1
|
Federico C, Brancato D, Bruno F, Galvano D, Caruso M, Saccone S. Robertsonian Translocation between Human Chromosomes 21 and 22, Inherited across Three Generations, without Any Phenotypic Effect. Genes (Basel) 2024; 15:722. [PMID: 38927657 PMCID: PMC11202415 DOI: 10.3390/genes15060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Chromosomal translocations can result in phenotypic effects of varying severity, depending on the position of the breakpoints and the rearrangement of genes within the interphase nucleus of the translocated chromosome regions. Balanced translocations are often asymptomatic phenotypically and are typically detected due to a decrease in fertility resulting from issues during meiosis. Robertsonian translocations are among the most common chromosomal abnormalities, often asymptomatic, and can persist in the population as a normal polymorphism. We serendipitously discovered a Robertsonian translocation between chromosome 21 and chromosome 22, which is inherited across three generations without any phenotypic effect, notably only in females. In situ hybridization with alpha-satellite DNAs revealed the presence of both centromeric sequences in the translocated chromosome. The reciprocal translocation resulted in a partial deletion of the short arm of both chromosomes 21, and 22, with the ribosomal RNA genes remaining present in the middle part of the new metacentric chromosome. The rearrangement did not cause alterations to the long arm. The spread of an asymptomatic heterozygous chromosomal polymorphism in a population can lead to mating between heterozygous individuals, potentially resulting in offspring with a homozygous chromosomal configuration for the anomaly they carry. This new karyotype may not produce phenotypic effects in the individual who presents it. The frequency of karyotypes with chromosomal rearrangements in asymptomatic heterozygous form in human populations is likely underestimated, and molecular karyotype by array Comparative Genomic Hybridization (array-CGH) analysis does not allow for the identification of this type of chromosomal anomaly, making classical cytogenetic analysis the preferred method for obtaining clear results on a karyotype carrying a balanced rearrangement.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Desiree Brancato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Daiana Galvano
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Mariella Caruso
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| |
Collapse
|
2
|
Poszewiecka B, Gogolewski K, Karolak JA, Stankiewicz P, Gambin A. PhaseDancer: a novel targeted assembler of segmental duplications unravels the complexity of the human chromosome 2 fusion going from 48 to 46 chromosomes in hominin evolution. Genome Biol 2023; 24:205. [PMID: 37697406 PMCID: PMC10496407 DOI: 10.1186/s13059-023-03022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
Resolving complex genomic regions rich in segmental duplications (SDs) is challenging due to the high error rate of long-read sequencing. Here, we describe a targeted approach with a novel genome assembler PhaseDancer that extends SD-rich regions of interest iteratively. We validate its robustness and efficiency using a golden-standard set of human BAC clones and in silico-generated SDs with predefined evolutionary scenarios. PhaseDancer enables extension of the incomplete complex SD-rich subtelomeric regions of Great Ape chromosomes orthologous to the human chromosome 2 (HSA2) fusion site, informing a model of HSA2 formation and unravelling the evolution of human and Great Ape genomes.
Collapse
Affiliation(s)
- Barbara Poszewiecka
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Krzysztof Gogolewski
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Justyna A. Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, 77030 Houston, TX USA
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, 77030 Houston, TX USA
| | - Anna Gambin
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Zhu M, Wang Y, Guan L, Lu C, Sun R, Chen Y, Shi J, Zhu Y, Wang D. A novel chromosome 2q24.3-q32.1 microdeletion in a fetus with multiple malformations. J Clin Lab Anal 2022; 36:e24602. [PMID: 35819063 PMCID: PMC9396185 DOI: 10.1002/jcla.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Terminal or interstitial deletion of chromosome 2q is rarely reported but clinically significant, which can result in developmental malformations and psychomotor retardation in humans. In the present study, we analyzed this deletion to comprehensively clarify the relationship between phenotype and microdeletion region. METHODS We collected clinical records of the fetus and summarized patient symptoms. Subsequently, genomic DNA was extracted from fetal tissue or peripheral blood collected from parents. In addition, whole-exome sequencing (WES) and copy number variation sequencing (CNV-seq) were performed. RESULTS The fetus presented a previously unreported interstitial deletion of 2q24.3-q32.1. WES and CNV-seq revealed a de novo 18.46 Mb deletion at 2q24.3-q32.1, a region involving 94 protein-coding genes, including HOXD13, MAP3K20, DLX1, DLX2, SCN2A, and SCN1A. The fetus had upper and lower limb malformations, including camptodactyly and syndactyly, along with congenital cardiac defects. CONCLUSION Herein, we report a fetus with a novel microdeletion of chromosome 2q24.3-q32.1, likely a heterozygous pathogenic variant. Haploinsufficiency of HOXD13 might be related to limb deformity in the fetus.
Collapse
Affiliation(s)
- Mianmian Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yihong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijie Guan
- Department of Ultrasound imaging, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyue Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Chen
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiamin Shi
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanying Zhu
- Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Giannuzzi G, Logsdon GA, Chatron N, Miller DE, Reversat J, Munson KM, Hoekzema K, Bonnet-Dupeyron MN, Rollat-Farnier PA, Baker CA, Sanlaville D, Eichler EE, Schluth-Bolard C, Reymond A. Alpha Satellite Insertion Close to an Ancestral Centromeric Region. Mol Biol Evol 2021; 38:5576-5587. [PMID: 34464971 PMCID: PMC8662618 DOI: 10.1093/molbev/msab244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human centromeres are mainly composed of alpha satellite DNA hierarchically organized as higher-order repeats (HORs). Alpha satellite dynamics is shown by sequence homogenization in centromeric arrays and by its transfer to other centromeric locations, for example, during the maturation of new centromeres. We identified during prenatal aneuploidy diagnosis by fluorescent in situ hybridization a de novo insertion of alpha satellite DNA from the centromere of chromosome 18 (D18Z1) into cytoband 15q26. Although bound by CENP-B, this locus did not acquire centromeric functionality as demonstrated by the lack of constriction and the absence of CENP-A binding. The insertion was associated with a 2.8-kbp deletion and likely occurred in the paternal germline. The site was enriched in long terminal repeats and located ∼10 Mbp from the location where a centromere was ancestrally seeded and became inactive in the common ancestor of humans and apes 20-25 million years ago. Long-read mapping to the T2T-CHM13 human genome assembly revealed that the insertion derives from a specific region of chromosome 18 centromeric 12-mer HOR array in which the monomer size follows a regular pattern. The rearrangement did not directly disrupt any gene or predicted regulatory element and did not alter the methylation status of the surrounding region, consistent with the absence of phenotypic consequences in the carrier. This case demonstrates a likely rare but new class of structural variation that we name "alpha satellite insertion." It also expands our knowledge on alphoid DNA dynamics and conveys the possibility that alphoid arrays can relocate near vestigial centromeric sites.
Collapse
Affiliation(s)
- Giuliana Giannuzzi
- Department of Biosciences, University of Milan, Milan, Italy
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Institut NeuroMyoGène, University of Lyon, Lyon, France
| | - Danny E Miller
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children’s Hospital, Seattle, WA
| | - Julie Reversat
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | | | - Pierre-Antoine Rollat-Farnier
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Cellule Bioinformatique, Hospices Civils de Lyon, Lyon, France
| | - Carl A Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Damien Sanlaville
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Institut NeuroMyoGène, University of Lyon, Lyon, France
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Caroline Schluth-Bolard
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Institut NeuroMyoGène, University of Lyon, Lyon, France
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Ling YH, Lin Z, Yuen KWY. Genetic and epigenetic effects on centromere establishment. Chromosoma 2019; 129:1-24. [PMID: 31781852 DOI: 10.1007/s00412-019-00727-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 01/19/2023]
Abstract
Endogenous chromosomes contain centromeres to direct equal chromosomal segregation in mitosis and meiosis. The location and function of existing centromeres is usually maintained through cell cycles and generations. Recent studies have investigated how the centromere-specific histone H3 variant CENP-A is assembled and replenished after DNA replication to epigenetically propagate the centromere identity. However, existing centromeres occasionally become inactivated, with or without change in underlying DNA sequences, or lost after chromosomal rearrangements, resulting in acentric chromosomes. New centromeres, known as neocentromeres, may form on ectopic, non-centromeric chromosomal regions to rescue acentric chromosomes from being lost, or form dicentric chromosomes if the original centromere is still active. In addition, de novo centromeres can form after chromatinization of purified DNA that is exogenously introduced into cells. Here, we review the phenomena of naturally occurring and experimentally induced new centromeres and summarize the genetic (DNA sequence) and epigenetic features of these new centromeres. We compare the characteristics of new and native centromeres to understand whether there are different requirements for centromere establishment and propagation. Based on our understanding of the mechanisms of new centromere formation, we discuss the perspectives of developing more stably segregating human artificial chromosomes to facilitate gene delivery in therapeutics and research.
Collapse
Affiliation(s)
- Yick Hin Ling
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Zhongyang Lin
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
6
|
Robicheau BM, Susko E, Harrigan AM, Snyder M. Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome. Genome Biol Evol 2018; 9:380-397. [PMID: 28204512 PMCID: PMC5381670 DOI: 10.1093/gbe/evw307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2016] [Indexed: 12/20/2022] Open
Abstract
Approximately 35% of the human genome can be identified as sequence devoid of a selected-effect function, and not derived from transposable elements or repeated sequences. We provide evidence supporting a known origin for a fraction of this sequence. We show that: 1) highly degraded, but near full length, ribosomal DNA (rDNA) units, including both 45S and Intergenic Spacer (IGS), can be found at multiple sites in the human genome on chromosomes without rDNA arrays, 2) that these rDNA sequences have a propensity for being centromere proximal, and 3) that sequence at all human functional rDNA array ends is divergent from canonical rDNA to the point that it is pseudogenic. We also show that small sequence strings of rDNA (from 45S + IGS) can be found distributed throughout the genome and are identifiable as an “rDNA-like signal”, representing 0.26% of the q-arm of HSA21 and ∼2% of the total sequence of other regions tested. The size of sequence strings found in the rDNA-like signal intergrade into the size of sequence strings that make up the full-length degrading rDNA units found scattered throughout the genome. We conclude that the displaced and degrading rDNA sequences are likely of a similar origin but represent different stages in their evolution towards random sequence. Collectively, our data suggests that over vast evolutionary time, rDNA arrays contribute to the production of junk DNA. The concept that the production of rDNA pseudogenes is a by-product of concerted evolution represents a previously under-appreciated process; we demonstrate here its importance.
Collapse
Affiliation(s)
- Brent M Robicheau
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Edward Susko
- Center for Comparative Genomics and Evolutionary Bioinformatics, Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Amye M Harrigan
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Marlene Snyder
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
7
|
Chiatante G, Giannuzzi G, Calabrese FM, Eichler EE, Ventura M. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region. Mol Biol Evol 2017; 34:1669-1681. [PMID: 28333343 DOI: 10.1093/molbev/msx108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process.
Collapse
Affiliation(s)
- Giorgia Chiatante
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.,Department of Biology, Anthropology Laboratories University of Florence, Florence, Italy
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Mario Ventura
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
8
|
Zhao H, Zeng Z, Koo DH, Gill BS, Birchler JA, Jiang J. Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3. Chromosome Res 2017; 25:299-311. [PMID: 28831743 DOI: 10.1007/s10577-017-9564-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023]
Abstract
Centromeres can arise de novo from non-centromeric regions, which are often called "neocentromeres." Neocentromere formation provides the best evidence for the concept that centromere function is not determined by the underlying DNA sequences, but controlled by poorly understood epigenetic mechanisms. Numerous neocentromeres have been reported in several plant and animal species. However, it has been elusive how and why a specific chromosomal region is chosen to be a new centromere during the neocentromere activation events. We report recurrent establishment of neocentromeres in a pericentromeric region of chromosome 3 in maize (Zea mays). This latent region is located in the short arm and is only 2 Mb away from the centromere (Cen3) of chromosome 3. At least three independent neocentromere activation events, which were likely induced by different mechanisms, occurred within this latent region. We mapped the binding domains of CENH3, the centromere-specific H3 histone variant, of the three neocentromeres and analyzed the genomic and epigenomic features associated with Cen3, the de novo centromeres and an inactivated centromere derived from an ancestral chromosome. Our results indicate that lack of genes and transcription and a relatively high level of DNA methylation in this pericentromeric region may provide a favorable chromatin environment for neocentromere activation.
Collapse
Affiliation(s)
- Hainan Zhao
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zixian Zeng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
9
|
Giannuzzi G, Migliavacca E, Reymond A. Novel H3K4me3 marks are enriched at human- and chimpanzee-specific cytogenetic structures. Genome Res 2014; 24:1455-68. [PMID: 24916972 PMCID: PMC4158755 DOI: 10.1101/gr.167742.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human and chimpanzee genomes are 98.8% identical within comparable sequences. However, they differ structurally in nine pericentric inversions, one fusion that originated human chromosome 2, and content and localization of heterochromatin and lineage-specific segmental duplications. The possible functional consequences of these cytogenetic and structural differences are not fully understood and their possible involvement in speciation remains unclear. We show that subtelomeric regions—regions that have a species-specific organization, are more divergent in sequence, and are enriched in genes and recombination hotspots—are significantly enriched for species-specific histone modifications that decorate transcription start sites in different tissues in both human and chimpanzee. The human lineage-specific chromosome 2 fusion point and ancestral centromere locus as well as chromosome 1 and 18 pericentric inversion breakpoints showed enrichment of human-specific H3K4me3 peaks in the prefrontal cortex. Our results reveal an association between plastic regions and potential novel regulatory elements.
Collapse
Affiliation(s)
- Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Eugenia Migliavacca
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
10
|
The evolutionary life cycle of the resilient centromere. Chromosoma 2012; 121:327-40. [PMID: 22527114 DOI: 10.1007/s00412-012-0369-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 12/13/2022]
Abstract
The centromere is a chromosomal structure that is essential for the accurate segregation of replicated eukaryotic chromosomes to daughter cells. In most centromeres, the underlying DNA is principally made up of repetitive DNA elements, such as tandemly repeated satellite DNA and retrotransposable elements. Paradoxically, for such an essential genomic region, the DNA is rapidly evolving both within and between species. In this review, we show that the centromere locus is a resilient structure that can undergo evolutionary cycles of birth, growth, maturity, death and resurrection. The birth phase is highlighted by examples in humans and other organisms where centromere DNA deletions or chromosome rearrangements can trigger the epigenetic assembly of neocentromeres onto genomic sites without typical features of centromere DNA. In addition, functional centromeres can be generated in the laboratory using various methodologies. Recent mapping of the foundation centromere mark, the histone H3 variant CENP-A, onto near-complete genomes has uncovered examples of new centromeres which have not accumulated centromere repeat DNA. During the growth period of the centromere, repeat DNA begins to appear at some, but not all, loci. The maturity stage is characterised by centromere repeat accumulation, expansions and contractions and the rapid evolution of the centromere DNA between chromosomes of the same species and between species. This stage provides inherent centromere stability, facilitated by repression of gene activity and meiotic recombination at and around the centromeres. Death to a centromere can result from genomic instability precipitating rearrangements, deletions, accumulation of mutations and the loss of essential centromere binding proteins. Surprisingly, ancestral centromeres can undergo resurrection either in the field or in the laboratory, via as yet poorly understood mechanisms. The underlying principle for the preservation of a centromeric evolutionary life cycle is to provide resilience and perpetuity for the all-important structure and function of the centromere.
Collapse
|
11
|
Suto Y, Hirai M, Akiyama M, Suzuki T, Sugiura N. Sensitive and Rapid Detection of Centromeric Alphoid DNA in Human Metaphase Chromosomes by PNA Fluorescence In Situ Hybridization and Its Application to Biological Radiation Dosimetry. CYTOLOGIA 2012. [DOI: 10.1508/cytologia.77.261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yumiko Suto
- Department of Radiation Dosimetry, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences
| | - Momoki Hirai
- Department of Radiation Dosimetry, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences
| | - Miho Akiyama
- Department of Radiation Dosimetry, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences
| | - Toshikazu Suzuki
- Department of Radiation Dosimetry, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences
| | - Nobuyuki Sugiura
- Department of Radiation Dosimetry, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences
| |
Collapse
|
12
|
Karyotypic evolution in squamate reptiles: comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae, Serpentes). Chromosome Res 2009; 17:975-86. [PMID: 19937109 DOI: 10.1007/s10577-009-9101-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/01/2009] [Indexed: 10/20/2022]
Abstract
The butterfly lizard (Leiolepis reevesii rubritaeniata) has the diploid chromosome number of 2n = 36, comprising two distinctive components, macrochromosomes and microchromosomes. To clarify the conserved linkage homology between lizard and snake chromosomes and to delineate the process of karyotypic evolution in Squamata, we constructed a cytogenetic map of L. reevesii rubritaeniata with 54 functional genes and compared it with that of the Japanese four-striped rat snake (E. quadrivirgata, 2n = 36). Six pairs of the lizard macrochromosomes were homologous to eight pairs of the snake macrochromosomes. The lizard chromosomes 1, 2, 4, and 6 corresponded to the snake chromosomes 1, 2, 3, and Z, respectively. LRE3p and LRE3q showed the homology with EQU5 and EQU4, respectively, and LRE5p and LRE5q corresponded to EQU7 and EQU6, respectively. These results suggest that the genetic linkages have been highly conserved between the two species and that their karyotypic difference might be caused by the telomere-to-telomere fusion events followed by inactivation of one of two centromeres on the derived dicentric chromosomes in the lineage of L. reevesii rubritaeniata or the centric fission events of the bi-armed macrochromosomes and subsequent centromere repositioning in the lineage of E. quadrivirgata. The homology with L. reevesii rubritaeniata microchromosomes were also identified in the distal regions of EQU1p and 1q, indicating the occurrence of telomere-to-telomere fusions of microchromosomes to the p and q arms of EQU1.
Collapse
|
13
|
Capozzi O, Purgato S, D'Addabbo P, Archidiacono N, Battaglia P, Baroncini A, Capucci A, Stanyon R, Della Valle G, Rocchi M. Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago. Genome Res 2009; 19:778-84. [PMID: 19411601 DOI: 10.1101/gr.085688.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular cytogenetics provides a visual, pictorial record of the tree of life, and in this respect the fusion origin of human chromosome 2 is a well-known paradigmatic example. Here we report on a variant chromosome 6 in which the centromere jumped to 6p22.1. ChIP-chip experiments with antibodies against the centromeric proteins CENP-A and CENP-C exactly defined the neocentromere as lying at chr6:26,407-26,491 kb. We investigated in detail the evolutionary history of chromosome 6 in primates and found that the primate ancestor had a homologous chromosome with the same marker order, but with the centromere located at 6p22.1. Sometime between 17 and 23 million years ago (Mya), in the common ancestor of humans and apes, the centromere of chromosome 6 moved from 6p22.1 to its current location. The neocentromere we discovered, consequently, has jumped back to the ancestral position, where a latent centromere-forming potentiality persisted for at least 17 Myr. Because all living organisms form a tree of life, as first conceived by Darwin, evolutionary perspectives can provide compelling underlying explicative grounds for contemporary genomic phenomena.
Collapse
Affiliation(s)
- Oronzo Capozzi
- Department of Genetics and Microbiology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Goidts V, Cooper DN, Armengol L, Schempp W, Conroy J, Estivill X, Nowak N, Hameister H, Kehrer-Sawatzki H. Complex patterns of copy number variation at sites of segmental duplications: an important category of structural variation in the human genome. Hum Genet 2006; 120:270-84. [PMID: 16838144 DOI: 10.1007/s00439-006-0217-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
The structural diversity of the human genome is much higher than previously assumed although its full extent remains unknown. To investigate the association between segmental duplications that display constitutive copy number differences (CNDs) between humans and the great apes and those which exhibit polymorphic copy number variations (CNVs) between humans, we analysed a BAC array enriched with segmental duplications displaying such CNDs. This study documents for the first time that in addition to human-specific gains common to all humans, these duplication clusters (DCs) also exhibit polymorphic CNVs > 40 kb. Segmental duplication is known to have been a frequent event during human genome evolution. Importantly, among the CNV-associated genes identified here, those involved in transcriptional regulation were found to be significantly overrepresented. Complex patterns of variation were evident at sites of DCs, manifesting as inter-individual differentially sized copy number alterations at the same genomic loci. Thus, CNVs associated with segmental duplications do not simply represent insertion/deletion polymorphisms, but rather constitute a wide variety of rearrangements involving differential amplification and partial gains and losses with high inter-individual variability. Although the number of CNVs was not found to differ between Africans and Caucasians/Asians, the average number of variant patterns per locus was significantly lower in Africans. Thus, complex variation patterns characterizing segmental duplications result from relatively recent genomic rearrangements. The high number of these rearrangements, some of which are potentially recurrent, together with differences in population size and expansion dynamics, may account for the greater diversity of CNV in Caucasians/Asians as compared with Africans.
Collapse
Affiliation(s)
- Violaine Goidts
- Department of Human Genetics, University of Ulm, Albert Einstein Allee 11, 89081, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Carbone L, Nergadze SG, Magnani E, Misceo D, Francesca Cardone M, Roberto R, Bertoni L, Attolini C, Francesca Piras M, de Jong P, Raudsepp T, Chowdhary BP, Guérin G, Archidiacono N, Rocchi M, Giulotto E. Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 2006; 87:777-82. [PMID: 16413164 DOI: 10.1016/j.ygeno.2005.11.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 11/22/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Centromere repositioning (CR) is a recently discovered biological phenomenon consisting of the emergence of a new centromere along a chromosome and the inactivation of the old one. After a CR, the primary constriction and the centromeric function are localized in a new position while the order of physical markers on the chromosome remains unchanged. These events profoundly affect chromosomal architecture. Since horses, asses, and zebras, whose evolutionary divergence is relatively recent, show remarkable morphological similarity and capacity to interbreed despite their chromosomes differing considerably, we investigated the role of CR in the karyotype evolution of the genus Equus. Using appropriate panels of BAC clones in FISH experiments, we compared the centromere position and marker order arrangement among orthologous chromosomes of Burchelli's zebra (Equus burchelli), donkey (Equus asinus), and horse (Equus caballus). Surprisingly, at least eight CRs took place during the evolution of this genus. Even more surprisingly, five cases of CR have occurred in the donkey after its divergence from zebra, that is, in a very short evolutionary time (approximately 1 million years). These findings suggest that in some species the CR phenomenon could have played an important role in karyotype shaping, with potential consequences on population dynamics and speciation.
Collapse
Affiliation(s)
- Lucia Carbone
- Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hahn Y, Bera TK, Pastan IH, Lee B. Duplication and extensive remodeling shaped POTE family genes encoding proteins containing ankyrin repeat and coiled coil domains. Gene 2005; 366:238-45. [PMID: 16364570 DOI: 10.1016/j.gene.2005.07.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 07/12/2005] [Accepted: 07/20/2005] [Indexed: 11/25/2022]
Abstract
The POTE family genes encode a highly homologous group of primate-specific proteins that contain ankyrin repeats and coiled coil domains. At least 13 paralogous POTE family genes are found on 8 human chromosomes (2, 8, 13, 14, 15, 18, 21 and 22), which can be sorted into 3 groups based on sequence similarity. We identified by a database search a group of additional human ankyrin repeat domain proteins, of which ANKRD26 and ANKRD30A are the best characterized; these are more distant homologs of POTE family proteins. A comprehensive comparison of the genomic organization indicates that ANKRD26 has the genomic structure of the possible ancestor of ANKRD30A and all POTE family genes. Extensive remodeling involving segmental loss and internal duplication appears to have reshaped the ANKRD30A and POTE family genes after the primal duplication of the ancestor gene. We also identified a mouse homolog of human ANKRD26, but failed to find a mouse homolog that bears the structural characteristics of any of the POTE family of proteins. The mouse Ankrd26 may serve as a useful model for the study of the function of human ANKRD26, ANKRD30A and POTE family proteins.
Collapse
Affiliation(s)
- Yoonsoo Hahn
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, MSC 4264, 37 Convent Drive Room 5120A, Bethesda, MD 20892-4264, USA
| | | | | | | |
Collapse
|
17
|
Betz JL, Behairy AS, Rabionet P, Tirtorahardjo B, Moore MW, Cotter PD. Acquired inv(9): what is its significance? ACTA ACUST UNITED AC 2005; 160:76-8. [PMID: 15949575 DOI: 10.1016/j.cancergencyto.2004.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 11/26/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
Pericentric inversion of the heterochromatic region of chromosome 9 [inv(9)] is a common heteromorphism in the general population. It is presumed familial as there are no reports of de novo inv(9) chromosomes in constitutional karyotypes. We report 2 cases of acquired inv(9) chromosomes; 1 patient with acute myeloid leukemia, 46,XY,inv(9)(p11q13)[11]/46,XY[9], and a second with severe anemia, 46,XX,inv(9)(p11q13)[14]/46,XX[6]. The acquired nature of the inv(9) was confirmed by constitutional karyotyping and/or molecular analysis. The inv(9) in these patients may be a de novo inversion that cytogenetically mimics the constitutional inv(9) heteromorphism. Alternatively, it may be the result of neocentromere activation in 9q due to epigenetic events associated with the disease in these patients that results in a metacentric chromosome similarly mimicking the constitutional inv(9). One previous report of an acquired inv(9) was in a patient with essential thrombocythemia. The differences in clinical presentation may represent different underlying mechanisms generating the inv(9). The significance of an acquired inv(9) is unknown and will require reporting of additional cases.
Collapse
Affiliation(s)
- Jaime L Betz
- Division of Genetics, US Labs Inc., Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ballerini P, Busson M, Fasola S, van den Akker J, Lapillonne H, Romana SP, Marynen P, Bernard OA, Landman-Parker J, Berger R. NUP214-ABL1 amplification in t(5;14)/HOX11L2-positive ALL present with several forms and may have a prognostic significance. Leukemia 2005; 19:468-70. [PMID: 15674415 DOI: 10.1038/sj.leu.2403654] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Kirsch S, Weiss B, Miner TL, Waterston RH, Clark RA, Eichler EE, Münch C, Schempp W, Rappold G. Interchromosomal segmental duplications of the pericentromeric region on the human Y chromosome. Genome Res 2005; 15:195-204. [PMID: 15653831 PMCID: PMC546517 DOI: 10.1101/gr.3302705] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Basic medical research critically depends on the finished human genome sequence. Two types of gaps are known to exist in the human genome: those associated with heterochromatic sequences and those embedded within euchromatin. We identified and analyzed a euchromatic island within the pericentromeric repeats of the human Y chromosome. This 450-kb island, although not recalcitrant to subcloning and present in 100 tested males from different ethnic origins, was not detected and is not contained within the published Y chromosomal sequence. The entire 450-kb interval is almost completely duplicated and consists predominantly of interchromosomal rather than intrachromosomal duplication events that are usually prevalent on the Y chromosome. We defined the modular structure of this interval and detected a total of 128 underlying pairwise alignments (>/=90% and >/=1 kb in length) to various autosomal pericentromeric and ancestral pericentromeric regions. We also analyzed the putative gene content of this region by a combination of in silico gene prediction and paralogy analysis. We can show that even in this exceptionally duplicated region of the Y chromosome, eight putative genes with open reading frames reside, including fusion transcripts formed by the splicing of exons from two different duplication modules as well as members of the homeobox gene family DUX.
Collapse
Affiliation(s)
- Stefan Kirsch
- Institute of Human Genetics, University of Heidelberg, INF 366, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
She X, Horvath JE, Jiang Z, Liu G, Furey TS, Christ L, Clark R, Graves T, Gulden CL, Alkan C, Bailey JA, Sahinalp C, Rocchi M, Haussler D, Wilson RK, Miller W, Schwartz S, Eichler EE. The structure and evolution of centromeric transition regions within the human genome. Nature 2004; 430:857-64. [PMID: 15318213 DOI: 10.1038/nature02806] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Accepted: 07/02/2004] [Indexed: 11/09/2022]
Abstract
An understanding of how centromeric transition regions are organized is a critical aspect of chromosome structure and function; however, the sequence context of these regions has been difficult to resolve on the basis of the draft genome sequence. We present a detailed analysis of the structure and assembly of all human pericentromeric regions (5 megabases). Most chromosome arms (35 out of 43) show a gradient of dwindling transcriptional diversity accompanied by an increasing number of interchromosomal duplications in proximity to the centromere. At least 30% of the centromeric transition region structure originates from euchromatic gene-containing segments of DNA that were duplicatively transposed towards pericentromeric regions at a rate of six-seven events per million years during primate evolution. This process has led to the formation of a minimum of 28 new transcripts by exon exaptation and exon shuffling, many of which are primarily expressed in the testis. The distribution of these duplicated segments is nonrandom among pericentromeric regions, suggesting that some regions have served as preferential acceptors of euchromatic DNA.
Collapse
Affiliation(s)
- Xinwei She
- Department of Genetics, Center for Computational Genomics and the Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shestakova EA, Mansuroglu Z, Mokrani H, Ghinea N, Bonnefoy E. Transcription factor YY1 associates with pericentromeric gamma-satellite DNA in cycling but not in quiescent (G0) cells. Nucleic Acids Res 2004; 32:4390-9. [PMID: 15316102 PMCID: PMC514366 DOI: 10.1093/nar/gkh737] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pericentromeric gamma-satellite DNA is organized in constitutive heterochromatin structures. It comprises a 234 bp sequence repeated several thousands times surrounding the centromeric sequence of all murine chromosomes. Potential binding sites for transcription factor Yin Yang 1 (YY1), a repressor or activator of several cellular and viral genes, are present in pericentromeric gamma-satellite DNA. Using gel retardation and chromatin immunoprecipitation, we demonstrate in this work that YY1 specifically interacts in vitro and in vivo with gamma-satellite DNA. Using immunoFISH and confocal microscopy we show that YY1 specifically co-localizes with pericentromeric gamma-satellite DNA clusters organized in constitutive heterochromatin in murine L929 and 3T3 fibroblasts cell lines. Immunoelectron microscopy experiments further confirmed YY1 localization in heterochromatic areas. Overall, our results demonstrate for the first time that a fraction of YY1 is directly associated with constitutive heterochromatin structures. This association appears physiologically relevant since the association of YY1 with pericentromeric gamma-satellite DNA observed in cycling 3T3 fibroblasts strongly diminished in quiescent (G0) 3T3 fibroblasts. We discuss the implications of these results in the context of heterochromatin formation as well as with regard to the YY1-induced repression of euchromatic genes.
Collapse
Affiliation(s)
- Elena A Shestakova
- Régulation de la Transcription et Maladies Génétiques, CNRS UPR2228, IFR-95, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris cedex 06, France
| | | | | | | | | |
Collapse
|
22
|
Ventura M, Mudge JM, Palumbo V, Burn S, Blennow E, Pierluigi M, Giorda R, Zuffardi O, Archidiacono N, Jackson MS, Rocchi M. Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 2003; 13:2059-68. [PMID: 12915487 PMCID: PMC403685 DOI: 10.1101/gr.1155103] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The existence of latent centromeres has been proposed as a possible explanation for the ectopic emergence of neocentromeres in humans. This hypothesis predicts an association between the position of neocentromeres and the position of ancient centromeres inactivated during karyotypic evolution. Human chromosomal region 15q24-26 is one of several hotspots where multiple cases of neocentromere emergence have been reported, and it harbors a high density of chromosome-specific duplicons, rearrangements of which have been implicated as a susceptibility factor for panic and phobic disorders with joint laxity. We investigated the evolutionary history of this region in primates and found that it contains the site of an ancestral centromere which became inactivated about 25 million years ago, after great apes/Old World monkeys diverged. This inactivation has followed a noncentromeric chromosomal fission of an ancestral chromosome which gave rise to phylogenetic chromosomes XIV and XV in human and great apes. Detailed mapping of the ancient centromere and two neocentromeres in 15q24-26 has established that the neocentromere domains map approximately 8 Mb proximal and 1.5 Mb distal of the ancestral centromeric region, but that all three map within 500 kb of duplicons, copies of which flank the centromere in Old World Monkey species. This suggests that the association between neocentromere and ancestral centromere position on this chromosome may be due to the persistence of recombinogenic duplications accrued within the ancient pericentromere, rather than the retention of "centromere-competent" sequences per se. The high frequency of neocentromere emergence in the 15q24-26 region and the high density of clinically important duplicons are, therefore, understandable in the light of the evolutionary history of this region.
Collapse
Affiliation(s)
- Mario Ventura
- Sezione di Genetica-DAPEG, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bera TK, Zimonjic DB, Popescu NC, Sathyanarayana BK, Kumar V, Lee B, Pastan I. POTE, a highly homologous gene family located on numerous chromosomes and expressed in prostate, ovary, testis, placenta, and prostate cancer. Proc Natl Acad Sci U S A 2002; 99:16975-80. [PMID: 12475935 PMCID: PMC139254 DOI: 10.1073/pnas.262655399] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2002] [Indexed: 01/13/2023] Open
Abstract
We have identified a gene located on chromosomes 21 that is expressed in normal and neoplastic prostate, and in normal testis, ovary, and placenta. We name this gene POTE (expressed in prostate, ovary, testis, and placenta). The POTE gene has 11 exons and 10 introns and spans approximately equal 32 kb of chromosome 21q11.2 region. The 1.83-kb mRNA of POTE encodes a protein of 66 kDa. Ten paralogs of the gene have been found dispersed among eight different chromosomes (2, 8, 13, 14, 15, 18, 21, and 22) with preservation of ORFs and splice junctions. The synonymous:nonsynonymous ratio indicates that the genes were duplicated rather recently but are diverging at a rate faster than the average for other paralogous genes. In prostate and in testis, at least five different paralogs are expressed. In situ hybridization shows that POTE is expressed in basal and terminal cells of normal prostate epithelium. It is also expressed in some prostate cancers and in the LnCAP prostate cancer cell line. The POTE protein contains seven ankyrin repeats between amino acids 140 and 380. Expression of POTE in prostate cancer and its undetectable expression in normal essential tissues make POTE a candidate for the immunotherapy of prostate cancer. The existence of a large number of closely related but rapidly diverging members, their location on multiple chromosomes and their limited expression pattern suggest an important role for the POTE gene family in reproductive processes.
Collapse
Affiliation(s)
- Tapan K Bera
- Laboratories of Molecular Biology and Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Martin CL, Wong A, Gross A, Chung J, Fantes JA, Ledbetter DH. The evolutionary origin of human subtelomeric homologies--or where the ends begin. Am J Hum Genet 2002; 70:972-84. [PMID: 11875757 PMCID: PMC379127 DOI: 10.1086/339768] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2001] [Accepted: 01/17/2002] [Indexed: 11/04/2022] Open
Abstract
The subtelomeric regions of human chromosomes are comprised of sequence homologies shared between distinct subsets of chromosomes. In the course of developing a set of unique human telomere clones, we identified many clones containing such shared homologies, characterized by the presence of cross-hybridization signals on one or more telomeres in a fluorescence in situ hybridization (FISH) assay. We studied the evolutionary origin of seven subtelomeric clones by performing comparative FISH analysis on a primate panel that included great apes and Old World monkeys. All clones tested showed a single hybridization site in Old World monkeys that corresponded to one of the orthologous human sites, thus indicating the ancestral origin. The timing of the duplication events varied among the subtelomeric regions, from approximately 5 to approximately 25 million years ago. To examine the origin of and mechanism for one of these subtelomeric duplications, we compared the sequence derived from human 2q13--an ancestral fusion site of two great ape telomeric regions--with its paralogous subtelomeric sequences at 9p and 22q. These paralogous regions share large continuous homologies and contain three genes: RABL2B, forkhead box D4, and COBW-like. Our results provide further evidence for subtelomeric-mediated genomic duplication and demonstrate that these segmental duplications are most likely the result of ancestral unbalanced translocations that have been fixed in the genome during recent primate evolution.
Collapse
Affiliation(s)
- Christa Lese Martin
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - Andrew Wong
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - Alyssa Gross
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - June Chung
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - Judy A. Fantes
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - David H. Ledbetter
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| |
Collapse
|
25
|
Abstract
Evolutionary centromere repositioning is a paradox we have recently discovered while studying the conservation of the phylogenetic chromosome IX in primates. Two explanations were proposed: a conservative hypothesis assuming sequential pericentric inversions, and a more challenging assumption involving centromere emergence during evolution. The complex evolutionary history showed by chromosome IX did not allow us to clearly distinguish between these two hypotheses. Here we report comparative studies of chromosome X in two lemur species: the black lemur and the ringtailed lemur. The X chromosome is telocentric in the black lemur and almost metacentric in the ringtailed lemur. The marker order along these chromosomes, however, was found to be perfectly colinear with humans. Our data unequivocally point to centromere emergence as the most likely explanation of centromere repositioning.
Collapse
Affiliation(s)
- M Ventura
- Sezione di Genetica-DAPEG, 70126 Bari, Italy
| | | | | |
Collapse
|
26
|
Bassi C, Magnani I, Sacchi N, Saccone S, Ventura A, Rocchi M, Marozzi A, Ginelli E, Meneveri R. Molecular structure and evolution of DNA sequences located at the alpha satellite boundary of chromosome 20. Gene 2000; 256:43-50. [PMID: 11054534 DOI: 10.1016/s0378-1119(00)00354-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated and characterised one PAC clone (dJ233C1) containing a linkage between alphoid and non-alphoid DNA. The non-alphoid DNA was found to map at the pericentromeric region of chromosome 20, both on p and q sides, and to contain homologies with one contig (ctg176, Sanger Centre), also located in the same chromosome region. At variance with the chromosome specificity shown by the majority of non-alphoid DNA, a subset of alphoid repeats derived from the PAC yielded FISH hybridisation signals located at the centromeric region of several human chromosomes, belonging to three different suprachromosomal families. The evolutionary conservation of this boundary region was investigated by comparative FISH experiments on chromosomes from great apes. The non-alphoid DNA was found to have undergone events of expansion and transposition to different pericentromeric regions of great apes chromosomes. Alphoid sequences revealed a very wide distribution of FISH signals in the great apes. The pattern was substantially discordant with the data available in the literature, which is essentially derived from the central alphoid subset. These results add further support to the emerging opinion that the pericentromeric regions are high plastics, and that the alpha satellite junctions do not share the evolutionary history with the main subsets.
Collapse
Affiliation(s)
- C Bassi
- Dipartimento di Biologia e Genetica per le Scienze Mediche, Università di Milano, 20133, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rowe AG, Abrams L, Qu Y, Chen E, Cotter PD. Tetrasomy 15q25?qter: Cytogenetic and molecular characterization of an analphoid supernumerary marker chromosome. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1096-8628(20000828)93:5<393::aid-ajmg9>3.0.co;2-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Abstract
Primate pericentromeric regions recently have been shown to exhibit extraordinary evolutionary plasticity. In this paper we report an additional peculiar feature of these regions that we discovered while analyzing, by FISH, the evolutionary conservation of primate phylogenetic chromosome IX. If the position of the centromere is not taken into account, a relatively small number of rearrangements must be invoked to account for interspecific differences. Conversely, if the centromere is included, a paradox emerges: The position of the centromere seems to have undergone, in some species, an evolutionary history independent from the surrounding markers. A significant number of additional rearrangements must be proposed to reconcile the order of the markers with centromere position. Alternatively, the evolutionary emergence of neocentromeres can be postulated.
Collapse
|
29
|
Watson KR. Man's Closeness to the Apes Argues for a Soul. Linacre Q 1999. [DOI: 10.1080/20508549.1999.11877557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Kathryn R. Watson
- Loyola University of Los Angeles in 1973, with a B.S. degree in biology
| |
Collapse
|
30
|
Rivera H, Gutiérrez-Angulo M, González-Garcia JR. Chromosome 9qh inversions may not be true inversions. Hum Genet 1999; 105:181-4. [PMID: 10480378 DOI: 10.1007/s004399900072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Samonte RV, Ramesh KH, Verma RS. Origin of human chromosome 2 revisited. J Genet 1998. [DOI: 10.1007/bf02933040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Tyler-Smith C, Corish P, Burns E. Neocentromeres, the Y chromosome and centromere evolution. Chromosome Res 1998; 6:65-7. [PMID: 9510513 DOI: 10.1023/a:1017102926419] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- C Tyler-Smith
- CRC Chromosome Molecular Biology Group, Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
33
|
Zimonjic DB, Kelley MJ, Rubin JS, Aaronson SA, Popescu NC. Fluorescence in situ hybridization analysis of keratinocyte growth factor gene amplification and dispersion in evolution of great apes and humans. Proc Natl Acad Sci U S A 1997; 94:11461-5. [PMID: 9326632 PMCID: PMC23506 DOI: 10.1073/pnas.94.21.11461] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor family. Portions of the gene encoding KGF were amplified during primate evolution and are present in multiple nonprocessed copies in the human genome. Nucleotide analysis of a representative sampling of these KGF-like sequences indicated that they were at least 95% identical to corresponding regions of the KGF gene. To localize these sequences to specific chromosomal sites in human and higher primates, we used fluorescence in situ hybridization. In human, using a cosmid probe encoding KGF exon 1, we assigned the location of the KGF gene to chromosome 15q15-21.1. In addition, copies of KGF-like sequences hybridizing only with a cosmid probe encoding exons 2 and 3 were localized to dispersed sites on chromosome 2q21, 9p11, 9q12-13, 18p11, 18q11, 21q11, and 21q21.1. The distribution of KGF-like sequences suggests a role for alphoid DNA in their amplification and dispersion. In chimpanzee, KGF-like sequences were observed at five chromosomal sites, which were each homologous to sites in human, while in gorilla, a subset of four of these homologous sites was identified; in orangutan two sites were identified, while gibbon exhibited only a single site. The chromosomal localization of KGF sequences in human and great ape genomes indicates that amplification and dispersion occurred in multiple discrete steps, with initial KGF gene duplication and dispersion taking place in gibbon and involving loci corresponding to human chromosomes 15 and 21. These findings support the concept of a closer evolutionary relationship of human and chimpanzee and a possible selective pressure for such dispersion during the evolution of higher primates.
Collapse
Affiliation(s)
- D B Zimonjic
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
34
|
du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KH. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 1997; 16:144-53. [PMID: 9171825 DOI: 10.1038/ng0697-144] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We recently described a human marker chromosome containing a functional neo-centromere that binds anti-centromere antibodies, but is devoid of centromeric alpha-satellite repeats and derived from a hitherto non-centromeric region of chromosome 10q25. Chromosome walking using cloned single-copy DNA from this region enabled us to identify the antibody-binding domain of this centromere. Extensive restriction mapping indicates that this domain has an identical genomic organization to the corresponding normal chromosomal region, suggesting a mechanism for the origin of this centromere through the activation of a latent centromere that exists within 10q25.
Collapse
Affiliation(s)
- D du Sart
- Murdoch Institute for Research into Birth Defects, Royal Children's Hospital, Parkville, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Fluorescent in situ hybridization technology is one of the most exciting and versatile research tools to be developed in recent years. It has enabled research to progress at a phenomenal rate in diverse areas of basic research as well as in clinical medicine. Fluorescent in situ hybridization has applications in physical mapping, the study of nuclear architecture and chromatin packaging, and the investigation of fundamental principles of biology such as DNA replication, RNA processing, gene amplification, gene integration and chromatin elimination. This review highlights some of these areas and provides source material for the reader who seeks more information on a specific field.
Collapse
Affiliation(s)
- H H Heng
- Department of Biology, York University, Downsview, Ontario, Canada
| | | | | |
Collapse
|
36
|
Maraschio P, Tupler R, Rossi E, Barbierato L, Uccellatore F, Rocchi M, Zuffardi O, Fraccaro M. A novel mechanism for the origin of supernumerary marker chromosomes. Hum Genet 1996; 97:382-6. [PMID: 8786088 DOI: 10.1007/bf02185778] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A ring chromosome 3 and a 47th chromosome formed by the portions of 3p and 3q distal to the r(3) breakpoints were found in a girl with mental retardation and minor facial anomalies. The supernumerary chromosome 3, rea(3), had a primary constriction inside its 3p portion (3p23) and was consistently stable both in lymphocytes and fibroblasts. In situ hybridization with alphoid probes revealed that the r(3) maintained its wild-type-centromere, whereas the rea(3) showed no alphoid-related signals. This case and a similar one recently reported demonstrate that acentric fragments can acquire a new centromere and become stable, and that supernumerary marker chromosomes can also originate by the junction of the acentric portions distal to the centric region forming a ring. The possibility of such a chromosome segregating will depend on its ability to (re)activate a new centromere.
Collapse
Affiliation(s)
- P Maraschio
- Biologia Generale e Genetica Medica, Università di Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Luke S, Verma RS. The genomic sequence for Prader-Willi/Angelman syndromes' loci of human is apparently conserved in the great apes. J Mol Evol 1995; 41:250-2. [PMID: 7666455 DOI: 10.1007/bf00170680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chromosomal changes through pericentric inversions play an important role in the origin of species. Certain pericentric inversions are too minute to be detected cytogenetically, thus hindering the complete reconstruction of hominoid phylogeny. The advent of the fluorescence in situ hybridization (FISH) technique has facilitated the identification of many chromosomal segments, even at the single gene level. Therefore the cosmid probe for Prader-Willi (PWS)/Angelman syndrome to the loci on human chromosome 15 [q11-13] is being used as a marker to highlight the complementary sequence in higher primates. We hybridized metaphase chromosomes of chimpanzee (PTR), gorilla (GGO), and orangutan (PPY) with this probe (Oncor) to characterize the chromosomal segments because the nature of these pericentric inversions remains relatively unknown. Our observations suggest that a pericentric inversion has occurred in chimpanzee chromosome (PTR 16) which corresponds to human chromosome 15 at PTR 16 band p11-12, while in gorilla (GGO 15) and orangutan (PPY 16) the bands q11-13 complemented to human chromosome 15 band q11-13. This approach has proven to be a better avenue to characterize the pericentric inversions which have apparently occurred during human evolution. "Genetic" divergence in the speciation process which occurs through "chromosomal" rearrangement needs to be reevaluated and further explored using newer techniques.
Collapse
|
38
|
Meneveri R, Agresti A, Rocchi M, Marozzi A, Ginelli E. Analysis of GC-rich repetitive nucleotide sequences in great apes. J Mol Evol 1995; 40:405-12. [PMID: 7769618 DOI: 10.1007/bf00164027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genomes of four primate species, belonging to the families Pongidae (chimpanzee, gorilla, and orangutan) and Hylobatidae (gibbons), have been analyzed for the presence and organization of two human GC-rich heterochromatic repetitive sequences: beta Satellite (beta Sat) and LongSau (LSau) repeats. By Southern blot hybridization and PCR, both families of repeats were detected in all the analyzed species, thus indicating their origin in an ape ancestor. In the chimpanzee and gorilla, as in man, beta Sat sequences showed a 68-bp Sau3A periodicity and were preferentially organized in large clusters, whereas in the orangutan, they were organized in DNA fragments of 550 bp, which did not seem to be characterized by a tandem organization. On the contrary, in each of the analyzed species, the bulk of LSau sequences showed a longer Sau3A periodicity than that observed in man (450-550 bp). Furthermore, only in the chimpanzee genome some of LSau repeats seemed to be interspersed within blocks of beta Sat sequences. This sequence organization, which also characterizes the human genome, is probably absent in the gorilla. In fact, the analysis of a gorilla genomic library suggested that LSau repeats are not preferentially in linkage with beta Sat sequences. Moreover, LSau sequences were found in a genomic sector characterized by the simultaneous presence of L1 and (CA) repeats, as well as of anonymous sequences and known genes. In spite of the different sequence organization, the nucleotide differences between complete human and gorilla LSau repeats were very few, whereas one gorilla LSau repeat, interrupted by a probably-truncated L1 transposon, showed a higher degree of divergence.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Meneveri
- Dipartimento di Biologia e Genetica per le Scienze Mediche, Università di Milano, Italy
| | | | | | | | | |
Collapse
|
39
|
Wienberg J, Jauch A, Lüdecke HJ, Senger G, Horsthemke B, Claussen U, Cremer T, Arnold N, Lengauer C. The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary. Chromosome Res 1994; 2:405-10. [PMID: 7981945 DOI: 10.1007/bf01552800] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fluorescence in situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescence in situ hybridization and comparative mapping of the chromosomes of human, great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus) and Old World monkeys (Macaca fuscata and Cercopithecus aethiops). Inversions were found in the pericentric region of the primate chromosome 2p homologs in great apes, and the hybridization pattern demonstrates the known phylogenetically derived telomere fusion in the line that leads to human chromosome 2. The hybridization of the 2q microlibrary to chromosomes of Old World monkeys gave a different pattern from that in the gorilla and the orang-utan, but a pattern similar to that of chimpanzees. This suggests convergence of chromosomal rearrangements in different phylogenetic lines.
Collapse
Affiliation(s)
- J Wienberg
- Institut für Anthropologie und Humangenetik, Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
An ever expanding database on the sequence organization and repetition of genic and non-genic components of nuclear and organelle genomes reveals that the vast majority of sequences are subject to one or other mechanism of DNA turnover (gene conversion, unequal crossing over, slippage, retrotransposition, transposition and others). Detailed studies, using novel methods of experimental detection and analytical procedures, show that such mechanisms can operate one on top of another and that wide variations in their unit lengths, biases, polarities and rates create bizarre and complex patterns of genetic redundancy. The ability of these mechanisms to operate both within and between chromosomes implies that realistic models of the evolutionary dynamics of redundancy, and of the potential interaction with natural selection in a sexual species, need to consider the diffusion of variant repeats across multiple chromosome lineages, in a population context. Recently, important advances in both experimental and analytical approaches have been made along these lines. There is increasing awareness that genetic redundancy and turnover induces a molecular co-evolution between functionally interacting genetic systems in order to maintain essential functions.
Collapse
Affiliation(s)
- G A Dover
- Department of Genetics, University of Leicester, UK
| |
Collapse
|