1
|
Lemaire LA, Goulley J, Kim YH, Carat S, Jacquemin P, Rougemont J, Constam DB, Grapin-Botton A. Bicaudal C1 promotes pancreatic NEUROG3+ endocrine progenitor differentiation and ductal morphogenesis. Development 2015; 142:858-70. [PMID: 25715394 DOI: 10.1242/dev.114611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In human, mutations in bicaudal C1 (BICC1), an RNA binding protein, have been identified in patients with kidney dysplasia. Deletion of Bicc1 in mouse leads to left-right asymmetry randomization and renal cysts. Here, we show that BICC1 is also expressed in both the pancreatic progenitor cells that line the ducts during development, and in the ducts after birth, but not in differentiated endocrine or acinar cells. Genetic inactivation of Bicc1 leads to ductal cell over-proliferation and cyst formation. Transcriptome comparison between WT and Bicc1 KO pancreata, before the phenotype onset, reveals that PKD2 functions downstream of BICC1 in preventing cyst formation in the pancreas. Moreover, the analysis highlights immune cell infiltration and stromal reaction developing early in the pancreas of Bicc1 knockout mice. In addition to these functions in duct morphogenesis, BICC1 regulates NEUROG3(+) endocrine progenitor production. Its deletion leads to a late but sustained endocrine progenitor decrease, resulting in a 50% reduction of endocrine cells. We show that BICC1 functions downstream of ONECUT1 in the pathway controlling both NEUROG3(+) endocrine cell production and ductal morphogenesis, and suggest a new candidate gene for syndromes associating kidney dysplasia with pancreatic disorders, including diabetes.
Collapse
Affiliation(s)
- Laurence A Lemaire
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Joan Goulley
- ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Yung Hae Kim
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Solenne Carat
- BBCF, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Patrick Jacquemin
- de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Jacques Rougemont
- BBCF, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Daniel B Constam
- ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
2
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common and systemic disease characterized by formation of focal cysts. Of the three potential causes of cysts, downstream obstruction, compositional changes in extracellular matrix, and proliferation of partially dedifferentiated cells, evidence strongly supports the latter as the primary abnormality. In the vast majority of cases, the disease is caused by mutations in PKD1 or PKD2, and appears to be recessive at the cellular level. Somatic second hits in the normal allele of cells containing the germ line mutation initiate or accelerate formation of cysts. The intrinsically high frequency of somatic second hits in epithelia appears to be sufficient to explain the frequent occurrence of somatic second hits in the disease-causing genes. PKD1 and PKD2 encode a putative adhesive/ion channel regulatory protein and an ion channel, respectively. The two proteins interact directly in vitro. Their cellular and subcellular localization suggest that they may also function independently in a common signaling pathway that may involve the membrane skeleton and that links cell-cell and cell-matrix adhesion to the development of cell polarity.
Collapse
Affiliation(s)
- M A Arnaout
- Renal Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
3
|
|
4
|
Veldhuisen B, Saris JJ, de Haij S, Hayashi T, Reynolds DM, Mochizuki T, Elles R, Fossdal R, Bogdanova N, van Dijk MA, Coto E, Ravine D, Nørby S, Verellen-Dumoulin C, Breuning MH, Somlo S, Peters DJ. A spectrum of mutations in the second gene for autosomal dominant polycystic kidney disease (PKD2). Am J Hum Genet 1997; 61:547-55. [PMID: 9326320 PMCID: PMC1715954 DOI: 10.1086/515497] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recently the second gene for autosomal dominant polycystic kidney disease (ADPKD), located on chromosome 4q21-q22, has been cloned and characterized. The gene encodes an integral membrane protein, polycystin-2, that shows amino acid similarity to the PKD1 gene product and to the family of voltage-activated calcium (and sodium) channels. We have systematically screened the gene for mutations by single-strand conformation-polymorphism analysis in 35 families with the second type of ADPKD and have identified 20 mutations. So far, most mutations found seem to be unique and occur throughout the gene, without any evidence of clustering. In addition to small deletions, insertions, and substitutions leading to premature translation stops, one amino acid substitution and five possible splice-site mutations have been found. These findings suggest that the first step toward cyst formation in PKD2 patients is the loss of one functional copy of polycystin-2.
Collapse
Affiliation(s)
- B Veldhuisen
- Department of Human Genetics, Leiden University, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Geng L, Segal Y, Peissel B, Deng N, Pei Y, Carone F, Rennke HG, Glücksmann-Kuis AM, Schneider MC, Ericsson M, Reeders ST, Zhou J. Identification and localization of polycystin, the PKD1 gene product. J Clin Invest 1996; 98:2674-82. [PMID: 8981910 PMCID: PMC507729 DOI: 10.1172/jci119090] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Polycystin, the product of autosomal dominant polycystic kidney disease (ADPKD) 1 gene (PKD1) is the cardinal member of a novel class of proteins. As a first step towards elucidating the function of polycystin and the pathogenesis of ADPKD, three types of information were collected in the current study: the subcellular localization of polycystin, the spatial and temporal distribution of the protein within normal tissues and the effects of ADPKD mutations on the pattern of expression in affected tissues. Antisera directed against a synthetic peptide and two recombinant proteins of different domains of polycystin revealed the presence of an approximately 400-kD protein (polycystin) in the membrane fractions of normal fetal, adult, and ADPKD kidneys. Immunohistological studies localized polycystin to renal tubular epithelia, hepatic bile ductules, and pancreatic ducts, all sites of cystic changes in ADPKD, as well as in tissues such as skin that are not known to be affected in ADPKD. By electron microscopy, polycystin was predominantly associated with plasma membranes. Polycystin was significantly less abundant in adult than in fetal epithelia. In contrast, polycystin was overexpressed in most, but not all, cysts in ADPKD kidneys.
Collapse
Affiliation(s)
- L Geng
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Palsson R, Sharma CP, Kim K, McLaughlin M, Brown D, Arnaout MA. Characterization and Cell Distribution of Polycystin, the Product of Autosomal Dominant Polycystic Kidney Disease Gene 1. Mol Med 1996. [DOI: 10.1007/bf03401654] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease Consortium. Cell 1995; 81:289-98. [PMID: 7736581 DOI: 10.1016/0092-8674(95)90339-9] [Citation(s) in RCA: 484] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutations in the PKD1 gene are the most common cause of autosomal dominant polycystic kidney disease (ADPKD). Other PKD1-like loci on chromosome 16 are approximately 97% identical to PKD1. To determine the authentic PKD1 sequence, we obtained the genomic sequence of the PKD1 locus and assembled a PKD1 transcript from the sequence of 46 exons. The 14.5 kb PKD1 transcript encodes a 4304 amino acid protein that has a novel domain architecture. The amino-terminal half of the protein consists of a mosaic of previously described domains, including leucine-rich repeats flanked by characteristic cysteine-rich structures, LDL-A and C-type lectin domains, and 14 units of a novel 80 amino acid domain. The presence of these domains suggests that the PKD1 protein is involved in adhesive protein-protein and protein-carbohydrate interactions in the extracellular compartment. We propose a hypothesis that links the predicted properties of the protein with the diverse phenotypic features of ADPKD.
Collapse
|
8
|
Peters DJ, Spruit L, Saris JJ, Ravine D, Sandkuijl LA, Fossdal R, Boersma J, van Eijk R, Nørby S, Constantinou-Deltas CD. Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nat Genet 1993; 5:359-62. [PMID: 8298643 DOI: 10.1038/ng1293-359] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder. A gene defect located on the short arm of chromosome 16 is responsible for the disease in roughly 86% of affected European families. Using highly polymorphic microsatellite DNA markers, we have assigned a second gene for ADPKD to chromosome 4. In eight families with clear evidence against linkage to chromosome 16 markers, linkage analysis with the markers D4S231 and D4S423, demonstrated a multipoint lod score of 22.42.
Collapse
Affiliation(s)
- D J Peters
- Department of Human Genetics, Leiden University, Sylvius Laboratories, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|