Tuckwell HC, Rodriguez R. Analytical and simulation results for stochastic Fitzhugh-Nagumo neurons and neural networks.
J Comput Neurosci 1998;
5:91-113. [PMID:
9540051 DOI:
10.1023/a:1008811814446]
[Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An analytical approach is presented for determining the response of a neuron or of the activity in a network of connected neurons, represented by systems of nonlinear ordinary stochastic differential equations--the Fitzhugh-Nagumo system with Gaussian white noise current. For a single neuron, five equations hold for the first- and second-order central moments of the voltage and recovery variables. From this system we obtain, under certain assumptions, five differential equations for the means, variances, and covariance of the two components. One may use these quantities to estimate the probability that a neuron is emitting an action potential at any given time. The differential equations are solved by numerical methods. We also perform simulations on the stochastic Fitzugh-Nagumo system and compare the results with those obtained from the differential equations for both sustained and intermittent deterministic current inputs with superimposed noise. For intermittent currents, which mimic synaptic input, the agreement between the analytical and simulation results for the moments is excellent. For sustained input, the analytical approximations perform well for small noise as there is excellent agreement for the moments. In addition, the probability that a neuron is spiking as obtained from the empirical distribution of the potential in the simulations gives a result almost identical to that obtained using the analytical approach. However, when there is sustained large-amplitude noise, the analytical method is only accurate for short time intervals. Using the simulation method, we study the distribution of the interspike interval directly from simulated sample paths. We confirm that noise extends the range of input currents over which (nonperiodic) spike trains may exist and investigate the dependence of such firing on the magnitude of the mean input current and the noise amplitude. For networks we find the differential equations for the means, variances, and covariances of the voltage and recovery variables and show how solving them leads to an expression for the probability that a given neuron, or given set of neurons, is firing at time t. Using such expressions one may implement dynamical rules for changing synaptic strengths directly without sampling. The present analytical method applies equally well to temporally nonhomogeneous input currents and is expected to be useful for computational studies of information processing in various nervous system centers.
Collapse