1
|
Bryant JM, Blind RD. Signaling through non-membrane nuclear phosphoinositide binding proteins in human health and disease. J Lipid Res 2018; 60:299-311. [PMID: 30201631 DOI: 10.1194/jlr.r088518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositide membrane signaling is critical for normal physiology, playing well-known roles in diverse human pathologies. The basic mechanisms governing phosphoinositide signaling within the nucleus, however, have remained deeply enigmatic owing to their presence outside the nuclear membranes. Over 40% of nuclear phosphoinositides can exist in this non-membrane state, held soluble in the nucleoplasm by nuclear proteins that remain largely unidentified. Recently, two nuclear proteins responsible for solubilizing phosphoinositides were identified, steroidogenic factor-1 (SF-1; NR5A1) and liver receptor homolog-1 (LRH-1; NR5A2), along with two enzymes that directly remodel these phosphoinositide/protein complexes, phosphatase and tensin homolog (PTEN; MMAC) and inositol polyphosphate multikinase (IPMK; ipk2). These new footholds now permit the assignment of physiological functions for nuclear phosphoinositides in human diseases, such as endometriosis, nonalcoholic fatty liver disease/steatohepatitis, glioblastoma, and hepatocellular carcinoma. The unique nature of nuclear phosphoinositide signaling affords extraordinary clinical opportunities for new biomarkers, diagnostics, and therapeutics. Thus, phosphoinositide biology within the nucleus may represent the next generation of low-hanging fruit for new drugs, not unlike what has occurred for membrane phosphatidylinositol 3-kinase drug development. This review connects recent basic science discoveries in nuclear phosphoinositide signaling to clinical pathologies, with the hope of inspiring development of new therapies.
Collapse
Affiliation(s)
- Jamal M Bryant
- Departments of Pharmacology, Biochemistry, and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Raymond D Blind
- Departments of Pharmacology, Biochemistry, and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
2
|
Inositol polyphosphate multikinase (IPMK) in transcriptional regulation and nuclear inositide metabolism. Biochem Soc Trans 2016; 44:279-85. [PMID: 26862216 DOI: 10.1042/bst20150225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inositol polyphosphate multikinase (IPMK, ipk2, Arg(82), ArgRIII) is an inositide kinase with unusually flexible substrate specificity and the capacity to partake in many functional protein-protein interactions (PPIs). By merging these two activities, IPMK is able to execute gene regulatory functions that are very unique and only now beginning to be recognized. In this short review, we present a brief history of IPMK, describe the structural biology of the enzyme and highlight a few recent discoveries that have shed more light on the role IPMK plays in inositide metabolism, nuclear signalling and transcriptional regulation.
Collapse
|
3
|
Abstract
Inositol pyrophosphates are highly energetic inositol polyphosphate molecules present in organisms from slime molds and yeast to mammals. Distinct classes of enzymes generate different forms of inositol pyrophosphates. The biosynthesis of these substances principally involves phosphorylation of inositol hexakisphosphate (IP₆) to generate the pyrophosphate IP₇. Initial insights into functions of these substances derived primarily from yeast, which contain a single isoform of IP₆ kinase (yIP₆K), as well as from the slime mold Dictyostelium. Mammalian functions for inositol pyrophosphates have been investigated by using cell lines to establish roles in various processes, including insulin secretion and apoptosis. More recently, mice with targeted deletion of IP₆K isoforms as well as the related inositol polyphosphate multikinase (IPMK) have substantially enhanced our understanding of inositol polyphosphate physiology. Phenotypic alterations in mice lacking inositol hexakisphosphate kinase 1 (IP₆K1) reveal signaling roles for these molecules in insulin homeostasis, obesity, and immunological functions. Inositol pyrophosphates regulate these processes at least in part by inhibiting activation of the serine-threonine kinase Akt. Similar studies of IP₆K2 establish this enzyme as a cell death inducer acting by stimulating the proapoptotic protein p53. IPMK is responsible for generating the inositol phosphate IP₅ but also has phosphatidylinositol 3-kinase activity--that participates in activation of Akt. Here, we discuss recent advances in understanding the physiological functions of the inositol pyrophosphates based in substantial part on studies in mice with deletion of IP₆K isoforms. These findings highlight the interplay of IPMK and IP₆K in regulating growth factor and nutrient-mediated cell signaling.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
4
|
|
5
|
Affiliation(s)
- Brian Q Phillippy
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| |
Collapse
|
6
|
Stevenson-Paulik J, Odom AR, York JD. Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J Biol Chem 2002; 277:42711-8. [PMID: 12226109 DOI: 10.1074/jbc.m209112200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the high deposition of inositol hexakisphosphate (IP(6)), also known as phytate or phytin, in certain plant tissues little is known at the molecular level about the pathway(s) involved in its production. In budding yeast, IP(6) synthesis occurs through the sequential phosphorylation of I(1,4,5)P(3) by two gene products, Ipk2 and Ipk1, a IP(3)/IP(4) dual-specificity 6-/3-kinase and an inositol 1,3,4,5,6-pentakisphosphate 2-kinase, respectively. Here we report the identification and characterization of two inositol polyphosphate kinases from Arabidopsis thaliana, designated AtIpk2alpha and AtIpk2beta that are encoded by distinct genes on chromosome 5 and that are ubiquitously expressed in mature tissue. The primary structures of AtIpk2alpha and AtIpk2beta are 70% identical to each other and 12-18% identical to Ipk2s from yeast and mammals. Similar to yeast Ipk2, purified recombinant AtIpk2alpha and AtIpk2beta have 6-/3-kinase activities that sequentially phosphorylate I(1,4,5)P(3) to generate I(1,3,4,5,6)P(5) predominantly via an I(1,4,5,6)P(4) intermediate. While I(1,3,4,5)P(4) is a substrate for the plant Ipk2s, it does not appear to be a detectable product of the IP(3) reaction. Additionally, we report that the plant and yeast Ipk2 have a novel 5-kinase activity toward I(1,3,4,6)P(4) and I(1,2,3,4,6)P(5), which would allow these proteins to participate in at least two proposed pathways in the synthesis of IP(6). Heterologous expression of either plant isoform in an ipk2 mutant yeast strain restores IP(4) and IP(5) production in vivo and rescues its temperature-sensitive growth defects. Collectively our results provide a molecular basis for the synthesis of higher inositol polyphosphates in plants through multiple routes and indicate that the 6-/3-/5-kinase activities found in plant extracts may be encoded by the IPK2 gene class.
Collapse
Affiliation(s)
- Jill Stevenson-Paulik
- Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
7
|
Schell MJ, Letcher AJ, Brearley CA, Biber J, Murer H, Irvine RF. PiUS (Pi uptake stimulator) is an inositol hexakisphosphate kinase. FEBS Lett 1999; 461:169-72. [PMID: 10567691 DOI: 10.1016/s0014-5793(99)01462-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A cDNA cloned from its ability to stimulate inorganic phosphate uptake in Xenopus oocytes (phosphate uptake stimulator (PiUS)) shows significant similarity with inositol 1,4,5-trisphosphate 3-kinase. However, the expressed PiUS protein showed no detectable activity against inositol 1,4,5-trisphosphate, nor the 1,3,4,5- or 3,4,5, 6-isomers of inositol tetrakisphosphate, whereas it was very active in converting inositol hexakisphosphate (InsP(6)) to inositol heptakisphosphate (InsP(7)). PiUS is a member of a family of enzymes found in many eukaryotes and we discuss the implications of this for the functions of InsP(7) and for the evolution of inositol phosphate kinases.
Collapse
Affiliation(s)
- M J Schell
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
8
|
Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1389:222-72. [PMID: 9512651 DOI: 10.1016/s0005-2760(97)00158-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T Munnik
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
9
|
Maleszka R. Yeast genome and the inositol trisphosphate kinase controversy. Microbiology (Reading) 1997; 143:1781-1782. [DOI: 10.1099/00221287-143-6-1781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Wilson MP, Majerus PW. Characterization of a cDNA encoding Arabidopsis thaliana inositol 1,3,4-trisphosphate 5/6-kinase. Biochem Biophys Res Commun 1997; 232:678-81. [PMID: 9126335 DOI: 10.1006/bbrc.1997.6355] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have sequenced and recombinantly expressed as a fusion protein an expressed sequence tag clone (GB Z25963) from Arabidopsis thaliana that represents the plant homologue of human inositol 1,3,4 trisphosphate 5/6-kinase. The 1365 base pair clone has an open reading frame of 960 base pairs that predicts a protein product of 36.2 kDa, with a pI of 6.1. There is no polyadenylation signal or poly (A) tail, suggesting that additional 3' sequence remains to be identified. The amino acid sequence is 30% identical to the human protein. There are several short regions with particularly high degrees of identity between the human and Arabidopsis protein sequences, and these may be useful in identifying the active site of the enzyme. The expressed sequence tag was expressed as a fusion protein in Escherichia coli, with a carboxyl terminal deletion removing one region of high identity between the two proteins. The protein product of this construct was found to have inositol 1,3,4-trisphosphate 5/6-kinase activity. The Arabidopsis enzyme produced both inositol 1,3,4,6-tetrakisphosphate and inositol 1,3,4,5-tetrakisphosphate as products in a ratio of 1:3, in contrast with the human enzyme which gives a product ratio of 3:1.
Collapse
Affiliation(s)
- M P Wilson
- Division of Hematology-Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
11
|
Accumulation and Storage of Phosphate and Minerals. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF PLANTS 1997. [DOI: 10.1007/978-94-015-8909-3_12] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Shears SB. Inositol pentakis- and hexakisphosphate metabolism adds versatility to the actions of inositol polyphosphates. Novel effects on ion channels and protein traffic. Subcell Biochem 1996; 26:187-226. [PMID: 8744266 DOI: 10.1007/978-1-4613-0343-5_7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S B Shears
- Inositol Lipid Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
13
|
Affiliation(s)
- V Raboy
- USDA-ARS Range Weeds and Cereals Research Unit, Montana State University, Bozeman 59717, USA
| | | |
Collapse
|
14
|
Purification and some properties of inositol 1,3,4,5,6-Pentakisphosphate 2-kinase from immature soybean seeds. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46940-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Hughes PJ, Kirk CJ, Michell RH. Inhibition of porcine brain inositol 1,3,4-trisphosphate kinase by inositol polyphosphates, other polyol phosphates, polyanions and polycations. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1223:57-70. [PMID: 8061054 DOI: 10.1016/0167-4889(94)90073-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have partially purified an enzyme activity that phosphorylates inositol 1,3,4-trisphosphate from porcine brain, rat liver and bovine testis by FPLC chromatography on Q-Sepharose anion-exchange resin and Heparin-agarose. The products of this reaction were inositol 1,3,4,6-tetrakisphosphate and inositol 1,3,4,5-tetrakisphosphate. The same enzyme appears to be responsible for both 6-kinase and 5-kinase activities against inositol 1,3,4-trisphosphate (the 6-kinase: 5-kinase activity ratio is approximately 4 to 1), has a pH optimum of approximately 6.8 and requires Mg2+ for activity. The Km values of the enzyme for inositol 1,3,4-trisphosphate and ATP were approximately 0.5 microM and approximately 100 microM, respectively. Inositol 3,4,5,6-tetrakisphosphate, inositol 1,3,4,6-tetrakisphosphate and inositol 1,3,4,5-tetrakisphosphate are all competitive inhibitors with K(i) values of 0.4 microM, 3 microM and 5 microM, respectively, well within their likely intracellular concentration ranges: they inhibited 6-kinase and 5-kinase activities equally. 2,3-Bisphosphoglycerate and spermine were also competitive inhibitors, with K(i) values of 0.8 mM an 12 mM, respectively. Dextran sulphate was a non-competitive inhibitor with a Ki of approximately 15 microM, and poly-L-lysine (IC50 approximately 200 microM), polyvinylsulphate (IC50 approximately 250 microM) and heparin (IC50 approximately 2 mg/ml) also inhibited. Inhibition by these compounds suggests that inositol 3,4,5,6-tetrakisphosphate (and to a lesser extent inositol 1,3,4,5-tetrakisphosphate and other naturally occurring intracellular ions) may restrict the synthesis of inositol 1,3,4,6-tetrakisphosphate and hence regulate the rate of inositol penta- and hexakisphosphate synthesis from receptor-generated inositol phosphates.
Collapse
Affiliation(s)
- P J Hughes
- Centre for Clinical Research in Immunology and Signalling, University of Birmingham, UK
| | | | | |
Collapse
|
16
|
Hughes PJ, Michell RH. Novel inositol containing phospholipids and phosphates: their synthesis and possible new roles in cellular signalling. Curr Opin Neurobiol 1993; 3:383-400. [PMID: 8369629 DOI: 10.1016/0959-4388(93)90132-i] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Details of the widely employed PtdIns(4,5)P2 hydrolysis receptor-stimulated signalling pathway continue to be elucidated rapidly. However, it has recently become apparent that numerous other inositol lipids and phosphates are widespread and are likely to have important cellular functions. In this review, we focus particularly on three rapidly progressing areas: the synthesis and possible functions of 3-phosphorylated inositol lipids, particularly phosphatidylinositol 3,4,5-trisphosphate; the roles of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in coordinating intracellular Ca2+ mobilization and Ca2+ influx in stimulated cells; and the metabolism and possible functions of other inositol polyphosphates and of inositol polyphosphate pyrophosphates.
Collapse
Affiliation(s)
- P J Hughes
- School of Biochemistry, University of Birmingham, UK
| | | |
Collapse
|