1
|
Kushwaha M, Qayum A, Jain SK, Singh J, Srivastava AK, Srivastava S, Sharma N, Abrol V, Malik R, Singh SK, Vishwakarma RA, Jaglan S. Tandem MS-Based Metabolite Profiling of 19,20-Epoxycytochalasin C Reveals the Importance of a Hydroxy Group at the C7 Position for Biological Activity. ACS OMEGA 2021; 6:3717-3726. [PMID: 33585752 PMCID: PMC7876698 DOI: 10.1021/acsomega.0c05307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 05/04/2023]
Abstract
Seven cytochalasins, 19,20-epoxycytochalasin N, cytochalasin P1, deacetyl 19,20-epoxycytochalasin C, 19,20-epoxycytochalasin D, 19,20-epoxycytochalasin C, cytochalasin D, and cytochalasin C, were isolated from a fungal (Rosellinia sanctae-cruciana) crude extract. A cytotoxicity assay (sulforhodamine B) was performed on a series of cancer cell lines: HT-29, A-549, PC-3, HCT-116, SW-620, and MCF-7. Simultaneously, the liquid chromatography-mass spectrometry (LC-MS)/MS profile of 19,20-epoxycytochalasin C-treated cell lines revealed that 19,20-epoxycytochalasin C (m/z 524.25) oxidized to a metabolite of m/z 522.25 Da (-2 Da (-2H) from 19,20-epoxycytochalasin C). Further chemical oxidation of 19,20-epoxycytochalasin C using the Dess-Martin reagent produced an identical metabolite. It has been noticed that the parent molecule (19,20-epoxycytochalasin C) showed an IC50 of 650 nM (on HT-29), whereas for the oxidized metabolite (m/z 522.24) of 19,20-epoxycytochalasin C, the IC50 was >10 μM. It is clear that the parent molecule had 16 times higher cytotoxic potential as compared to the oxidized metabolite. The spectroscopic investigation indicated that the oxidation of the hydroxyl (-OH) group occurred at the C7 position in 19,20-epoxycyctochalsin C and led to the inactivation of 19,20-epoxycytochalasin C. Further, cell cycle analysis and histopathological evidence support the findings, and CDK2 could be a possible target of 19,20-epoxycyctochalasin C.
Collapse
Affiliation(s)
- Manoj Kushwaha
- Microbial
Biotechnology Division, Indian Institute
of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Department
of Biotechnology, Guru Nanak Dev University, Amritsar 143001, Punjab, India
| | - Arem Qayum
- Cancer
Pharmacology Division, Indian Institute
of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shreyans K. Jain
- Department
of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Jasvinder Singh
- Cancer
Pharmacology Division, Indian Institute
of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Srivastava
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shubham Srivastava
- Department
of Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Nisha Sharma
- Microbial
Biotechnology Division, Indian Institute
of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vidushi Abrol
- Microbial
Biotechnology Division, Indian Institute
of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
| | - Ruchi Malik
- Department
of Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Shashank K. Singh
- Cancer
Pharmacology Division, Indian Institute
of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
| | - Ram A. Vishwakarma
- Medicinal
Chemistry Division, Indian Institute of
Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
| | - Sundeep Jaglan
- Microbial
Biotechnology Division, Indian Institute
of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- . Tel: 91-191-2585006-13 ext. 293. Fax: 91-191-2586333
| |
Collapse
|
2
|
Tropomodulin 1 controls erythroblast enucleation via regulation of F-actin in the enucleosome. Blood 2017; 130:1144-1155. [PMID: 28729432 DOI: 10.1182/blood-2017-05-787051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023] Open
Abstract
Biogenesis of mammalian red blood cells requires nuclear expulsion by orthochromatic erythoblasts late in terminal differentiation (enucleation), but the mechanism is largely unexplained. Here, we employed high-resolution confocal microscopy to analyze nuclear morphology and F-actin rearrangements during the initiation, progression, and completion of mouse and human erythroblast enucleation in vivo. Mouse erythroblast nuclei acquire a dumbbell-shaped morphology during enucleation, whereas human bone marrow erythroblast nuclei unexpectedly retain their spherical morphology. These morphological differences are linked to differential expression of Lamin isoforms, with primary mouse erythroblasts expressing only Lamin B and primary human erythroblasts only Lamin A/C. We did not consistently identify a continuous F-actin ring at the cell surface constriction in mouse erythroblasts, nor at the membrane protein-sorting boundary in human erythroblasts, which do not have a constriction, arguing against a contractile ring-based nuclear expulsion mechanism. However, both mouse and human erythroblasts contain an F-actin structure at the rear of the translocating nucleus, enriched in tropomodulin 1 (Tmod1) and nonmuscle myosin IIB. We investigated Tmod1 function in mouse and human erythroblasts both in vivo and in vitro and found that absence of Tmod1 leads to enucleation defects in mouse fetal liver erythroblasts, and in CD34+ hematopoietic stem and progenitor cells, with increased F-actin in the structure at the rear of the nucleus. This novel structure, the "enucleosome," may mediate common cytoskeletal mechanisms underlying erythroblast enucleation, notwithstanding the morphological heterogeneity of enucleation across species.
Collapse
|
3
|
Sui Z, Nowak RB, Bacconi A, Kim NE, Liu H, Li J, Wickrema A, An XL, Fowler VM. Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver. Blood 2014; 123:758-67. [PMID: 24159174 PMCID: PMC3907761 DOI: 10.1182/blood-2013-03-492710] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/11/2013] [Indexed: 11/20/2022] Open
Abstract
Tropomodulin (Tmod) is a protein that binds and caps the pointed ends of actin filaments in erythroid and nonerythoid cell types. Targeted deletion of mouse tropomodulin3 (Tmod3) leads to embryonic lethality at E14.5-E18.5, with anemia due to defects in definitive erythropoiesis in the fetal liver. Erythroid burst-forming unit and colony-forming unit numbers are greatly reduced, indicating defects in progenitor populations. Flow cytometry of fetal liver erythroblasts shows that late-stage populations are also decreased, including reduced percentages of enucleated cells. Annexin V staining indicates increased apoptosis of Tmod3(-/-) erythroblasts, and cell-cycle analysis reveals that there are more Ter119(hi) cells in S-phase in Tmod3(-/-) embryos. Notably, enucleating Tmod3(-/-) erythroblasts are still in the process of proliferation, suggesting impaired cell-cycle exit during terminal differentiation. Tmod3(-/-) late erythroblasts often exhibit multilobular nuclear morphologies and aberrant F-actin assembly during enucleation. Furthermore, native erythroblastic island formation was impaired in Tmod3(-/-) fetal livers, with Tmod3 required in both erythroblasts and macrophages. In conclusion, disruption of Tmod3 leads to impaired definitive erythropoiesis due to reduced progenitors, impaired erythroblastic island formation, and defective erythroblast cell-cycle progression and enucleation. Tmod3-mediated actin remodeling may be required for erythroblast-macrophage adhesion, coordination of cell cycle with differentiation, and F-actin assembly and remodeling during erythroblast enucleation.
Collapse
Affiliation(s)
- Zhenhua Sui
- The Scripps Research Institute, La Jolla, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang J, Ramirez T, Ji P, Jayapal SR, Lodish HF, Murata-Hori M. Mammalian erythroblast enucleation requires PI3K-dependent cell polarization. J Cell Sci 2012; 125:340-9. [PMID: 22331356 DOI: 10.1242/jcs.088286] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enucleation, the final step in terminal differentiation of mammalian red blood cells, is an essential process in which the nucleus surrounded by the plasma membrane is budded off from the erythroblast to form a reticulocyte. Most molecular events in enucleation remain unclear. Here we show that enucleation requires establishment of cell polarization that is regulated by the microtubule-dependent local activation of phosphoinositide 3-kinase (PI3K). When the nucleus becomes displaced to one side of the cell, actin becomes restricted to the other side, where dynamic cytoplasmic contractions generate pressure that pushes the viscoelastic nucleus through a narrow constriction in the cell surface, forming a bud. The PI3K products PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃ are highly localized at the cytoplasmic side of the plasma membrane. PI3K inhibition caused impaired cell polarization, leading to a severe delay in enucleation. Depolymerization of microtubules reduced PI3K activity, resulting in impaired cell polarization and enucleation. We propose that enucleation is regulated by microtubules and PI3K signaling in a manner mechanistically similar to directed cell locomotion.
Collapse
Affiliation(s)
- Junxia Wang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | | | | | | | | | | |
Collapse
|
5
|
Keerthivasan G, Wickrema A, Crispino JD. Erythroblast enucleation. Stem Cells Int 2011; 2011:139851. [PMID: 22007239 PMCID: PMC3189604 DOI: 10.4061/2011/139851] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/10/2011] [Indexed: 12/22/2022] Open
Abstract
Even though the production of orthochromatic erythroblasts can be scaled up to fulfill clinical requirements, enucleation remains one of the critical rate-limiting steps in the production of transfusable red blood cells. Mammalian erythrocytes extrude their nucleus prior to entering circulation, likely to impart flexibility and improve the ability to traverse through capillaries that are half the size of erythrocytes. Recently, there have been many advances in our understanding of the mechanisms underlying mammalian erythrocyte enucleation. This review summarizes these advances, discusses the possible future directions in the field, and evaluates the prospects for improved ex vivo production of red blood cells.
Collapse
Affiliation(s)
- Ganesan Keerthivasan
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
6
|
Sotnikov OS, Laktionova AA, Solovieva IA, Krasnova TV. Neuron Division or Enucleation. ACTA ACUST UNITED AC 2010; 40:841-7. [DOI: 10.1007/s11055-010-9339-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/04/2009] [Indexed: 11/30/2022]
|
7
|
Abstract
Erythroblastic islands are specialized microenvironmental compartments within which definitive mammalian erythroblasts proliferate and differentiate. These islands consist of a central macrophage that extends cytoplasmic protrusions to a ring of surrounding erythroblasts. The interaction of cells within the erythroblastic island is essential for both early and late stages of erythroid maturation. It has been proposed that early in erythroid maturation the macrophages provide nutrients, proliferative and survival signals to the erythroblasts, and phagocytose extruded erythroblast nuclei at the conclusion of erythroid maturation. There is also accumulating evidence for the role of macrophages in promoting enucleation itself. The central macrophages are identified by their unique immunophenotypic signature. Their pronounced adhesive properties, ability for avid endocytosis, lack of respiratory bursts, and consequent release of toxic oxidative species, make them perfectly adapted to function as nurse cells. Both macrophages and erythroblasts display adhesive interactions that maintain island integrity, and elucidating these details is an area of intense interest and investigation. Such interactions enable regulatory feedback within islands via cross talk between cells and also trigger intracellular signaling pathways that regulate gene expression. An additional control mechanism for cellular growth within the erythroblastic islands is through the modulation of apoptosis via feedback loops between mature and immature erythroblasts and between macrophages and immature erythroblasts. The focus of this chapter is to outline the mechanisms by which erythroblastic islands aid erythropoiesis, review the historical data surrounding their discovery, and highlight important unanswered questions.
Collapse
Affiliation(s)
- Deepa Manwani
- Schneider Children's Hospital, New York, NY 11040, USA
| | | |
Collapse
|
8
|
Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 2005; 437:754-8. [PMID: 16193055 DOI: 10.1038/nature03964] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Accepted: 06/29/2005] [Indexed: 02/06/2023]
Abstract
Definitive erythropoiesis usually occurs in the bone marrow or fetal liver, where erythroblasts are associated with a central macrophage in anatomical units called 'blood islands'. Late in erythropoiesis, nuclei are expelled from the erythroid precursor cells and engulfed by the macrophages in the blood island. Here we show that the nuclei are engulfed by macrophages only after they are disconnected from reticulocytes, and that phosphatidylserine, which is often used as an 'eat me' signal for apoptotic cells, is also used for the engulfment of nuclei expelled from erythroblasts. We investigated the mechanism behind the enucleation and engulfment processes by isolating late-stage erythroblasts from the spleens of phlebotomized mice. When these erythroblasts were cultured, the nuclei protruded spontaneously from the erythroblasts. A weak physical force could disconnect the nuclei from the reticulocytes. The released nuclei contained an undetectable level of ATP, and quickly exposed phosphatidylserine on their surface. Fetal liver macrophages efficiently engulfed the nuclei; masking the phosphatidylserine on the nuclei with the dominant-negative form of milk-fat-globule EGF8 (MFG-E8) prevented this engulfment.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Takano-Ohmuro H, Mukaida M, Morioka K. Distribution of actin, myosin, and spectrin during enucleation in erythroid cells of hamster embryo. CELL MOTILITY AND THE CYTOSKELETON 1996; 34:95-107. [PMID: 8769722 DOI: 10.1002/(sici)1097-0169(1996)34:2<95::aid-cm2>3.0.co;2-h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Yolk-sac derived erythroblasts undergo semi-synchronous maturation and some of them enucleate in the peripheral blood of embryos. We have studied the assembly and distribution of actin, myosin, and spectrin during the enucleation of Syrian hamster embryonic erythroblasts. At day 11 of the gestation, that is just before the start of the enucleation, formation of a cytoskeletal structure consisted chiefly of particulate associations of F(filamentous)-actin was detected by the staining with rhodamine-labeled phalloidin. Stress-fiber-like structures were not observed in each differentiation stage after day 10. Distribution of myosin, actin, and spectrin was studied immunocytochemically to know the role of them in the enucleation of erythroid cells that starts at late day 11 or early day 12 in the gestation. The enucleation is preceded by the approach and the subsequent attachment of nucleus to the plasma membrane. At that time, actin and myosin are present in the cytoplasmic and cortical region of the cells. From the time when the extrusion of nucleus has started, condensation of actin and myosin was observed at the cell cortex area surrounding the extruding nucleus, and a contractile ring-like structure was infrequently observed. Spectrin was observed in the cortical region of the cells, and the change of the localization of spectrin was not observed throughout the terminal differentiation process (days 10-12) of the embryonic erythroid cells. The results show the possible involvement of a myosin-actin contractile system that appears around the extruding nucleus within the mechanism of erythroid enucleation.
Collapse
Affiliation(s)
- H Takano-Ohmuro
- Department of Pharmacology, Faculty of Medicine, University of Tokyo of Tokyo, Japan
| | | | | |
Collapse
|
10
|
Merry NE, Johnson MH, Gehring CA, Selwood L. Cytoskeletal organization in the oocyte, zygote, and early cleaving embryo of the stripe-faced dunnart (Sminthopsis macroura). Mol Reprod Dev 1995; 41:212-24. [PMID: 7654375 DOI: 10.1002/mrd.1080410212] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ovulation occurs in Sminthopsis macroura approximately 160 hr after administration of 1.3 IU PMSG, and yields significantly more oocytes than does spontaneous ovulation (P = 0.001). Germinal vesicle (GV)-stage oocytes have a thin cortical rim of microfilaments, which is disrupted by exposure to cytochalasin D. After GV breakdown, the first meiotic spindle forms subcortically and parallel to the oolemma. It rotates during anaphase and telophase to extrude the first polar body. This rotation is associated with a local cortical concentration of microfilaments, which is extruded in the first polar body. The second meiotic spindle is orthogonal to the surface, and extrusion of the second polar body is not associated with obvious local changes in cortical actin, resulting in a polar body containing little polymerized actin. The sites of second polar body emission and sperm entry are always in the half of the oocyte opposite the concentrating yolk mass, and are within 60 degrees of each other in most oocytes. During the concentration and eccentric movement of the yolk, microfilaments condense around it. During yolk expulsion, these microfilaments become continuous with those located subcortically. During early cleavage, the cytocortex of the zygote, but not of the extruded yolk mass, stains heavily for polymerised actin. Multiple sites of pericentriolar material are detectable in the cytoplasm of some secondary unfertilized oocytes which, in the presence of taxol, generate large cytasters and pseudospindle structures. After fertilization, a large aster is formed in association with the sperm entry point and serves as the center of an extensive cytoplasmic network of microtubules which surrounds but does not enter the yolk mass. Taxol treatment generates small cytasters within this meshwork and promotes selective stabilization of some periyolk microtubules opposite to the sperm aster.
Collapse
Affiliation(s)
- N E Merry
- School of Zoology, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | |
Collapse
|
11
|
Wickrema A, Koury ST, Dai CH, Krantz SB. Changes in cytoskeletal proteins and their mRNAs during maturation of human erythroid progenitor cells. J Cell Physiol 1994; 160:417-26. [PMID: 8077279 DOI: 10.1002/jcp.1041600304] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have used highly purified human early erythroid progenitors to study changes in cytoskeletal proteins during their maturation and terminal differentiation. When erythroid progenitors at the burst-forming unit-erythroid (BFU-E) stage of development are grown in the presence of erythropoietin, the cells mature and terminally differentiate into reticulocytes during a 14-15-day culture period. We have shown by immunofluorescence that spectrin is present in day 3 BFU-E, at which time proteins band 3, ankyrin, and band 4.1 cannot be detected. Ankyrin and band 4.1 were detected in the majority of the cells by day 7 of culture, at the colony-forming unit (CFU)-E stage, whereas only 15% of the cells were positive for band 3 protein on day 7 of culture. The mRNA level for spectrin was already at its maximum on day 8 whereas the mRNAs for band 3, ankyrin, and band 4.1 were just beginning to accumulate. After enucleation, spectrin, band 3, ankyrin, and band 4.1 fluorescence were all associated with the reticulocytes. Actin was localized at the constriction between the extruding nucleus and the incipient reticulocyte in enucleating erythroblasts suggesting a key role for actin in the enucleation of human erythroblasts. Our investigations have also shown that purified human erythroid progenitors cultured in serum-free suspension media are capable of enucleating without the requirement of an extracellular matrix. These results demonstrate that the synthesis and expression of major cytoskeletal proteins in the human erythrocyte membrane occur in an asynchronous manner and that the remodeling of the membrane skeleton begins at a very early stage during erythrocyte development.
Collapse
Affiliation(s)
- A Wickrema
- Division of Hematology, Vanderbilt University School of Medicine Department of Veterans Affairs Medical Center, Nashville, Tennessee 37232
| | | | | | | |
Collapse
|
12
|
Koury ST, Koury MJ, Bondurant MC. Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts. J Cell Biol 1989; 109:3005-13. [PMID: 2574178 PMCID: PMC2115945 DOI: 10.1083/jcb.109.6.3005] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have used murine splenic erythrolasts infected with the anemia-inducing strain of Friend virus (FVA cells), as an in vitro model to study cytoskeletal elements during erythroid maturation and enucleation. FVA cells are capable of enucleating in suspension culture in vitro, indicating that associations with an extracellular matrix or accessory cells are not required for enucleation to occur. The morphology of FVA cells undergoing enucleation is nearly identical to erythroblasts enucleating in vivo. The nucleus is segregated to one side of the cell and then appears to be pinched off resulting in an extruded nucleus and reticulocyte. The extruded nucleus is surrounded by an intact plasma membrane and has little cytoplasm associated with it. Newly formed reticulocytes have an irregular shape, are vacuolated and contain all cytoplasmic organelles. The spatial distribution of several cytoskeletal proteins was examined during the maturation process. Spectrin was found associated with the plasma membrane of FVA cells at all stages of maturation but was segregated entirely to the incipient reticulocyte during enucleation. Microtubules formed cages around nuclei in immature FVA cells and were found primarily in the incipient reticulocyte in cells undergoing enucleation. Reticulocytes occasionally contained microtubules, but a generalized diffuse distribution of tubulin was more common. Vimentin could not be detected at any time in FVA cell maturation. Filamentous actin (F-actin) had a patchy distribution at the cell surface in the most immature erythroblasts, but F-actin bundles could be detected as the cells matured. F-actin was found concentrated between the extruding nucleus and incipient reticulocyte in enucleating erythroblasts. Newly formed reticulocytes exhibited punctate actin fluorescence whereas extruded nuclei lacked F-actin. Addition of colchicine, vinblastine, or taxol to cultures of FVA cells did not affect enucleation. In contrast, cytochalasin D caused a complete inhibition of enucleation that could be reversed by washing out the cytochalasin D. These results demonstrate that F-actin plays a role in enucleation while the complete absence of microtubules or excessive numbers of polymerized microtubules do not affect enucleation.
Collapse
Affiliation(s)
- S T Koury
- Vanderbilt University, Nashville, Tennessee
| | | | | |
Collapse
|