1
|
Morita-Takemura S, Wanaka A. Blood-to-brain communication in the hypothalamus for energy intake regulation. Neurochem Int 2019; 128:135-142. [DOI: 10.1016/j.neuint.2019.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
|
2
|
Alpár A, Benevento M, Romanov RA, Hökfelt T, Harkany T. Hypothalamic cell diversity: non-neuronal codes for long-distance volume transmission by neuropeptides. Curr Opin Neurobiol 2018; 56:16-23. [PMID: 30471413 DOI: 10.1016/j.conb.2018.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/24/2018] [Indexed: 11/24/2022]
Abstract
Volume transmission is a mode of intercellular communication using cerebral liquor to deliver signal molecules over long distances and allow their action for extended periods. For hypothalamic neuropeptides, nerve endings amongst ependymal cells are seen as a site of release into the cerebrospinal fluid. Recent single-cell RNA-seq data identify tanycytes and ventricular ependyma as alternative sources by being unexpectedly rich in neuroactive substances. This notion, coupled with circuit analysis showing regionalized innervation of periventricular ependyma by intrahypothalamic neurons, could allow for the integration of hypothalamic neuronal activity patterns with brain-wide activity changes upon metabolic challenges through phasic volume transmission primed by neuron-ependyma coupling. Here, we discuss emerging data for an ependymal interface and its breaches in neuropsychiatric disease.
Collapse
Affiliation(s)
- Alán Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, H-1085 Budapest, Hungary; Department of Anatomy, Histology, and Embryology, Semmelweis University, H-1085 Budapest, Hungary
| | - Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, SE-17165 Solna, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria; Department of Neuroscience, Karolinska Institutet, SE-17165 Solna, Sweden.
| |
Collapse
|
3
|
Haddad-Tóvolli R, Dragano NRV, Ramalho AFS, Velloso LA. Development and Function of the Blood-Brain Barrier in the Context of Metabolic Control. Front Neurosci 2017; 11:224. [PMID: 28484368 PMCID: PMC5399017 DOI: 10.3389/fnins.2017.00224] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Under physiological conditions, the brain consumes over 20% of the whole body energy supply. The blood-brain barrier (BBB) allows dynamic interactions between blood capillaries and the neuronal network in order to provide an adequate control of molecules that are transported in and out of the brain. Alterations in the BBB structure and function affecting brain accessibility to nutrients and exit of toxins are found in a number of diseases, which in turn may disturb brain function and nutrient signaling. In this review we explore the major advances obtained in the understanding of the BBB development and how its structure impacts on function. Furthermore, we focus on the particularities of the barrier permeability in the hypothalamus, its role in metabolic control and the potential impact of hypothalamic BBB abnormities in metabolic related diseases.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, Faculty of Medical Sciences, University of CampinasCampinas, Brazil
| | | | | | - Licio A. Velloso
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, Faculty of Medical Sciences, University of CampinasCampinas, Brazil
| |
Collapse
|
4
|
Langlet F. [Role of tanycytes within the blood-hypothalamus interface]. Biol Aujourdhui 2014; 208:225-235. [PMID: 25474004 DOI: 10.1051/jbio/2014025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Indexed: 06/04/2023]
Abstract
Information exchanges between the brain and the periphery are key stages in the regulation of various physiological functions. The mediobasal hypothalamus, which ensures a large part of these functions, must be permanently informed about the physiological state of the body to guarantee the maintaining of homeostasis. For that purpose, it possesses a peculiar blood-brain interface due to the presence of specialized glial cells called tanycytes. This review describes the organization of the blood-hypothalamus interface and characterizes the peculiar place of tanycytes within it, as well as their striking capacity to remodel their own interface in order to ensure the regulation of various physiological functions.
Collapse
Affiliation(s)
- Fanny Langlet
- Inserm, Centre de recherche Jean-Pierre Aubert, U837, Développement et plasticité du cerveau post-natal, 59000 Lille, France - Université de Lille, Faculté de médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, 59000 Lille, France
| |
Collapse
|
5
|
Leak RK, Moore RY. Innervation of ventricular and periventricular brain compartments. Brain Res 2012; 1463:51-62. [PMID: 22575559 DOI: 10.1016/j.brainres.2012.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/22/2012] [Accepted: 04/29/2012] [Indexed: 01/29/2023]
Abstract
Synaptic transmission is divided into two broad categories on the basis of the distance over which neurotransmitters travel. Wiring transmission is the release of transmitter into synaptic clefts in close apposition to receptors. Volume transmission is the release of transmitters or modulators over varying distances before interacting with receptors. One case of volume transmission over potentially long distances involves release into cerebrospinal fluid (CSF). The CSF contains neuroactive substances that affect brain function and range in size from small molecule transmitters to peptides and large proteins. CSF-contacting neurons are a well-known and universal feature of non-mammalian vertebrates, but only supra- and subependymal serotonergic plexuses are a commonly studied feature in mammals. The origin of most other neuroactive substances in CSF is unknown. In order to determine which brain regions communicate with CSF, we describe the distribution of retrograde neuronal labeling in the rat brain following ventricular injection of Cholera toxin, ß subunit (CTß), a tracer frequently used in brain circuit analysis. Within 15 to 30 min following intraventricular injection, there is only diffuse, non-specific staining adjacent to the ventricular surface. Within 2 to 10 days, however, there is extensive labeling of neuronal perikarya in specific nuclear groups in the telencephalon, thalamus, hypothalamus and brainstem, many at a considerable distance from the ventricles. These observations support the view that ventricular CSF is a significant channel for volume transmission and identifies those brain regions most likely to be involved in this process.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | | |
Collapse
|
6
|
Cheunsuang O, Stewart AL, Morris R. Differential uptake of molecules from the circulation and CSF reveals regional and cellular specialisation in CNS detection of homeostatic signals. Cell Tissue Res 2006; 325:397-402. [PMID: 16555054 DOI: 10.1007/s00441-006-0162-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/20/2005] [Indexed: 12/12/2022]
Abstract
The uptake of hydroxystilbamidine (OHSt, FluoroGold equivalent) and wheat germ agglutinin (WGA), into the hypothalamus, two hours after injections into either the circulation or the cerebrospinal fluid, were compared in adult rats. Following intravenous injection, OHSt was found in astrocytes of the median eminence and medial part of the arcuate nucleus whereas WGA intensely labelled the blood vessels and ependymal cells throughout the hypothalamus. In complete contrast, intracerebroventricular (icv) injection into the lateral ventricle resulted in OHSt uptake by ependymocytes and astrocytes in the area adjacent to the third ventricle, with virtually no uptake in regions taking up this dye following systematic injections, i.e., the median eminence and medial arcuate. Following icv injection WGA labelling was intense in all parts of the ependymal layer of the third ventricle, including the alpha- and beta-tanycytes. Injections into the cisterna magna gave a different pattern of uptake with OHSt being found only in astrocytes in the ventral part of the hypothalamus lateral to the arcuate nucleus whilst WGA uptake was virtually absent. This highlights the regional and cellular specialisation for uptake of molecules from the circulation and CSF. The median eminence and medial arcuate take up molecules from the circulation, with different cell types taking up different molecules. As the CSF flows through the ventricular system, different cells lining the ventricular and subarachnoid spaces take up molecules differentially. Molecules in the CSF appear to be excluded from the median eminence and medial arcuate region.
Collapse
Affiliation(s)
- Ornsiri Cheunsuang
- Department of Veterinary Anatomy, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
7
|
Meller ST, Dennis BJ. A scanning and transmission electron microscopic analysis of the cerebral aqueduct in the rabbit. Anat Rec (Hoboken) 1993; 237:124-40. [PMID: 8214638 DOI: 10.1002/ar.1092370112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An examination of the surface of the cerebral aqueduct with the scanning electron microscope revealed that the walls of the cerebral aqueduct were so heavily ciliated that most of the ependymal surface was obscured, yet certain specialized supraependymal structures could be discerned lying on (or embedded within) this matt of cilia. These structures were determined by transmission electron microscopy and Golgi analysis to be either macrophages, supraependymal neurons, dendrites from medial periaqueductal gray neurons, or axons of unknown origin. Some axons, which were found to contain vesicles, appeared to make synaptic contacts with ependymal cells. Using the transmission electron microscope, the ependymal lining was found to consist of two different cell types: normal ependymal cells and tanycytes which have a long tapering basal process that was observed to contact blood vessels or, more rarely, seemed to terminate in relation to neuronal elements. While there have been previous reports on the structure of the third and lateral ventricles in other species, there are limited reports in the rabbit. The present report is not only the first description for the rabbit, but it is the first complete scanning and transmission electron microscopic analysis of the cerebral aqueduct in any species.
Collapse
Affiliation(s)
- S T Meller
- Department of Physiology, University of Adelaide, South Australia
| | | |
Collapse
|
8
|
Abstract
The presence, distribution and specific localization of insulin and its receptors in the central nervous system (CNS) have been described in numerous reports. Insulin in the CNS appears to be similar to pancreatic insulin by biochemical and immunological criteria. While the presence of insulin in the cerebrospinal fluid (CSF)--an essential neurohumoral transport system--has been widely reported, the available information is fragmented and therefore it is difficult to determine the significance of insulin in the CSF and to establish future research directions. This paper presents an integrative view of the studies concerning insulin in the CSF of various species including the human. Evidence suggests that insulin in the CSF and brain may be the result of local synthesis in the CNS, and uptake from the peripheral blood through the blood-brain barrier and circumventricular organs. The passage of insulin from the peripheral blood through the blood-brain barrier may be mediated by a specific transport system coupled to insulin receptors in cerebral microvessels. The transfer of insulin from the peripheral blood through the circumventricular organs is not specific and may depend on simple diffusion. Slow access of insulin to brain interstitial fluid adjacent to the blood-brain barrier and circumventricular organs may be followed by selective transport to other brain sites and into the ventricular-subarachnoideal CSF. It has been hypothesized that the choroid plexuses, which constitute the blood-CSF interface, might be a nonspecific pathway for rapid insulin transport into the CSF. Insulin may also pass from the CSF into the peripheral blood via absorption into the arachnoid villi. This evidence indicates that insulin may be transported in both directions between the CSF-brain and the peripheral blood. Evidence also suggests that the presence of insulin in the CSF is of pivotal importance for its neurophysiological or neuropathophysiological significance.
Collapse
Affiliation(s)
- C R Plata-Salamán
- School of Life and Health Sciences, University of Delaware, Newark 19716
| |
Collapse
|
9
|
Abstract
The regional concentrations of nine radiochemicals were measured in rat brain after induction of cerebral ischemia to identify tracers concentrated by brain undergoing selective neuronal necrosis. Transient (30 minute) forebrain ischemia was produced in the rat; 24 hours after cerebral recirculation the radiochemicals were injected intravenously and allowed to circulate for 5 hours. The brain concentrations of the radiochemicals in dissected regions were determined by scintillation counting. Forebrain ischemia of this nature will produce extensive injury to striatal neurons but will spare the great majority of neocortical neurons at 24 hours. The regional concentrations of these radiochemicals varied considerably in both control and ischemic animals. In postischemic animals, 4 radionuclides (63Ni, 99TcO4, 22Na, and [3H]tetracycline) were concentrated in the irreversibly damaged striatum in amounts ranging from 1.4 to 2.4 times greater than in normal tissue. The concentrations of 65Zn, 59Fe, 32PO4, and 147Pm in postischemic brain were similar to or less than those in normal brain. The concentration of [14C]EDTA was increased in injured and uninjured brain of postischemic rats. Autoradiographic analysis of the distribution patterns of some of these ions in normal animals showed that 99TcO4, 22Na, 65Zn, and 59Fe were distributed more uniformly throughout the brain than were 32PO4, 63Ni, and 147Pm. At 24 or 48 hours after ischemia, 63Ni, 99TcO4, and 22Na were preferentially concentrated in the damaged striatum and hippocampus, whereas 65Zn, 59Fe, 32PO4, and 147Pm did not accumulate in irreversibly injured tissue. Of the radiochemicals tested to date, Ni, TcO4, and tetracycline may be useful for diagnosing ischemic brain injury in humans, using positron emission tomography.
Collapse
|
10
|
Yoshioka T, Inomata K, Tanaka O. Cytochemical localization of alkaline phosphatase in the ependyma of the rat medulla oblongata. Cell Tissue Res 1985; 241:415-20. [PMID: 4028132 DOI: 10.1007/bf00217188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ependyma of the IVth ventricle and the central canal of the rat medulla oblongata was investigated using the cytochemical technique for alkaline phosphatase (A1Pase) which revealed two types of ependymal cells in the medulla. The central canal type of the ependymal cell occupying the dorsal part of the central canal in the lower medulla exhibited intense A1Pase activity with light microscopy. These cells had reaction products in all plasma membranes, including the microvilli and the cilia at the luminal cell surface. Some cells appeared to be tanycytes, since the process reached the basement membrane of the parenchymal blood vessel. The ventricular type of ependymal cells, which form the floor of the IVth ventricle and the central canal, contained no reaction products in any structure of the luminal cell surface. The possible relationship between the cerebrospinal fluid and the nervous tissues through the ependymal linings is discussed.
Collapse
|
11
|
Flament-Durand J, Brion JP. Tanycytes: morphology and functions: a review. INTERNATIONAL REVIEW OF CYTOLOGY 1985; 96:121-55. [PMID: 2416706 DOI: 10.1016/s0074-7696(08)60596-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Rafols JA, Goshgarian HG. Spinal tanycytes in the adult rat: a correlative Golgi gold-toning study. Anat Rec (Hoboken) 1985; 211:75-86. [PMID: 3985381 DOI: 10.1002/ar.1092110112] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In Golgi impregnated transverse sections through the cervical spinal cord of the 7-12-week-old adult rat, numerous tanycytes were observed radiating from the ependyma into the gray matter that surrounds the central canal. The tail processes of these tanycytes terminated as foot processes in association with blood vessels. Spinal tanycytes were classified into ependymal (E) and subependymal (S) types on the basis of the shape and position of the soma. The soma of the E tanycyte was shaped as a column and was entirely located within the ependyma. In contrast, the soma of the S tanycyte was flask shaped, with the widest portion of the flask located subependymally and the elongated portion extending through the ependyma ultimately reaching the luminal surface. Selected Golgi impregnated sections were gold toned and deimpregnated for direct correlative analysis at the ultrastructural level. Gold-toned tanycytes contained the fine clusters of gold particles underlying the plasma membrane of the cell body and coarse clusters of gold particles throughout the tail and foot processes. The apical surface of tanycytes was characterized by numerous microvilli and large cytoplasmic protrusions that evaginated from the apical surface into the lumen of the central canal. At the luminal surface, adjacent tanycytes were joined laterally by junctional complexes with punctate tight junctions and zonulae adhaerentes associated with fibrils and microtubules. In contrast, gap junctions, hemidesmosomes, and puncta adhaerentia were found between adjacent tail processes of tanycytes. The foot processes interdigitated with one another and abutted the basal lamina around the perivascular space of blood vessels. The basal lamina was continuous around the lateral walls of foot processes and filled the spaces between membranous infoldings of the lateral walls. These basal membrane labyrinths were continuous with the basal lamina of the blood vessel and may provide an extensive surface relation between the perivascular space and the neighboring extracellular compartment. The findings of the present study support the contention that tanycytes may modify the composition of substances moving between the perivascular and extracellular spaces.
Collapse
|
13
|
Bambauer HJ, Ueno S, Umar H, Ueck M. Ultracytochemical localization of Ca++-ATPase activity in pituicytes of the neurohypophysis of the guinea pig. Cell Tissue Res 1984; 237:491-7. [PMID: 6237726 DOI: 10.1007/bf00228433] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ca++-ATPase activity (cf. Ando et al. 1981) was examined both light- and electron-microscopically in the neurohypophysis of the guinea pig. Apart from a strong activity within the walls of the blood vessels, in the parenchyma of the neurohypophysis the reaction product of the Ca++-ATPase activity was restricted to the plasmalemma of the pituicytes. This reaction was completely dependent upon Ca++ and the substrate, ATP; the reaction was inhibited by 0.1 mM quercetin, an inhibitor of Ca++-ATPase. A reduction of the enzyme activity occurred by 1) adding Mg++ to the standard incubation medium, and 2) substituting Ca++ with Mg++ at varying concentrations. In all experiments the neurosecretory fibers were devoid of Ca++-ATPase activity. The function of the Ca++-ATPase activity in the plasmalemma of the pituicytes is discussed in connection with the regulation of the extracellular Ca++ concentration, which seems to be important with respect to the discharge of secretory material from the neurosecretory fibers.
Collapse
|
14
|
Pixley SK, de Vellis J. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res 1984; 317:201-9. [PMID: 6383523 DOI: 10.1016/0165-3806(84)90097-x] [Citation(s) in RCA: 452] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A monoclonal antibody to vimentin (RBA1) and a polyclonal antiserum to glial fibrillary acidic protein (GFAP) were used in double labeling experiments to examine astrocyte intermediate filaments in development and wounding. RBA1 bound to radial glia in newborn rat parietal cortex that are predominantly anti-GFAP-negative. The RBA1-positive radial fibers disappeared by postnatal day 20 with the greatest rate of disappearance occurring between day 8 and day 15. Between birth and day 20, the anti-GFAP staining increased to the adult pattern in mature shaped astrocytes. Some overlay was observed between the binding patterns of the two antibodies. Stab wounds to cortical areas were made at a developmental time when there were normally no RBA1-positive astrocytes. RBA1-positivity was present in some astrocytes but only at the edges of the wounds. The distribution patterns of RBA1-positive cells led to hypotheses concerning the possible function of vimentin in astrocytes and its regulation during development and wounding.
Collapse
|
15
|
Abstract
Ventriculo-cisternal perfusion of horseradish peroxidase (HRP) in the mouse brain has demonstrated that a brain-blood barrier exists at the microvascular endothelium in brain parenchyma but not in the median eminence of the hypothalamus. The brain-blood barrier is similar to the blood-brain barrier in that: tight junctions prevent the movement of protein between endothelial cells, HRP taken into the endothelial cells is directed to lysosomal dense bodies, and, contrary to the literature, a vesicular transendothelial transport of HRP from brain to blood does not occur under normal conditions. The endocytosis of ventricular injected HRP from the abluminal side of the endothelium is demonstrably less than the endocytosis of intravenous injected HRP from the luminal side; hence, the cerebral endothelium expresses a degree of polarity regarding the internalization of its cell surface membrane and extracellular protein. The passage of cerebrospinal fluid-borne or blood-borne HRP between some ependymal cells of the median eminence is not precluded by tight junctions. These patent extracellular channels offer a direct pathway for the exchange of substances between cerebrospinal fluid in the third ventricle and fenestrated capillaries in the median eminence.
Collapse
|
16
|
Raedler E, Raedler A, Wegener G. The median ventricular formation. A distinct structure at the mesencephalic apex. ANATOMY AND EMBRYOLOGY 1982; 165:377-87. [PMID: 7158819 DOI: 10.1007/bf00305574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The prenatal ontogenesis of the median ventricular formation (MVF)--a cell group at the seam between both sides of the mesencephalic roof--was analyzed ultrastructurally, autoradiographically and for the expression of intracytoplasmatic structures, i.e. glial filament antigen. As compared with other regions of the mesencephalic roof it was found that from embryonal day 12 onwards DNA synthesis of ventricular cells in the dorsal midline is significantly reduced. This reduction is more pronounced at later developmental stages. On the other hand, the MVF gains drastically in width during ontogenesis. It was shown that this increase may be caused by an immigration of postmitotic neighbouring ventricular cells. The characteristic morphological feature of MVF cells is their extension from the ventricular lining to the pial basement membrane. Their dorsal processes are joined to a thin fibre bundle and predominantly display microtubules as well as filaments and glycogen within their electrolucent cytoplasm. They also contain intracellular structures that react with antibodies against glial filaments as revealed by an enzyme-coupled immunolabelling. The perikarya of MVF cells, on the other hand, are almost all situated at the same level within the ventral third of the mesencephalic roof, thus bulging concentrically at the lateral sides of the MVF. Characteristically, a subfraction of MVF cells exhibits vast amounts of rough ER. The nature and function of the MVF cells is discussed in the light of the concept of guidance of preneurons by radial glia (Sidman and Rakic 1973).
Collapse
|
17
|
Hajós F, Feminger A, Bascó E, Mezey E. Transport of horseradish peroxidase by processes of radial glia from the pial surface into the mouse brain. Cell Tissue Res 1982; 224:189-94. [PMID: 7094007 DOI: 10.1007/bf00217278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The transport of horseradish peroxidase (HRP) applied to exposed pial surfaces of the brain was studied in newborn, 4-, 7- and 12-day-old, and adult mice. In the telencephalon the cell bodies of radial glia were found to accumulate the tracer. Labeled cells occurred in the subventricular zone of the lateral ventricle during the first postnatal week; they became gradually restricted to an area around the stria terminalis (ventrolateral ventricular corner) by day 12. At later stages no HRP transport could be traced from the surface of the telencephalon. In the cerebellum, HRP was transported from the surface to the cell bodies of Bergmann glia in all age groups studied including adult animals. It is concluded that radial glia and their derivatives share the capacity of transporting material between various cerebrospinal fluid compartments.
Collapse
|
18
|
Bigotte L, Olsson Y. Cytofluorescence localization of adriamycin in the nervous system. III. Distribution of the drug in the brain of normal adult mice after intraventricular and arachnoidal injections. Acta Neuropathol 1982; 58:193-202. [PMID: 6760650 DOI: 10.1007/bf00690801] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Gotow T, Hashimoto PH. Graded differences in tightness of ependymal intercellular junctions within and in the vicinity of the rat median eminence. JOURNAL OF ULTRASTRUCTURE RESEARCH 1981; 76:293-311. [PMID: 7299904 DOI: 10.1016/s0022-5320(81)80060-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Abstract
Utilizing Golgi-Cox impregnation, tanycytes were found in the ependyma of the cerebral aqueduct of the neonatal and adult rabbit. These tanycyte somas showed a variety of shapes, apical projections into the aqueduct, and basal processes (shafts) projecting into the mesencephalon, particularly into the periaqueductal gray (PAG). The shafts showed a variety of branching patterns, and sometimes abutted or terminated on capillaries or on specific neuronal elements. Other shafts coiled within the PAG or terminated within the neuropil of the mesencephalon. It is possible that these tanycytes provide a route for transport of cerebrospinal-fluid-borne substances from the aqueduct to the neuronal regions and vasculature of the mesencephalon. The presence of these tanycytes with complex branching patterns in proximity to neural and vascular structures suggests a permanent, active role for these specialized ependymal cells.
Collapse
|
21
|
Bascó E, Woodhams PL, Hajós F, Balázs R. Immunocytochemical demonstration of glial fibrillary acidic protein in mouse tanycytes. ANATOMY AND EMBRYOLOGY 1981; 162:217-22. [PMID: 7025708 DOI: 10.1007/bf00306493] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Immunohistochemical techniques were used to stain for the astrocytespecific glial fibrillary acidic protein (GFAP) in the cells lining the third ventricle of the developing and mature mouse brain. Before birth immunoreactive tanycytes were only observed in the infundibular recess of the median eminence, where they could first be seen at embryonic day 17. They possessed long processes running towards the ventral surface on the brain. During the early postnatal period GFAP-positive tanycytes gradually appeared throughout the third ventricle, although the ependymal cells themselves remained unstained. The tanycytes retained thier immunoreactivity for anti-GFAP serum in the adult, and were also evident in the adult rat third ventricle indicates that they, the transient radial glia of the developing cerebral cortex, the persistent Bergmann glia of the cerebellum, similar astrocytes with radial processes in the hippocampal dentate gyrus and conventional astroglia are all closely related cell types.
Collapse
|
22
|
Egorova IF. Incorporation of [3H]estradiol into elements of tanicytic and ciliary ependyma of third ventricle of brain in vitro. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1980; 10:485-9. [PMID: 7219687 DOI: 10.1007/bf01195515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Nozaki M, Uemura H, Kobayashi H. Hypothalamo-hypophysial function following the lesion of tanycytes in the median eminence of the rat. Cell Tissue Res 1980; 209:225-38. [PMID: 7397767 DOI: 10.1007/bf00237628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transport of hormones from the cerebrospinal fluid to the adenohypophysis by the tanycytes of the median eminence was examined in male rats. Electron microscopy revealed that all ependymal cells including the tanycytes disappear or degenerate in rats subjected to electric cauterization of the ependymal layer lining the third ventricle. However, the granular axons in the palisade layer of the median eminence remain intact. In rats subjected to electric lesion, no significant change was found in either the serum-LH level or in the weight of the adenohypophysis, testes, adrenal and thyroid glands. It is concluded that the tanycytes do not participate in the hypothalamic regulation of hypophysial function.
Collapse
|
24
|
Ives PJ, McArthur NH. The armadillo infundibulum: correlative histochemistry, scanning and transmission electron microscopy of the ventricular surface. Brain Res 1980; 190:385-97. [PMID: 7370796 DOI: 10.1016/0006-8993(80)90281-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The ependymal and supraependymal cells of the armadillo infundibulum (INF) were investigated by correlative histochemistry, scanning and transmission electron microscopy. Eighteen armadillos (8 adult females, 6 adult males, 2 immature females and 2 immature males) were examined. The following supraependymal elements were observed: (a) individual pleiomorphic cells made up of neurons, macrophages, and astrocytic-glial cells; (b) numerous spherical blebs of various sizes occurring singly or in clusters; (c) axons, traversing the surface alone or in association with macrophages and other SEC; (d) multicellular clusters containing SEC, macrophages, axons and other cell types. There were neurosecretory axons or blebs on and below the ependymal cell layer and a unique arrangement of multipolar cells and their processes, traversing the INF floor for several millimeters. The presence of neurosecretory axons at the INF ventricular surface, spherical blebs and SEC in contact with one another via long filaments or vast networks of smaller axons on the surface and numerous macrophages in close apposition to possible metabolic and transport sites give evidence of organized activity in a regulatory system.
Collapse
|
25
|
Gopinath G, Bhatia R, Gopinath PG. Ultrastructural observations in experimental hydrocephalus in the rabbit. J Neurol Sci 1979; 43:333-4. [PMID: 521832 DOI: 10.1016/0022-510x(79)90013-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the ependyma and periventricular brain tissues of the lateral, 3rd and 4th ventricles and the cervical spinal canal were studied electron-microscopically in young rabbits on the 9th day after injecting kaolin into the cisterna magna. The ependyma of the lateral ventricle overlying the white matter was notably stretched causing increased egress of CSF and disorganisation of the normal architecture of the white matter and capillaries. The neurons and glial cells close to the white matter showed edematous changes. The changes in the ependymal lining and the underlying grey matter were less severe in the dorsal part of the 3rd and the 4th ventricle. The ventral part of the 3rd ventricle was the least affected. The height and the arrangement of the ependymal cells, the surrounding grey matter with narrow interstitial spaces and the absorbing tanycytes seemed to be factors which were responsible for the minimal changes in these regions. The changes appeared to be reversible if the CSF pressure was relieved at this stage. The spinal canal remained unaffected in the majority of our hydrocephalic animals, which could probably be attributed to the type of animal and the degree of hydrocephalus.
Collapse
|
26
|
|
27
|
Abstract
A Golgi-Cox, histofluorescence, and electron microscopic examination of the serotonergic raphe nuclei of the rabbit medulla has revealed a large, vertically-oriented midline dendrite bundle extending from the floor of the fourth ventricle to the ventral boundary of nucleus raphe pallidus. The bundle was confined to the medulla, and averaged 150-200 micrometer in width in the adult. This dendrite bundle received contributions from four major sources: (1) Dendrites of midline and paramedian neurons of nucleus raphe obscurus; (2) Dendrites of midline and paramedian neurons of nucleus raphe pallidus; (3) Shafts from tanycytes located on the midline floor of the fourth ventricle; and (4) Dendrites from neurons of the medullary reticular formation. Perikarya and dendrites of serotonergic raphe neurons frequently abutted tanycyte shafts, midline bhood vessels, and perikarya and dendrites of other raphe neurons. The tanycyte shafts extended from the floor of the fourth ventricle into the bundle, and often ran the entire length of the bundle, where they intertwined themselves among neurons and dendrites of the medullary raphe nuclei. This study suggests that neurons of the medullary raphe may be influenced by communication channels including dendro-dendritic contacts within the midline bundle, fourth ventricular cerebrospinal fluid-borne influences through tanycyte shafts, blood-borne influences through the direct neuronal-vascular relationship in the raphe, and traditionally described axonal contacts impinging upon raphe neurons. We suggest that the raphe neurons might act as both neurons and endocrine-neural transducer cells.
Collapse
|
28
|
|
29
|
Evan AP, Saland LC, Demski LS. The structure of the hypothalamic inferior lobes of the blacktip reef shark: scanning and transmission electron microscopic observations. J Morphol 1976; 150:59-78. [PMID: 966289 DOI: 10.1002/jmor.1051500104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inferior lobes of the shark hypothalamus were examined with light, transmission and scanning electron microscopy. The cells bordering the floor of the lateral recess appear to be typical liquor-contacting neurons. With scanning electron microscopy (SEM) the apical ends of these cells are seen to bulge into the ventricular lumen. In contrast, the roof is lined by a more typical ependymal cell characterized by numerous cilia and microvilli. In addition, SEM reveals several kinds of supraependymal cells with processes that appear to penetrate the ventricular lining. A periventricular nucleus underlies the ependymal cells. Neurons of the periventricular nucleus contain numerous lipofuchsin granules. The rest of the inferior lobe consists of many neuronal fibers. The morphology of the hypothalamic inferior lobe is discussed in relation to its possible role in feeding and aggressive behavior in both elasmobranchs and teleosts.
Collapse
|
30
|
Vandesande F, Dierickx K, De Mey J. Identification of separate vasopressin-neurophysin II and oxytocin-neurophysin I containing nerve fibres in the external region of the bovine median eminence. Cell Tissue Res 1975; 158:509-16. [PMID: 1164726 DOI: 10.1007/bf00220216] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Immuno-enzyme histochemical investigations showed the presence, in the external region of the bovine median eminence, of accumulations of vasopressin-neurophysin II- and oxytocin-neurophysin I-complexes. These two hormone-neurophysin complexes are located in separate fine varicose nerve fibres. The results strongly plead against an important role of tanycytes in the transport of vasopressin, oxytocin and neurophysins from the cerebrospinal fluid to the hypophysial portal blood-vessels.
Collapse
|