1
|
Páli T, Kóta Z. Studying Lipid-Protein Interactions with Electron Paramagnetic Resonance Spectroscopy of Spin-Labeled Lipids. Methods Mol Biol 2019; 2003:529-561. [PMID: 31218632 DOI: 10.1007/978-1-4939-9512-7_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin-label EPR spectroscopy is the technique of choice to characterize the protein solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin-labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intramembranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to a so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intramembranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature (see ref. Marsh, Eur Biophys J 39:513-525, 2010 for a recent review), here we focus more on how to spin label model membranes and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a previous methodological paper (Marsh, Methods 46:83-96, 2008). The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.
Collapse
Affiliation(s)
- Tibor Páli
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Zoltán Kóta
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| |
Collapse
|
2
|
Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 2016; 43:450-9. [PMID: 26009190 DOI: 10.1042/bst20150056] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collaborative communication lies at the centre of multicellular life. Gap junctions (GJs) are surface membrane structures that allow direct communication between cells. They were discovered in the 1960s following the convergence of the detection of low-resistance electrical interactions between cells and anatomical studies of intercellular contact points. GJs purified from liver plasma membranes contained a 27 kDa protein constituent; it was later named Cx32 (connexin 32) after its full sequence was determined by recombinant technology. Identification of Cx43 in heart and later by a further GJ protein, Cx26 followed. Cxs have a tetraspan organization in the membrane and oligomerize during intracellular transit to the plasma membrane; these were shown to be hexameric hemichannels (connexons) that could interact end-to-end to generate GJs at areas of cell-to-cell contact. The structure of the GJ was confirmed and refined by a combination of biochemical and structural approaches. Progress continues towards obtaining higher atomic 3D resolution of the GJ channel. Today, there are 20 and 21 highly conserved members of the Cx family in the human and mouse genomes respectively. Model organisms such as Xenopus oocytes and zebra fish are increasingly used to relate structure to function. Proteins that form similar large pore membrane channels in cells called pannexins have also been identified in chordates. Innexins form GJs in prechordates; these two other proteins, although functionally similar, are very different in amino acid sequence to the Cxs. A time line tracing the historical progression of wide ranging research in GJ biology over 60 years is mapped out. The molecular basis of channel dysfunctions in disease is becoming evident and progress towards addressing Cx channel-dependent pathologies, especially in ischaemia and tissue repair, continues.
Collapse
|
3
|
Abstract
Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a recent methodological paper [Marsh (Methods 46:83-96, 2008)]. The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.
Collapse
|
4
|
Kóta Z, Páli T, Dixon N, Kee TP, Harrison MA, Findlay JBC, Finbow ME, Marsh D. Incorporation of Transmembrane Peptides from the Vacuolar H+-ATPase in Phospholipid Membranes: Spin-Label Electron Paramagnetic Resonance and Polarized Infrared Spectroscopy. Biochemistry 2008; 47:3937-49. [DOI: 10.1021/bi7025112] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zoltán Kóta
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Tibor Páli
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Neil Dixon
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Terry P. Kee
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Michael A. Harrison
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - John B. C. Findlay
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Malcolm E. Finbow
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| |
Collapse
|
5
|
Dixon N, Páli T, Kee TP, Ball S, Harrison MA, Findlay JBC, Nyman J, Väänänen K, Finbow ME, Marsh D. Interaction of spin-labeled inhibitors of the vacuolar H+-ATPase with the transmembrane Vo-sector. Biophys J 2007; 94:506-14. [PMID: 17872954 PMCID: PMC2157245 DOI: 10.1529/biophysj.107.111781] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The osteoclast variant of the vacuolar H(+)-ATPase (V-ATPase) is a potential therapeutic target for combating the excessive bone resorption that is involved in osteoporosis. The most potent in a series of synthetic inhibitors based on 5-(5,6-dichloro-2-indolyl)-2-methoxy-2,4-pentadienamide (INDOL0) has demonstrated specificity for the osteoclast enzyme, over other V-ATPases. Interaction of two nitroxide spin-labeled derivatives (INDOL6 and INDOL5) with the V-ATPase is studied here by using the transport-active 16-kDa proteolipid analog of subunit c from the hepatopancreas of Nephrops norvegicus, in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Analogous experiments are also performed with vacuolar membranes from Saccharomyces cerevisiae, in which subunit c of the V-ATPase is replaced functionally by the Nephrops 16-kDa proteolipid. The INDOL5 derivative is designed to optimize detection of interaction with the V-ATPase by EPR. In membranous preparations of the Nephrops 16-kDa proteolipid, the EPR spectra of INDOL5 contain a motionally restricted component that arises from direct association of the indolyl inhibitor with the transmembrane domain of the proteolipid subunit c. A similar, but considerably smaller, motionally restricted population is detected in the EPR spectra of the INDOL6 derivative in vacuolar membranes, in addition to the larger population from INDOL6 in the fluid bilayer regions of the membrane. The potent classical V-ATPase inhibitor concanamycin A at high concentrations induces motional restriction of INDOL5, which masks the spectral effects of displacement at lower concentrations of concanamycin A. The INDOL6 derivative, which is closest to the parent INDOL0 inhibitor, displays limited subtype specificity for the osteoclast V-ATPase, with an IC(50) in the 10-nanomolar range.
Collapse
Affiliation(s)
- Neil Dixon
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Tibor Páli
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Terence P. Kee
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Stephen Ball
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Michael A. Harrison
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - John B. C. Findlay
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jonas Nyman
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Kalervo Väänänen
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Malcolm E. Finbow
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
6
|
Páli T, Finbow ME, Marsh D. A divalent-ion binding site on the 16-kDa proton channel from Nephrops norvegicus—revealed by EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:206-12. [PMID: 16545340 DOI: 10.1016/j.bbamem.2006.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 01/20/2006] [Accepted: 02/07/2006] [Indexed: 11/16/2022]
Abstract
As purified from the hepatopancreas of Nephrops norvegicus, the 16-kDa proton channel proteolipid is found to contain an endogenous divalent ion binding site that is occupied by Cu2+. The EPR spectrum has g-values and hyperfine splittings that are characteristic of type 2 Cu2+. The copper may be removed by extensive washing with EDTA. Titration with Ni2+ then induces spin-spin interactions with nitroxyl spin labels that are attached either to the unique Cys54, or to fatty acids intercalated in the membrane. Paramagnetic relaxation enhancement by the fast-relaxing Ni2+ is used to characterise the binding and to estimate distances from the dipolar interactions. The Ni2+-binding site on the protein is situated around 14-18 A from the spin label on Cys54, and is at a similar distance from a lipid chain spin-labelled on the 5 C-atom, but is more remote from the C-9 and C-14 positions of the lipid chains.
Collapse
Affiliation(s)
- Tibor Páli
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, 37070 Göttingen, Germany
| | | | | |
Collapse
|
7
|
Kolb HA, Somogyi R. Biochemical and biophysical analysis of cell-to-cell channels and regulation of gap junctional permeability. Rev Physiol Biochem Pharmacol 2005; 118:1-47. [PMID: 1721723 DOI: 10.1007/bfb0031480] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H A Kolb
- University of Konstanz, Faculty of Biology, FRG
| | | |
Collapse
|
8
|
Gerido DA, White TW. Connexin disorders of the ear, skin, and lens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:159-70. [PMID: 15033586 DOI: 10.1016/j.bbamem.2003.10.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 10/08/2003] [Accepted: 10/08/2003] [Indexed: 12/31/2022]
Abstract
Gap junctions provide coupled cells with a direct pathway for sharing ions, nutrients, and small metabolites, thus helping to maintain homeostasis in various tissues. Abnormal function and/or expression of specific connexin genes has been linked to several diseases, including genetic deafness, skin disease, peripheral neuropathies, and cataracts. Research has provided significant insight into the function of gap junction proteins in both in vitro and in vivo models; however, questions regarding the exact mechanisms by which connexin related diseases occur in mammalian systems remain. Here, we discuss the disease states that are related to three human connexin genes, Cx26 (GJB2), Cx46 (GJA3) and Cx50 (GJA8), and recent scientific evidence characterizing those diseases in various experimental models.
Collapse
Affiliation(s)
- Dwan A Gerido
- Department of Physiology and Biophysics, State University of New York, T5-147, Basic Science Tower, Stony Brook, NY 11794-8661, USA
| | | |
Collapse
|
9
|
Structure and biochemistry of gap junctions. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
10
|
Chapter 19: Gap Junction Communication in Invertebrates: The Innexin Gene Family. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)61023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
11
|
Gill SS, Chu PB, Smethurst P, Pietrantonio PV, Ross LS. Isolation of the V-ATPase A and c subunit cDNAs from mosquito midgut and Malpighian tubules. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1998; 37:80-90. [PMID: 9397516 DOI: 10.1002/(sici)1520-6327(1998)37:1<80::aid-arch10>3.0.co;2-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Using conserved amino acid sequences for the design of oligonucleotide primers, we isolated cDNA clones for two subunits of the V-ATPase from the midgut and Malpighian tubules of Aedes aegypti larvae. The 3.1 kb cDNA of the A subunit of the peripheral catalytic V1 sector codes for a protein of 68.6 kDa. The protein contains conserved motifs, including an ATP/GTP binding site, found in all other A subunits. Southern analysis using the A subunit as a probe suggests the presence of only a single copy of gene in the Aedes aegypti. The 0.85 kb cDNA of the c subunit of the membrane H+ conducting V0 sector codes for a protein of kDa. This protein has four transmembrane domains and contains a conserved glutamic acid that serves as the binding site for dicyclohexylcarbodiimide. Southern analysis using the c subunit as a probe suggests the presence of more than one related gene in the genome of Aedes aegypti. Pileup analysis of various A and c subunits shows that these subunits fall into distinct clusters, including one in which all arthropod proteins are clustered.
Collapse
Affiliation(s)
- S S Gill
- Department of Entomology, University of California, Riverside 92521, USA.
| | | | | | | | | |
Collapse
|
12
|
John SA, Saner D, Pitts JD, Holzenburg A, Finbow ME, Lal R. Atomic force microscopy of arthropod gap junctions. J Struct Biol 1997; 120:22-31. [PMID: 9356288 DOI: 10.1006/jsbi.1997.3893] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Atomic force microscopy has been used to characterize gap junctions isolated from the hepatopancreas of Nephrops norvegicus. The major polypeptide of these gap junctions is ductin, a highly conserved 16- to 18-kDa protein. The hydrated gap junctions, imaged in phosphate-buffered saline, appeared as membrane plaques with a thickness of 14 nm, consistent with their being a pair of apposing membranes. The upper membrane was removed by force dissection using an increased imaging force. The thickness of the lower membrane was 6 nm, giving a separation or gap between the two membranes of 2 nm. High-resolution images show fine details of the force-dissected extracellular surfaces, as previously reported for vertebrate and heart gap junctions. In addition high-resolution AFM images show for the first time detailed substructure on the cytoplasmic face of hydrated gap junctions of either vertebrate or invertebrate. The plaques had particles on their exposed and force-dissected faces. These particles were packed in a hexagonal lattice (a = b = 8.9 nm on both faces) and had a diameter of approximately 6.5 nm, with a central, pore-like depression. Fourier maps calculated from the AFM data suggested that each particle was composed of six subunits. These images show a marked similarity to the widely accepted structure of the connexon channel of vertebrate gap junctions.
Collapse
Affiliation(s)
- S A John
- UCLA Cardiovascular Research Laboratory, UCLA School of Medicine 90095, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:1-27. [PMID: 8665925 DOI: 10.1111/j.1432-1033.1996.0001q.x] [Citation(s) in RCA: 951] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adjacent cells share ions, second messengers and small metabolites through intercellular channels which are present in gap junctions. This type of intercellular communication permits coordinated cellular activity, a critical feature for organ homeostasis during development and adult life of multicellular organisms. Intercellular channels are structurally more complex than other ion channels, because a complete cell-to-cell channel spans two plasma membranes and results from the association of two half channels, or connexons, contributed separately by each of the two participating cells. Each connexon, in turn, is a multimeric assembly of protein subunits. The structural proteins comprising these channels, collectively called connexins, are members of a highly related multigene family consisting of at least 13 members. Since the cloning of the first connexin in 1986, considerable progress has been made in our understanding of the complex molecular switches that control the formation and permeability of intercellular channels. Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior. Structure/function studies have begun to provide a molecular understanding of the significance of connexin diversity and demonstrated the unique regulation of connexins by tyrosine kinases and oncogenes. Finally, mutations in two connexin genes have been linked to human diseases. The development of more specific approaches (dominant negative mutants, knockouts, transgenes) to study the functional role of connexins in organ homeostasis is providing a new perception about the significance of connexin diversity and the regulation of intercellular communication.
Collapse
Affiliation(s)
- R Bruzzone
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
14
|
Jones PC, Harrison MA, Kim YI, Finbow ME, Findlay JB. The first putative transmembrane helix of the 16 kDa proteolipid lines a pore in the Vo sector of the vacuolar H(+)-ATPase. Biochem J 1995; 312 ( Pt 3):739-47. [PMID: 8554514 PMCID: PMC1136176 DOI: 10.1042/bj3120739] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 16 kDa proteolipid is the major component of the vacuolar H(+)-ATPase membrane sector, responsible for proton translocation. Expression of a related proteolipid from the arythropod Nephrops norvegicus in a Saccharomyces strain in which the VMA3 gene for the endogenous proteolipid has been disrupted results in restored vacuolar H(+)-ATPase function. We have used this complementation system, coupled to cysteine substitution mutagenesis and protein chemistry, to investigate structural features of the proteolipid. Consecutive cysteines were introduced individually into putative transmembrane segment 1 of the proteolipid, and at selected sites in extramembranous regions and in segment 3 and 4. Analysis of restored vacuolar H(+)-ATPase function showed that segment 1 residues sensitive to mutation to cysteine were clustered on a single face, but only if the segment was helical. Only residues insensitive to mutation could be covalently modified by the cysteine-specific reagent fluorescein 5-maleimide. A cysteine introduced into segment 3 was the only residue accessible to a relatively hydrophobic reagent, suggesting accessibility to the lipid phase. Analysis of disulphide bond formation between introduced cysteines indicates that the first transmembrane alpha-helices of each monomer are adjacent to each other at the centre of the proteolipid multimeric complex. The data are consistent with a model in which the fluorescein maleimide-accessible face of helix I lines a pore at the centre of a hexameric complex formed by the proteolipid, with the mutationally sensitive face oriented into the protein core. The implications for ion-transport function in this family of proteins are discussed in the context of this structural model.
Collapse
Affiliation(s)
- P C Jones
- Department of Biochemistry and Molecular Biology, University of Leeds, UK
| | | | | | | | | |
Collapse
|
15
|
Dunant Y, Israël M. Mediatophore and other presynaptic proteins. A cybernetic linking at the active zone. JOURNAL OF PHYSIOLOGY, PARIS 1995; 89:147-56. [PMID: 7581304 DOI: 10.1016/0928-4257(96)80112-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In rapidly transmitting synapses, the mediatophore, a protein located in the presynaptic membrane, seems to play a key role in the last step of transmitter release. Reconstituted either in proteoliposomes or in Xenopus oocytes, or transfected in particular cell lines, the mediatophore is able to release acetylcholine with characteristics which meet several typical features of transmitter release in natural synapses. Good correspondence between the two conditions was found for: i) the dependency of release upon calcium concentration; ii) the desensitisation of release by persistence of internal calcium; iii) the effect of several drugs; iv) the fleeting formation of a population of large intramembrane particles during the precise time of release; and v) the pulsatile or quantal nature of transmitter release. All these features therefore could well be ascribed to intrinsic properties of the mediatophore molecule. How is the mediatophore integrated in the whole presynaptic apparatus? To what extent is its function regulated by the other proteins of the active zone? These questions are far from being solved. We want nevertheless to propose here a general view in which characteristic presynaptic functions such as transmitter release, calcium entry, sequestration and extrusion, regulation of short- and long-term changes in release efficiency, are supported by an ordered succession of molecular events involving the proteins of the active zone. It will be seen that some proteins compete for a common binding site. It is thus expected that they will occupy this site in a regulated succession, according to simple cybernetic rules.
Collapse
Affiliation(s)
- Y Dunant
- Département de Pharmacologie, CMU, Geneva, Switzerland
| | | |
Collapse
|
16
|
Abstract
It has been shown previously that, in Drosophila oogenesis, potassium ions are important for bioelectric phenomena as well as for other physiological and developmental processes. In the present study we determined the spatial distribution and activity of the Na+,K+)-pump and of ouabain-insensitive K+ pumps in plasma membranes of vitellogenic ovarian follicles (stage 10). We used the light microscopic anthroylouabain method as well as the cytochemical lead and cerium precipitation methods in combination with electron spectroscopic imaging (ESI) and electron energy-loss spectroscopy (EELS). (Na+,K+)-ATPase activity was predominantly observed on the oolemma as well as on the membranes of the columnar follicle cells covering the oocyte, whereas on the membranes of the nurse cells and of the squamous follicle cells covering the nurse cells the activity was very low. The highest activity of the (Na+,K+)-pump was found at the anterior and posterior ends of the oocyte, and this on the oolemma as well as on the membranes of the follicle cells located here. Strong activity of the ouabain-insensitive K+-pumps was observed on most of the oolemma (except at the anterior of the oocyte) and on the membranes of some nurse cells located next to the oocyte, whereas less activity was found on the other nurse cell membranes and on the membranes of all follicle cells. The suitability of the different methods used for determining the localisation as well as the activity of K+-pumps is discussed. We further discuss the nature of the ouabain-insensitive K+ pumps and the relevance of the observed distribution of K+-pumps for K+ uptake, extrafollicular ionic current flow, intercellular signalling and other developmental processes in Drosophila oogenesis.
Collapse
Affiliation(s)
- J Bohrmann
- Institut für Biologie I, University of Freiburg, Germany
| | | |
Collapse
|
17
|
Finbow ME, Goodwin SF, Meagher L, Lane NJ, Keen J, Findlay JB, Kaiser K. Evidence that the 16 kDa proteolipid (subunit c) of the vacuolar H(+)-ATPase and ductin from gap junctions are the same polypeptide in Drosophila and Manduca: molecular cloning of the Vha16k gene from Drosophila. J Cell Sci 1994; 107 ( Pt 7):1817-24. [PMID: 7983150 DOI: 10.1242/jcs.107.7.1817] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 16 kDa proteolipid (subunit c) of the eukaryotic vacuolar H(+)-ATPase (V-ATPase) is closely related to the ductin polypeptide that forms the connexon channel of gap junctions in the crustacean Nephrops norvegicus. Here we show that the major protein component of Manduca sexta gap junction preparations is a 16 kDa polypeptide whose N-terminal sequence is homologous to ductin and is identical to the deduced sequence of a previously cloned cDNA from Manduca (Dow et al., Gene, 122, 355–360, 1992). We also show that a Drosophila melanogaster cDNA, highly homologous to the Manduca cDNA, can rescue Saccharomyces cerevisiae, defective in V-ATPase function, in which the corresponding yeast gene, VMA3, has been inactivated. Evidence is presented for a single genetic locus (Vha16) in Drosophila, which in adults at least contains a single transcriptional unit. Taken together, the data suggest that in Drosophila and Manduca, the same polypeptide is both the proteolipid subunit c component of the V-ATPase and the ductin component of gap junctions. The intron/exon structure of the Drosophila Vha16 is identical to that of a human Vha16 gene, and is consistent with an ancient duplication of an 8 kDa domain. A pilot study for gene inactivation shows that transposable P-elements can be easily inserted into the Drosophila ductin Vha16 gene. Although without phenotypic consequences, these can serve as a starting point for generation of null alleles.
Collapse
Affiliation(s)
- M E Finbow
- CRC Beatson Laboratories, Beatson Institute for Cancer Research, Bearsden, Glasgow, Scotland
| | | | | | | | | | | | | |
Collapse
|
18
|
Finbow ME, Pitts JD. Is the gap junction channel -the connexon- made of connexin or ductin? J Cell Sci 1993; 106 ( Pt 2):463-71. [PMID: 8282754 DOI: 10.1242/jcs.106.2.463] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- M E Finbow
- CRC Beatson Laboratories, Beatson Institute for Cancer Research, Bearsden, Glasgow, Scotland, UK
| | | |
Collapse
|
19
|
Bohrmann J. Antisera against a channel-forming 16 kDa protein inhibit dye-coupling and bind to cell membranes in Drosophila ovarian follicles. J Cell Sci 1993; 105 ( Pt 2):513-8. [PMID: 7691843 DOI: 10.1242/jcs.105.2.513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila ovarian follicles, communication via gap junctions can be observed between the oocyte and its surrounding follicular epithelium. In the present study, the intercellular exchange of the fluorescent tracer Lucifer Yellow was analysed following pressure-injections of five different sera or protein solutions into the oocyte of stage-10 follicles. Three of the tested sera are directed against a channel-forming 16 kDa protein, which is a component of the vacuolar H(+)-ATPase and of Nephrops norvegicus gap junctions. When one of these antisera was injected 5–10 min prior to the dye, the percentage of follicles showing dye-coupling between oocyte and follicle cells was extremely small. On the other hand, injections of non-immune serum or of bovine serum albumin solution had only minor inhibitory effects. With indirect immunofluorescence, the three Nephrops antisera revealed a discrete punctate pattern at the membranes between neighbouring follicle cells as well as between follicle cells and oocyte. Most likely, this fluorescent pattern represents the distribution of gap junctions in the follicular epithelium. On immunoblots, the Nephrops antisera recognized a 29 kDa Drosophila ovary protein with high specificity. Affinity purification of one of these antisera against the 29 kDa protein revealed that this protein of Drosophila and the 16 kDa membrane-channel protein of Nephrops are immunologically related. Thus, the Nephrops antisera might help to reveal, in future injection experiments, the functional role of gap-junction mediated communication in Drosophila.
Collapse
Affiliation(s)
- J Bohrmann
- Institut für Biologie I (Zoologie), Universität Freiburg, Germany
| |
Collapse
|
20
|
Holzenburg A, Jones PC, Franklin T, Pali T, Heimburg T, Marsh D, Findlay JB, Finbow ME. Evidence for a common structure for a class of membrane channels. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:21-30. [PMID: 7682941 DOI: 10.1111/j.1432-1033.1993.tb17730.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electron microscopic analysis of gap-junction-like structures isolated from an anthropod (Nephrops norvegicus) and composed of a 16-kDa polypeptide, show the functional unit to be a star-shaped hexamer of protein arranged around a central channel which runs perpendicular to the plane of the membrane. Estimations of the molecular volume carried out on an averaged projection are consistent with a subunit mass of 16-18 kDa. Fourier transform infrared spectroscopy indicates a high alpha-helical content for the protein, supporting secondary-structure predictions of four transmembrane alpha helices/monomer. The averaged projection shows a close resemblance to a hexamer of the 16-kDa protein built on the basis of a four alpha-helical bundle [Finbow, M. E., Eliopoulos, E. E., Jackson, P. J., Keen, J. N., Meagher, L., Thompson, P., Jones, P. C. & Findlay, J. B. C. (1992) Protein Eng. 5, 7-15]. The reconstructed image is also similar to that obtained for gap-junction-like channels isolated from a related arthropod [Homarus americanus; Sikerwar, S. S., Downing, K. H. & Glaeser, R. M. (1991) J. Struct. Biol. 106, 255-263] whose protein content was unknown but which we demonstrate may be composed of a related 16-kDa protein. Previous studies have shown a high sequence identity of the Nephrops 16-kDa protein with the 16-kDa proteolipid subunit c of the vascular H(+)-ATPase, both of which in turn bear similarity to the 8-kDa proteolipid subunit of the F1F0-ATP synthase. Expression of cDNA coding for the Nephrops 16-kDa protein in Saccharomyces cerevisiae, in which the endogenous gene coding for the V-ATPase proteolipid has been inactivated, restores V-ATPase activity and cell growth.
Collapse
Affiliation(s)
- A Holzenburg
- Department of Biochemistry & Molecular Biology, University of Leeds, England
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Israël M, Dunant Y. Acetylcholine release, from molecules to function. PROGRESS IN BRAIN RESEARCH 1993; 98:219-33. [PMID: 7902592 DOI: 10.1016/s0079-6123(08)62403-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Israël
- Département de Neurochimie, C.N.R.S., Gif-sur-Yvette, France
| | | |
Collapse
|
22
|
Dunant Y, Israël M. Ultrastructure and biophysics of acetylcholine release: central role of the mediatophore. JOURNAL OF PHYSIOLOGY, PARIS 1993; 87:179-92. [PMID: 7907911 DOI: 10.1016/0928-4257(93)90029-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We would like to review here some of the acquisitions gained by recent work in our two laboratories. Our approaches and results were intermingled and complementary. Thus we found it appropriate, for clarity and intelligibility, to merge them into a single chapter.
Collapse
Affiliation(s)
- Y Dunant
- Département de Pharmacologie, Centre médical universitaire, Genève-4, Switzerland
| | | |
Collapse
|
23
|
Dow JA, Goodwin SF, Kaiser K. Analysis of the gene encoding a 16-kDa proteolipid subunit of the vacuolar H(+)-ATPase from Manduca sexta midgut and tubules. Gene 1992; 122:355-60. [PMID: 1283142 DOI: 10.1016/0378-1119(92)90226-f] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vacuolar ATPases (V-ATPases), originally characterised as components of endomembranes, have also been implicated in epithelial ion transport, both in vertebrates and in insects. The ATPase is particularly noteworthy in lepidopteran larvae, where it generates large transepithelial potential differences and short-circuit currents across the midgut epithelium. A cDNA library from Manduca sexta larval midguts and Malpighian tubules was screened with a Drosophila melanogaster cDNA encoding the 16-kDa proteolipid subunit of the V-ATPase, and a 1.4-kb cDNA sequenced in its entirety. The sequence contains a long open reading frame, encoding a putative peptide of 156 amino acids (aa) and with an M(r) of 15,967, in close agreement with values previously suggested by sodium dodecyl sulfate-polyacrylamide gels of M. sexta midgut proteins. Correspondence of the deduced aa sequence with those of other species, particularly D. melanogaster, was extremely close. Northern blots of M. sexta midgut mRNA at high stringency revealed two transcripts of 1.4 and 1.9 kb, whereas genomic Southern blots suggest that there is only a single copy of the gene in M. sexta. The possibility that members of the 16-kDa gene family might serve multiple roles in transport and membrane communication is discussed.
Collapse
Affiliation(s)
- J A Dow
- Department of Cell Biology, University of Glasgow, UK
| | | | | |
Collapse
|
24
|
Goldstein DJ, Finbow ME, Andresson T, McLean P, Smith K, Bubb V, Schlegel R. Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H(+)-ATPases. Nature 1991; 352:347-9. [PMID: 1649407 DOI: 10.1038/352347a0] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The major transforming protein of bovine papillomavirus type 1, E5, is mainly associated with endomembranes, specifically binding to a cellular protein of relative molecular mass 16,000 (16K). At the same time as transformation, E5 causes the phosphorylation of tyrosine residues in epidermal and platelet-derived growth factor receptors. We show here that the 16K protein associated with E5 is the 16K component of vacuolar ATPases. This protein is known to be an integral membrane protein in endosomes, bovine chromaffin granules, synaptic vesicles, fungal and plant vacuoles and clathrin-coated vesicles, as well as a component of gap-junction-like membrane complexes. Because proton pumps are critical for the function of cellular compartments that process growth-factor receptors, the interaction of E5 with the 16K protein could explain the pleiomorphic features of cells transformed by E5.
Collapse
Affiliation(s)
- D J Goldstein
- Department of Pathology, Georgetown University, Washington, DC 20007
| | | | | | | | | | | | | |
Collapse
|
25
|
Molecular cloning and characterization of a new member of the gap junction gene family, connexin-31. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38149-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Leitch B, Finbow ME. The gap junction-like form of a vacuolar proton channel component appears not to be an artifact of isolation: an immunocytochemical localization study. Exp Cell Res 1990; 190:218-26. [PMID: 1698646 DOI: 10.1016/0014-4827(90)90189-h] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gap junctional structures containing a 16-kDa intrinsic membrane protein have been isolated from the hepatopancreas of the crustacean Nephrops norvegicus. These structures are double membranes 14-15 nm thick and composed of hexagonal arrays of particles which have a central pore that is penetrated by a cationic negative stain. Membrane preparations have also been isolated from the hepatopancreas and these contain similar gap junctional regions of uniform width. Affinity purified antibodies to the 16-kDa protein bind principally to these gap junctional regions. Antiserum raised against the isolated gap junctional structures binds strongly to the lateral surfaces of the columnar epithelial cells and in particular to gap junction-like regions.
Collapse
Affiliation(s)
- B Leitch
- Gatty Marine Station, Department of Biology and Preclinical Medicine, University of St. Andrews, Fife, Scotland
| | | |
Collapse
|
27
|
Serras F, Buultjens TE, Finbow ME. Inhibition of dye-coupling in Patella (Mollusca) embryos by microinjection of antiserum against nephrops (Arthropoda) gap junctions. Exp Cell Res 1988; 179:282-8. [PMID: 3169147 DOI: 10.1016/0014-4827(88)90367-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antiserum raised against Nephrops gap junctions was injected into single cells of the 2-, 4-, 8-, 16-, and 32-cell stage of the Patella vulgata embryos. The pattern of junctional communication by iontophoresis of Lucifer Yellow CH was tested at the 32-cell stage. The results show that the normal pattern of dye-coupling at the 32-cell stage is disrupted in greater than 65% of embryos previously injected with antisera. In contrast, less than 15% of embryos injected with preimmune serum exhibited disrupted patterns of dye-coupling. Up to the late 32-cell stage no effect of the antiserum on the pattern of cleavage was detected. This antiserum may provide a powerful tool to investigate the role of junctional communication in later stages of development of Patella embryos.
Collapse
Affiliation(s)
- F Serras
- Department of Experimental Zoology, State University of Utrecht, The Netherlands
| | | | | |
Collapse
|
28
|
Abstract
Gap junctions are specialized membrane structures that enable the intercytoplasmic exchange of small molecules and ions between contacting cells. During the past decade, biophysical and structural analyses of the junctional channel have considerably increased our understanding of the pharmacological properties and gating mechanisms of gap junctions. Despite this impressive amount of work, until recently the physiological role of these ubiquitous intercellular pathways has remained speculative in most tissues. This review summarizes the most recent information obtained on the structure of the gap junction by molecular cloning of the major protein components and emphasizes the growing evidence for their functional role in adult tissues formed by highly differentiated secretory cells. The relevance of cell-to-cell coupling for the co-ordinated function of the exocrine and endocrine pancreas is discussed.
Collapse
Affiliation(s)
- R Bruzzone
- Institut de Biochimie Clinique, University of Geneva, Switzerland
| | | |
Collapse
|