg Mg/kg b. w./24 h. The exposure to vanadium alone (group II) led to a statistically significant decrease in body weight gain, food and fluid intakes. Moreover, in the same group of rats a statistically significant decrease in the RBC count, Hb concentration, MCV, and MCH values was demonstrated. Additionally, a statistically significant decrease in the plasma L-ascorbic acid concentration and a significant increase in MDA concentration in blood in this group were found. Instead, after the administration of magnesium alone (group III), a statistically significant decrease in the fluid intake and in the L-ascorbic acid concentration in plasma was noted. Furthermore, in the same group of rats a statistically significant increase in Hb level and in the plasma magnesium concentration was demonstrated. Two-way analysis of variance (ANOVA) did not reveal the interactions between V and Mg.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Department of Cell Biology, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Kraśnicka Ave 102, 20-718, Lublin, Poland.
| | | | | |
Collapse
|
16
|
Opinion of the Scientific Panel on Dietetic products, nutrition and allergies [NDA] related to the Tolerable Upper Intake Level of Vanadium. EFSA J 2004. [DOI: 10.2903/j.efsa.2004.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Soares SS, Aureliano M, Joaquim N, Coucelo JM. Cadmium and vanadate oligomers effects on methaemoglobin reductase activity from Lusitanian toadfish: in vivo and in vitro studies. J Inorg Biochem 2003; 94:285-90. [PMID: 12628709 DOI: 10.1016/s0162-0134(03)00006-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cadmium and two vanadate solutions as 'metavanadate' (containing ortho and metavanadate species) and 'decavanadate' (containing decameric species) (5 mM) were injected intraperitoneously in Halobatrachus didactylus (Lusitanian toadfish), in order to evaluate the effects of cadmium and oligomeric vanadate species on methaemoglobin reductase activity from fish red blood cells. Following short-term exposure (1 and 7 days), different changes were observed on enzyme activity. After 7 days of exposure, 'metavanadate' increased methaemoglobin reductase activity by 67% (P < 0.05), whereas, minor effects were observed on enzymatic activity upon cadmium and 'decavanadate' administration. However, in vitro studies indicate that decameric vanadate, in concentrations as low as 50 microM, besides strongly inhibiting methaemoglobin reductase activity, promotes haemoglobin oxidation to methaemoglobin. Although decameric vanadate species showed to be unstable in the different media used in this work, the rate of decameric vanadate deoligomerization is in general slow enough, making it possible to study its effects. It is concluded that the increase in H. didactylus methaemoglobin reductase activity is more pronounced upon exposition to 'metavanadate' than to cadmium and decameric species. Moreover, only decameric vanadate species promoted haemoglobin oxidation, suggesting that vanadate speciation is important to evaluate in vivo and in vitro effects on methaemoglobin reductase activity.
Collapse
Affiliation(s)
- S S Soares
- Group of Comparative Cardiovascular Physiopathology, CCMar, Faculty of Marine and Environmental Sciences, University of Algarve, Campus de Gambelas, 8000-117 Faro, Portugal
| | | | | | | |
Collapse
|
18
|
Fawcett JP, Farquhar SJ, Thou T, Shand BI. Oral vanadyl sulphate does not affect blood cells, viscosity or biochemistry in humans. PHARMACOLOGY & TOXICOLOGY 1997; 80:202-6. [PMID: 9140141 DOI: 10.1111/j.1600-0773.1997.tb00397.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vanadyl sulphate (VOSO4) is used to improve performance in weight training athletes. Concerns about its safety have arisen because vanadium compounds may cause anaemia and changes in the leukocyte system. In this study, the effects of oral VOSO4 (0.5 mg/kg/day) on haematological indices (red and white cell and platelet counts, red cell mean cell volume and haemoglobin level), blood viscosity (haematocrit, plasma viscosity and blood viscosity at 10s-1 and 100s-1 shear rates) and biochemistry (lipids and indices of liver and kidney function) were investigated in a twelve week, double blind, placebo controlled trial in 31 weight training athletes. Blood viscosity was evaluated at 0, 2, 4, 8 and 12 weeks and haematological indices and biochemistry were measured before and at the end of treatment. Both the treatment group and placebo group showed increases in haematocrit (3.3-3.6%) and blood viscosity (9-11% at 100s-1 shear; 35-38% at 10s-1 shear) but there were no significant effects of treatment. Similarly there were no treatment effects on haematological indices and biochemistry. Concerns about the adverse effects of oral vanadyl sulphate on blood are not supported by the results of this trial.
Collapse
Affiliation(s)
- J P Fawcett
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
19
|
Domingo JL, Gomez M, Sanchez DJ, Llobet JM, Keen CL. Toxicology of vanadium compounds in diabetic rats: the action of chelating agents on vanadium accumulation. Mol Cell Biochem 1995; 153:233-40. [PMID: 8927043 DOI: 10.1007/bf01075942] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The possible use of vanadium compounds in the treatment of diabetic patients is now being evaluated. However, previously to establish the optimal maximum dose for diabetes therapy, it should be taken into account that vanadium is a highly toxic element to man and animals. The toxic effects of vanadium are here reviewed. The tissue vanadium accumulation, which would mean an additional risk of toxicity following prolonged vanadium administration is also discussed. Recently, it has been shown that coadministration of vanadate and TIRON, an effective chelator in the treatment of vanadium intoxication, reduced the tissue accumulation of this element, decreasing the possibility of toxic side effects derived from chronic vanadium administration without diminishing the hypoglycemic effect of vanadium. However, previously to assess the effectiveness of this treatment in diabetic patients, a critical reevaluation of the antidiabetic action of vanadium and its potential toxicity is clearly needed.
Collapse
Affiliation(s)
- J L Domingo
- School of Medicine, 'Rovira i Virgili' University, Reus, Spain
| | | | | | | | | |
Collapse
|
20
|
Cruz TF, Morgan A, Min W. In vitro and in vivo antineoplastic effects of orthovanadate. Mol Cell Biochem 1995; 153:161-6. [PMID: 8927033 DOI: 10.1007/bf01075933] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study we have demonstrated that orthovanadate at concentrations of 5-10 uM is cytotoxic to proliferating cells including primary cultures and tumour cell lines. However, concentrations of up to 50 uM did not affect the viability of non-proliferating cells. The cytotoxicity appears to be dependent on the vanadium concentration rather than on the oxidation state of vanadium or the vanadium compound. Furthermore, tumour cell lines with different proliferative rates were equally sensitive to orthovanadate cytotoxicity. Although the mechanisms responsible for the cytotoxicity are not known, addition of H2O2 potentiated orthovanadate cytotoxicity suggesting that hydroxyl or vanadium radicals may be involved. In vivo subcutaneous injections of orthovanadate into mice containing MDAY-D2 tumours resulted in the inhibition of tumour growth by 85-100%. These data indicated that orthovanadate at concentrations greater than 5 uM has antineoplastic properties and may be useful as a chemotherapeutic agent.
Collapse
Affiliation(s)
- T F Cruz
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | |
Collapse
|
21
|
Zaporowska H. Effect of vanadium on L-ascorbic acid concentration in rat tissues. GENERAL PHARMACOLOGY 1994; 25:467-70. [PMID: 7926592 DOI: 10.1016/0306-3623(94)90199-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. Two-month old Wistar rats of both sexes received, as sole drinking liquid, an aqueous solution of ammonium metavanadate (AMV) at a concentration of 0.01, 0.05, 0.15 and 0.30 mg V/ml (corresponding to 0.2, 1, 3 and 6 mM solution) over 4 weeks. 2. In the animal groups receiving AMV solution of 0.15 or 0.30 mg V/ml concentrations to drink, a statistically significant decrease of the uptake of food and AMV solution was observed, as compared with food and water taken up in the same time by the control group. 3. Moreover, a distinct decrease of the L-ascorbic acid level was noted in the liver, kidneys, spleen and adrenals. These differences proved statistically significant in single cases of animals receiving a solution of 0.05 and 0.15 mg V/ml concentration and in all animals given the solution at the highest vanadium concentration.
Collapse
Affiliation(s)
- H Zaporowska
- Department of Cell Biology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|