1
|
Hyun NP, Olberding JP, De A, Divi S, Liang X, Thomas E, St Pierre R, Steinhardt E, Jorge J, Longo SJ, Cox S, Mendoza E, Sutton GP, Azizi E, Crosby AJ, Bergbreiter S, Wood RJ, Patek SN. Spring and latch dynamics can act as control pathways in ultrafast systems. BIOINSPIRATION & BIOMIMETICS 2023; 18:026002. [PMID: 36595244 DOI: 10.1088/1748-3190/acaa7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Ultrafast movements propelled by springs and released by latches are thought limited to energetic adjustments prior to movement, and seemingly cannot adjust once movement begins. Even so, across the tree of life, ultrafast organisms navigate dynamic environments and generate a range of movements, suggesting unrecognized capabilities for control. We develop a framework of control pathways leveraging the non-linear dynamics of spring-propelled, latch-released systems. We analytically model spring dynamics and develop reduced-parameter models of latch dynamics to quantify how they can be tuned internally or through changing external environments. Using Lagrangian mechanics, we test feedforward and feedback control implementation via spring and latch dynamics. We establish through empirically-informed modeling that ultrafast movement can be controllably varied during latch release and spring propulsion. A deeper understanding of the interconnection between multiple control pathways, and the tunability of each control pathway, in ultrafast biomechanical systems presented here has the potential to expand the capabilities of synthetic ultra-fast systems and provides a new framework to understand the behaviors of fast organisms subject to perturbations and environmental non-idealities.
Collapse
Affiliation(s)
- N P Hyun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - J P Olberding
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - A De
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - S Divi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - X Liang
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - E Thomas
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - R St Pierre
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - E Steinhardt
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - J Jorge
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - S J Longo
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - S Cox
- Biology Department, Duke University, Durham, NC 27708, United States of America
| | - E Mendoza
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - G P Sutton
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - E Azizi
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, United States of America
| | - A J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - S Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - R J Wood
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - S N Patek
- Biology Department, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
2
|
Nadein K, Kovalev A, Gorb SN. Jumping mechanism in the marsh beetles (Coleoptera: Scirtidae). Sci Rep 2022; 12:15834. [PMID: 36138092 PMCID: PMC9500066 DOI: 10.1038/s41598-022-20119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
The jumping mechanism with supporting morphology and kinematics is described in the marsh beetle Scirtes hemisphaericus (Coleoptera: Scirtidae). In marsh beetles, the jump is performed by the hind legs by the rapid extension of the hind tibia. The kinematic parameters of the jump are: 139–1536 m s−2 (acceleration), 0.4–1.9 m s−1 (velocity), 2.7–8.4 ms (time to take-off), 0.2–5.4 × 10–6 J (kinetic energy) and 14–156 (g-force). The power output of a jumping leg during the jumping movement is 3.5 × 103 to 9.6 × 103 W kg−1. A resilin-bearing elastic extensor ligament is considered to be the structure that accumulates the elastic strain energy. The functional model of the jumping involving an active latching mechanism is proposed. The latching mechanism is represented by the conical projection of the tibial flexor sclerite inserted into the corresponding socket of the tibial base. Unlocking is triggered by the contraction of flexor muscle pulling the tibial flexor sclerite backwards which in turn comes out of the socket. According to the kinematic parameters, the time of full extension of the hind tibia, and the value of the jumping leg power output, this jumping mechanism is supposed to be latch-mediated spring actuation using the contribution of elastically stored strain energy.
Collapse
Affiliation(s)
- Konstantin Nadein
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Alexander Kovalev
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|
3
|
Wang Z, Zhan Y, Yang Y, Wu J. Hollow mandibles: Structural adaptation to high-speed and powerful strike in the trap-jaw ant Odontomachus monticola. JOURNAL OF INSECT PHYSIOLOGY 2022; 141:104426. [PMID: 35907587 DOI: 10.1016/j.jinsphys.2022.104426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The trap-jaw ant Odontomachus monticola manipulates its hollow mandibles to generate extremely high speed to impact various objects through a catapult mechanism, making the violent collision occur between the mandible and the impacted objects, which increases the risk of structural failure. However, how the ant balances the trade-off between the powerful clamping and impact resistance by using this hollow structure remains elusive. In this combined experimental and theoretical investigation, we revealed that the hollowness ratio of the mandible plays an essential role in counterbalancing the trade-off. Micro-CT and high-speed images suggested that the hollow mandibles facilitate a high angular acceleration to 108 rad/s2 for an enormous clamping force. However, this hollowness might challenge the structural strength while collision occurs. We found that under the same actuating energy, the von Mises stress of the object collided by the natural mandible striking can reach up to 2.9 times that generated by the entirely solid mandible. We defined the efficiency ratio of the von Mises stress on the impacted object to that on the mandible and found the hollow mandible achieves a more robust balance between powerful clamping and impact resistance compared to the solid mandible.
Collapse
Affiliation(s)
- Zixin Wang
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yuping Zhan
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Yunqiang Yang
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Jianing Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Shenzhen 518107, PR China.
| |
Collapse
|
4
|
Sutton GP, St Pierre R, Kuo CY, Summers AP, Bergbreiter S, Cox S, Patek SN. Dual spring force couples yield multifunctionality and ultrafast, precision rotation in tiny biomechanical systems. J Exp Biol 2022; 225:275995. [PMID: 35863219 DOI: 10.1242/jeb.244077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 12/31/2022]
Abstract
Small organisms use propulsive springs rather than muscles to repeatedly actuate high acceleration movements, even when constrained to tiny displacements and limited by inertial forces. Through integration of a large kinematic dataset, measurements of elastic recoil, energetic math modeling and dynamic math modeling, we tested how trap-jaw ants (Odontomachus brunneus) utilize multiple elastic structures to develop ultrafast and precise mandible rotations at small scales. We found that O. brunneus develops torque on each mandible using an intriguing configuration of two springs: their elastic head capsule recoils to push and the recoiling muscle-apodeme unit tugs on each mandible. Mandibles achieved precise, planar, circular trajectories up to 49,100 rad s-1 (470,000 rpm) when powered by spring propulsion. Once spring propulsion ended, the mandibles moved with unconstrained and oscillatory rotation. We term this mechanism a 'dual spring force couple', meaning that two springs deliver energy at two locations to develop torque. Dynamic modeling revealed that dual spring force couples reduce the need for joint constraints and thereby reduce dissipative joint losses, which is essential to the repeated use of ultrafast, small systems. Dual spring force couples enable multifunctionality: trap-jaw ants use the same mechanical system to produce ultrafast, planar strikes driven by propulsive springs and for generating slow, multi-degrees of freedom mandible manipulations using muscles, rather than springs, to directly actuate the movement. Dual spring force couples are found in other systems and are likely widespread in biology. These principles can be incorporated into microrobotics to improve multifunctionality, precision and longevity of ultrafast systems.
Collapse
Affiliation(s)
- Gregory P Sutton
- School of Life Sciences , University of Lincoln, Lincoln LN6 7TS, UK
| | - Ryan St Pierre
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Chi-Yun Kuo
- Biology Department, Duke University, Durham, NC 27708, USA
| | - Adam P Summers
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Suzanne Cox
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - S N Patek
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
5
|
Larabee FJ, Gibson JC, Rivera MD, Anderson PSL, Suarez AV. Muscle fatigue in the latch-mediated spring actuated mandibles of trap-jaw ants. Integr Comp Biol 2022; 62:icac091. [PMID: 35689666 DOI: 10.1093/icb/icac091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Muscle fatigue can reduce performance potentially affecting an organism's fitness. However, some aspects of fatigue could be overcome by employing a latch-mediated spring actuated system (LaMSA) where muscle activity is decoupled from movement. We estimated the effects of muscle fatigue on different aspects of mandible performance in six species of ants, two whose mandibles are directly actuated by muscles and four that have LaMSA "trap-jaw" mandibles. We found evidence that the LaMSA system of trap-jaw ants may prevent some aspects of performance from declining with repeated use, including duration, acceleration and peak velocity. However, inter-strike interval increased with repeated strikes suggesting that muscle fatigue still comes into play during the spring loading phase. In contrast, one species with directly actuated mandibles showed a decline in bite force over time. These results have implications for design principles aimed at minimizing the effects of fatigue on performance in spring and motor actuated systems.
Collapse
Affiliation(s)
- Fredrick J Larabee
- Department of Evolution, Ecology and Behavior
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 1000 Constitution Ave., Washington DC
| | - Josh C Gibson
- Department of Entomology
- Beckman Institute for Advanced Science and Technology. University of Illinois Urbana Champaign. 515 Morrill Hall. 505 S. Goodwin Ave., Urbana, IL. 61801
| | | | - Philip S L Anderson
- Department of Evolution, Ecology and Behavior
- Beckman Institute for Advanced Science and Technology. University of Illinois Urbana Champaign. 515 Morrill Hall. 505 S. Goodwin Ave., Urbana, IL. 61801
| | - Andrew V Suarez
- Department of Evolution, Ecology and Behavior
- Department of Entomology
- Program in Ecology, Evolution and Conservation Biology
- Beckman Institute for Advanced Science and Technology. University of Illinois Urbana Champaign. 515 Morrill Hall. 505 S. Goodwin Ave., Urbana, IL. 61801
| |
Collapse
|
6
|
Nonlinear elasticity and damping govern ultrafast dynamics in click beetles. Proc Natl Acad Sci U S A 2021; 118:2014569118. [PMID: 33468629 DOI: 10.1073/pnas.2014569118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many small animals use springs and latches to overcome the mechanical power output limitations of their muscles. Click beetles use springs and latches to bend their bodies at the thoracic hinge and then unbend extremely quickly, resulting in a clicking motion. When unconstrained, this quick clicking motion results in a jump. While the jumping motion has been studied in depth, the physical mechanisms enabling fast unbending have not. Here, we first identify and quantify the phases of the clicking motion: latching, loading, and energy release. We detail the motion kinematics and investigate the governing dynamics (forces) of the energy release. We use high-speed synchrotron X-ray imaging to observe and analyze the motion of the hinge's internal structures of four Elater abruptus specimens. We show evidence that soft cuticle in the hinge contributes to the spring mechanism through rapid recoil. Using spectral analysis and nonlinear system identification, we determine the equation of motion and model the beetle as a nonlinear single-degree-of-freedom oscillator. Quadratic damping and snap-through buckling are identified to be the dominant damping and elastic forces, respectively, driving the angular position during the energy release phase. The methods used in this study provide experimental and analytical guidelines for the analysis of extreme motion, starting from motion observation to identifying the forces causing the movement. The tools demonstrated here can be applied to other organisms to enhance our understanding of the energy storage and release strategies small animals use to achieve extreme accelerations repeatedly.
Collapse
|
7
|
Aonuma H. Serotonergic control in initiating defensive responses to unexpected tactile stimuli in the trap-jaw ant Odontomachus kuroiwae. J Exp Biol 2020; 223:jeb228874. [PMID: 32895325 DOI: 10.1242/jeb.228874] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/26/2020] [Indexed: 02/03/2023]
Abstract
The decision to express either a defensive response or an escape response to a potential threat is crucial for insects to survive. This study investigated an aminergic mechanism underlying defensive responses to unexpected touch in an ant that has powerful mandibles, the so-called trap-jaw. The mandibles close extremely quickly and are used as a weapon during hunting. Tactile stimulation to the abdomen elicited quick forward movements in a dart escape in 90% of the ants in a colony. Less than 10% of the ants responded with a quick defensive turn towards the source of stimulation. To reveal the neuronal mechanisms underlying this defensive behavior, the effect of brain biogenic amines on the responses to tactile stimuli were investigated. The levels of octopamine (OA), dopamine (DA) and serotonin (5HT) in the brain were significantly elevated in ants that responded with a defensive turn to the unexpected stimulus compared with ants that responded with a dart escape. Oral administration of DA and 5HT demonstrated that both amines contributed to the initiation of a defensive response. Oral administration of l-DOPA weakly affected the initiation of the defensive turn, while 5-hydroxy-l-tryptophan (5HTP) strongly affected the initiation of defensive behavior. Oral administration of ketanserin, a 5HT antagonist, inhibited the initiation of the defensive turn in aggressive workers, abolishing the effects of both 5HT and 5HTP on the initiation of turn responses. These results indicate that 5HTergic control in the nervous system is a key for the initiation of defensive behavior in the trap-jaw ant.
Collapse
Affiliation(s)
- Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
8
|
Barden P, Perrichot V, Wang B. Specialized Predation Drives Aberrant Morphological Integration and Diversity in the Earliest Ants. Curr Biol 2020; 30:3818-3824.e4. [PMID: 32763171 DOI: 10.1016/j.cub.2020.06.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Extinct haidomyrmecine "hell ants" are among the earliest ants known [1, 2]. These eusocial Cretaceous taxa diverged from extant lineages prior to the most recent common ancestor of all living ants [3] and possessed bizarre scythe-like mouthparts along with a striking array of horn-like cephalic projections [4-6]. Despite the morphological breadth of the fifteen thousand known extant ant species, phenotypic syndromes found in the Cretaceous are without parallel and the evolutionary drivers of extinct diversity are unknown. Here, we provide a mechanistic explanation for aberrant hell ant morphology through phylogenetic reconstruction and comparative methods, as well as a newly reported specimen. We report a remarkable instance of fossilized predation that provides direct evidence for the function of dorsoventrally expanded mandibles and elaborate horns. Our findings confirm the hypothesis that hell ants captured other arthropods between mandible and horn in a manner that could only be achieved by articulating their mouthparts in an axial plane perpendicular to that of modern ants. We demonstrate that the head capsule and mandibles of haidomyrmecines are uniquely integrated as a consequence of this predatory mode and covary across species while finding no evidence of such modular integration in extant ant groups. We suggest that hell ant cephalic integration-analogous to the vertebrate skull-triggered a pathway for an ancient adaptive radiation and expansion into morphospace unoccupied by any living taxon.
Collapse
Affiliation(s)
- Phillip Barden
- Department of Biological Sciences, New Jersey Institute of Technology, Dr Martin Luther King Jr Boulevard, Newark, NJ 07102, USA; Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, New York, NY 10024, USA.
| | - Vincent Perrichot
- Univ Rennes, CNRS, Géosciences Rennes - UMR 6118, 35000 Rennes, France.
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
9
|
Hoenle PO, Lattke JE, Donoso DA, von Beeren C, Heethoff M, Schmelzle S, Argoti A, Camacho L, Ströbel B, Blüthgen N. Odontomachus davidsoni sp. nov. (Hymenoptera, Formicidae), a new conspicuous trap-jaw ant from Ecuador. Zookeys 2020; 948:75-105. [PMID: 32765172 PMCID: PMC7381719 DOI: 10.3897/zookeys.948.48701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/27/2020] [Indexed: 01/09/2023] Open
Abstract
One of the largest species in its genus, Odontomachusdavidsoni Hoenle, Lattke & Donoso, sp. nov. is described from workers and queens collected at lowland forests in the Chocó-Darién bioregion in coastal Ecuador. The workers are characterized by their uniform red coloration, their large size (16–18 mm body length), and their frontal head striation that reaches the occipital margin. DNA barcodes (COI) and high resolution 2D images of the type material are provided, as well as an updated key for the Neotropical species of Odontomachus. In addition, a three-dimensional digital model of the worker holotype and a paratype queen scanned with DISC3D based on photogrammetry is presented, for the first time in a species description. Findings of large and conspicuous new species are uncommon around the world and suggest that these Ecuadorian rainforests may conceal many more natural treasures that deserve conservation.
Collapse
Affiliation(s)
- Philipp O Hoenle
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - John E Lattke
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - David A Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador.,Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito EC170103, Ecuador
| | - Christoph von Beeren
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Michael Heethoff
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Sebastian Schmelzle
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Adriana Argoti
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Luis Camacho
- Department of Zoology, University of British Columbia,Vancouver, Canada
| | | | - Nico Blüthgen
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
10
|
Grasso DA, Giannetti D, Castracani C, Spotti FA, Mori A. Rolling away: a novel context-dependent escape behaviour discovered in ants. Sci Rep 2020; 10:3784. [PMID: 32123182 PMCID: PMC7051971 DOI: 10.1038/s41598-020-59954-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
For animals facing dangers, the best option to optimize costs and benefits of defence sometimes may be avoidance. Here we report the discovery of a peculiar strategy adopted by Myrmecina graminicola, a cryptic ant living in forest floor. Experiments showed that when disturbed these ants respond with immobility. However, upon perceiving disturbance but under specific inclinations of the substrate, they shift to an active escaping strategy: rolling away. This is a context-dependent behaviour adopted only in appropriate circumstances. During rolling, the ants assume a ball-like shape using antennae and hind legs to obtain an active movement along a stable trajectory. Finally, we assessed the adaptive value of this strategy measuring its effectiveness in defence against enemies. This is the first example of locomotion by rolling discovered in ants and one of the very few among animals, offering opportunities for multidisciplinary research on the adaptations and biomechanics underlying it.
Collapse
Affiliation(s)
- Donato A Grasso
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Viale delle Scienze11/a, 43124, Parma, Italy.
| | - Daniele Giannetti
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Viale delle Scienze11/a, 43124, Parma, Italy
| | - Cristina Castracani
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Viale delle Scienze11/a, 43124, Parma, Italy
| | - Fiorenza A Spotti
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Viale delle Scienze11/a, 43124, Parma, Italy
| | - Alessandra Mori
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Viale delle Scienze11/a, 43124, Parma, Italy
| |
Collapse
|
11
|
Zhang W, Li M, Zheng G, Guan Z, Wu J, Wu Z. Multifunctional mandibles of ants: Variation in gripping behavior facilitated by specific microstructures and kinematics. JOURNAL OF INSECT PHYSIOLOGY 2020; 120:103993. [PMID: 31836493 DOI: 10.1016/j.jinsphys.2019.103993] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/25/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
The elongated mandibles of certain ant species are dexterous grippers that can output a wide range of forces as needed for various tasks. Our combined experimental and theoretical research reveals the multifunctionality of the mandibles of Harpegnathos venator that is facilitated by specific microstructures and characteristic kinematics. First, we found that H. venator can pull off a spider's (Heteropoda venatoria) leg by closing its long mandibles. We observed that the ant usually clamps the spider's leg using the distal or middle part of its mandibles. In contrast, the ant can grip its egg with the proximal parts of its mandibles without causing damage. Our results showed that the spider's legs are always fractured at the coxa-trochanteral joint. Second, we found that the force required to fracture the spider's leg can be up to 500 times the ant's body weight. On the other hand, the maximum force can be controlled to less than 2×10- 6N while gripping an egg. By combining microstructure imaging, kinematic tracking and mathematical modeling, we uncovered that the sharp teeth and dense bristles on the internal side of the mandibles determine the high adhesion force, while the concave teeth and biaxial rotation of the mandibles facilitate gentle gripping. We validated our findings by constructing an artificial mandible pair. This work expands the knowledge of the physiological multifunctionality in ant mandibles, and provides novel ways to reveal the multifunctionality in insect appendages by applying the tools of mechanical analysis and related experimental devices.
Collapse
Affiliation(s)
- Wei Zhang
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Minghao Li
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Guobin Zheng
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Zijin Guan
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Jianing Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| | - Zhigang Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
12
|
Silva TSR, Feitosa RM. Using controlled vocabularies in anatomical terminology: A case study with Strumigenys (Hymenoptera: Formicidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 52:100877. [PMID: 31357032 DOI: 10.1016/j.asd.2019.100877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Morphological studies of insects can help us to understand the concomitant or sequential functionality of complex structures and may be used to hypothetize distinct levels of phylogenetic relationship among groups. Traditional morphological works, generally, have encompassed a set of elements, including descriptions of structures and their respective conditions, literature references and images, all combined in a single document. Fast forward to the digital era, it is now possible to release this information simultaneously but also independently as data sets linked to the original publication in an external environment. In order to link data from various fields of knowledge, disseminating morphological information in an open environment, it is important to use tools that enhance interoperability. For example, semantic annotations facilitate the dissemination and retrieval of phenotypic data in digital environments. The integration of semantic (i.e. web-based) components with anatomic treatments can be used to generate a traditional description in natural language along with a set of semantic annotations. The ant genus Strumigenys currently comprises about 840 described species distributed worldwide. In the Neotropical region, almost 200 species are currently known, but it is possible that much of the species' diversity there remains unexplored and undescribed. The morphological diversity in the genus is high, reflecting an extreme generic reclassification that occurred in the late 20th and early 21st centuries. Here we define the anatomical concepts in this highly diverse group of ants using semantic annotations to enrich the anatomical ontologies available online, focussing on the definition of terms through subjacent conceptualization.
Collapse
Affiliation(s)
- Thiago S R Silva
- Department of Zoology, Universidade Federal do Paraná, Francisco Heráclito dos Santos Ave., Curitiba, PR, Brazil.
| | - Rodrigo M Feitosa
- Department of Zoology, Universidade Federal do Paraná, Francisco Heráclito dos Santos Ave., Curitiba, PR, Brazil.
| |
Collapse
|
13
|
Kehl CE, Wu J, Lu S, Neustadter DM, Drushel RF, Smoldt RK, Chiel HJ. Soft-surface grasping: radular opening in Aplysia californica. J Exp Biol 2019; 222:jeb191254. [PMID: 31350299 PMCID: PMC6739808 DOI: 10.1242/jeb.191254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
Grasping soft, irregular material is challenging both for animals and robots. The feeding systems of many animals have adapted to this challenge. In particular, the feeding system of the marine mollusk Aplysia californica, a generalist herbivore, allows it to grasp and ingest seaweeds of varying shape, texture and toughness. On the surface of the grasper of A. californica is a structure known as the radula, a thin flexible cartilaginous sheet with fine teeth. Previous in vitro studies suggested that intrinsic muscles, I7, are responsible for opening the radula. Lesioning I7 in vivo does not prevent animals from grasping and ingesting food. New in vitro studies demonstrate that a set of fine muscle fibers on the ventral surface of the radula - the sub-radular fibers (SRFs) - mediate opening movements even if the I7 muscles are absent. Both in vitro and in vivo lesions demonstrate that removing the SRFs leads to profound deficits in radular opening, and significantly reduces feeding efficiency. A theoretical biomechanical analysis of the actions of the SRFs suggests that they induce the radular surface to open around a central crease in the radular surface and to arch the radular surface, allowing it to softly conform to irregular material. A three-dimensional model of the radular surface, based on in vivo observations and magnetic resonance imaging of intact animals, provides support for the biomechanical analysis. These results suggest how a soft grasper can work during feeding, and suggest novel designs for artificial soft graspers.
Collapse
Affiliation(s)
- Catherine E Kehl
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joey Wu
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sisi Lu
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Richard F Drushel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rebekah K Smoldt
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Larabee FJ, Gronenberg W, Suarez AV. Performance, morphology and control of power-amplified mandibles in the trap-jaw ant Myrmoteras (Hymenoptera: Formicidae). J Exp Biol 2017; 220:3062-3071. [DOI: 10.1242/jeb.156513] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Trap-jaw ants are characterized by high-speed mandibles used for prey capture and defense. Power-amplified mandibles have independently evolved at least four times among ants, with each lineage using different structures as a latch, spring and trigger. We examined two species from the genus Myrmoteras (subfamily Formicinae), whose morphology is unique among trap-jaw ant lineages, and describe the performance characteristics, spring-loading mechanism and neuronal control of Myrmoteras strikes. Like other trap-jaw ants, Myrmoteras latch their jaws open while the large closer muscle loads potential energy in a spring. The latch differs from other lineages and is likely formed by the co-contraction of the mandible opener and closer muscles. The cuticle of the posterior margin of the head serves as a spring, and is deformed by approximately 6% prior to a strike. The mandibles are likely unlatched by a subgroup of closer muscle fibers with particularly short sarcomeres. These fast fibers are controlled by two large motor neurons whose dendrites overlap with terminals of large sensory neurons originating from labral trigger hairs. Upon stimulation of the trigger hairs, the mandibles shut in as little as 0.5 ms and at peak velocities that are comparable with other trap-jaw ants, but with much slower acceleration. The estimated power output of the mandible strike (21 kW kg−1) confirms that Myrmoteras jaws are indeed power amplified. However, the power output of Myrmoteras mandibles is significantly lower than distantly related trap-jaw ants using different spring-loading mechanisms, indicating a relationship between power-amplification mechanism and performance.
Collapse
Affiliation(s)
- Fredrick J. Larabee
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Wulfila Gronenberg
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew V. Suarez
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Animal Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana 61801, IL, USA
| |
Collapse
|
15
|
Evolution of hyperflexible joints in sticky prey capture appendages of harvestmen (Arachnida, Opiliones). ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0278-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
David S, Funken J, Potthast W, Blanke A. Musculoskeletal modeling of the dragonfly mandible system as an aid to understanding the role of single muscles in an evolutionary context. J Exp Biol 2016; 219:1041-9. [DOI: 10.1242/jeb.132399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022]
Abstract
Insects show a high variety of mouthpart and muscle configurations, however, their mouthpart kinematics and muscle activation patterns are known fragmentary. Understanding the role of muscle groups during movement and comparing them between insect groups could yield insights into evolutionary patterns and functional constraints. Here, we develop a mathematical inverse dynamic model including distinct muscles for an insect head-mandible-muscle complex based on micro computed tomography (µCT) data and bite force measurements. With the advent of µCT it is now possible to obtain precise spatial information about muscle attachment areas and head capsule construction in insects. Our model shows a distinct activation pattern for certain fiber groups potentially related to a geometry dependent optimization. Muscle activation patterns suggest that intramandibular muscles play a minor role for bite force generation which is a potential reason for their loss in several lineages of higher insects. Our model is in agreement with previous studies investigating fast and slow muscle fibers and is able to resolve the spatio-temporal activation patterns of these different muscle types in insects. The model used here has a high potential for comparative large scale analyses on the role of different muscle setups and head capsule designs in the megadiverse insects in order to aid our understanding of insect head capsule and mouthpart evolution under mechanical constraints.
Collapse
Affiliation(s)
- Sina David
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany
| | - Johannes Funken
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany
| | - Wolfgang Potthast
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany
- ARCUS Clinics Pforzheim, Rastatter Strasse 17-19, 75179 Pforzheim, Germany
| | - Alexander Blanke
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
17
|
Kagaya K, Patek SN. Feed-forward motor control of ultrafast, ballistic movements. ACTA ACUST UNITED AC 2015; 219:319-33. [PMID: 26643091 DOI: 10.1242/jeb.130518] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals.
Collapse
Affiliation(s)
- K Kagaya
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
18
|
Lambert EP, Motta PJ, Lowry D. Modulation in the feeding prey capture of the ant-lion, Myrmeleon crudelis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2011; 315:602-9. [PMID: 21953805 DOI: 10.1002/jez.709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/21/2011] [Accepted: 08/24/2011] [Indexed: 11/08/2022]
Abstract
Ant-lions are pit-building larvae (Neuroptera: Myrmeleontidae), which possess relatively large mandibles used for catching and consuming prey. Few studies involving terrestrial arthropod larva have investigated prey capture behavior and kinematics and no study has shown modulation of strike kinematics. We examined feeding kinematics of the ant-lion, Myrmeleon crudelis, using high-speed video to investigate whether larvae modulate strike behavior based on prey location relative to the mandible. Based on seven capture events from five M. crudelis, the strike took 17.60 ± 2.92 msec and was characterized by near-simultaneous contact of both mandibles with the prey. Modulation of the angular velocity of the mandibles based on prey location was clearly demonstrated. M. crudelis larvae attempted to simultaneously contact prey with both mandibles by increasing mean angular velocity of the far mandible (65 ± 21 rad sec(-1) ) compared with the near mandible (35 ± 14 rad sec(-1) ). Furthermore, kinematic results showed a significant difference for mean angular velocity between the two mandibles (P<0.005). Given the lengthy strike duration compared with other fast-striking arthropods, these data suggest that there is a tradeoff between the ability to modulate strike behavior for accurate simultaneous mandible contact and the overall velocity of the strike. The ability to modulate prey capture behavior may increase dietary breadth and capture success rate in these predatory larvae by allowing responsive adjustment to small-scale variations in prey size, presentation, and escape response.
Collapse
Affiliation(s)
- Eric Patten Lambert
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA.
| | | | | |
Collapse
|
19
|
Deban SM, Lappin AK. Thermal effects on the dynamics and motor control of ballistic prey capture in toads: maintaining high performance at low temperature. ACTA ACUST UNITED AC 2011; 214:1333-46. [PMID: 21430211 DOI: 10.1242/jeb.048405] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Temperature has a strong influence on biological rates, including the contractile rate properties of muscle and thereby the velocity, acceleration and power of muscle-powered movements. We hypothesized that the dynamics of movements powered by elastic recoil have a lower thermal dependence than muscle-powered movements. We examined the prey capture behavior of toads (Bufo terrestris) using high speed imaging and electromyography to compare the effects of body temperature (11-35°C) on the kinematics, dynamics and motor control of two types of movement: (1) ballistic mouth opening and tongue projection, which are powered by elastic recoil, and (2) non-ballistic prey transport, including tongue retraction and mouth closing, which are powered directly by muscle contraction. Over 11-25°C, temperature coefficients of ballistic mouth opening and tongue projection dynamics (Q(10) of 0.99-1.25) were not significantly different from 1.00 and were consistently lower than those of prey transport movements (Q(10) of 1.77-2.26), supporting our main hypothesis. The depressor mandibulae muscle, which is responsible for ballistic mouth opening and tongue projection via the recovery of elastic strain energy stored by the muscle prior to the onset of the movement, was activated earlier and for a longer duration at lower temperatures (Q(10) of 2.29-2.41), consistent with a slowing of its contractile rates. Muscle recruitment was unaffected by temperature, as revealed by the lack of thermal dependence in the intensity of activity of both the jaw depressor and jaw levator muscles (Q(10) of 0.754-1.12). Over the 20-35°C range, lower thermal dependence was found for the dynamics of non-elastic movements and the motor control of both elastic and non-elastic movements, in accord with a plateau of high performance found in other systems.
Collapse
Affiliation(s)
- Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue SCA 110, Tampa, FL 33620, USA.
| | | |
Collapse
|
20
|
Claverie T, Chan E, Patek SN. MODULARITY AND SCALING IN FAST MOVEMENTS: POWER AMPLIFICATION IN MANTIS SHRIMP. Evolution 2010; 65:443-61. [DOI: 10.1111/j.1558-5646.2010.01133.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Cofer D, Cymbalyuk G, Heitler WJ, Edwards DH. Neuromechanical simulation of the locust jump. ACTA ACUST UNITED AC 2010; 213:1060-8. [PMID: 20228342 DOI: 10.1242/jeb.034678] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural circuitry and biomechanics of kicking in locusts have been studied to understand their roles in the control of both kicking and jumping. It has been hypothesized that the same neural circuit and biomechanics governed both behaviors but this hypothesis was not testable with current technology. We built a neuromechanical model to test this and to gain a better understanding of the role of the semi-lunar process (SLP) in jump dynamics. The jumping and kicking behaviors of the model were tested by comparing them with a variety of published data, and were found to reproduce the results from live animals. This confirmed that the kick neural circuitry can produce the jump behavior. The SLP is a set of highly sclerotized bands of cuticle that can be bent to store energy for use during kicking and jumping. It has not been possible to directly test the effects of the SLP on jump performance because it is an integral part of the joint, and attempts to remove its influence prevent the locust from being able to jump. Simulations demonstrated that the SLP can significantly increase jump distance, power, total energy and duration of the jump impulse. In addition, the geometry of the joint enables the SLP force to assist leg flexion when the leg is flexed, and to assist extension once the leg has begun to extend.
Collapse
Affiliation(s)
- D Cofer
- Departments of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
22
|
Evidence of behavioral co-option from context-dependent variation in mandible use in trap-jaw ants (Odontomachus spp.). Naturwissenschaften 2008; 96:243-50. [DOI: 10.1007/s00114-008-0473-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/24/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
23
|
Spagna JC, Vakis AI, Schmidt CA, Patek SN, Zhang X, Tsutsui ND, Suarez AV. Phylogeny, scaling, and the generation of extreme forces in trap-jaw ants. J Exp Biol 2008; 211:2358-68. [DOI: 10.1242/jeb.015263] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYTrap-jaw ants of the genus Odontomachus produce remarkably fast predatory strikes. The closing mandibles of Odontomachus bauri, for example, can reach speeds of over 60 m s–1. They use these jaw strikes for both prey capture and locomotion – by striking hard surfaces, they can launch themselves into the air. We tested the hypothesis that morphological variation across the genus is correlated with differences in jaw speeds and accelerations. We video-recorded jaw-strikes at 70 000–100 000 frames s–1 to measure these parameters and to model force production. Differences in mean speeds ranged from 35.9±7.7 m s–1 for O. chelifer, to 48.8±8.9 m s–1 for O. clarus desertorum. Differences in species' accelerations and jaw sizes resulted in maximum strike forces in the largest ants (O. chelifer) that were four times those generated by the smallest ants (O. ruginodis). To evaluate phylogenetic effects and make statistically valid comparisons, we developed a phylogeny of all sampled Odontomachus species and seven outgroup species (19 species total) using four genetic loci. Jaw acceleration and jaw-scaling factors showed significant phylogenetic non-independence, whereas jaw speed and force did not. Independent contrast (IC) values were used to calculate scaling relationships for jaw length, jaw mass and body mass, which did not deviate significantly from isometry. IC regression of angular acceleration and body size show an inverse relationship, but combined with the isometric increase in jaw length and mass results in greater maximum strike forces for the largest Odontomachus species. Relatively small differences (3%) between IC and species-mean based models suggest that any deviation from isometry in species' force production may be the result of recent selective evolution, rather than deep phylogenetic signal.
Collapse
Affiliation(s)
- Joseph C. Spagna
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology and Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Antonis I. Vakis
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chris A. Schmidt
- Graduate Interdisciplinary Program in Insect Science, University of Arizona,Tucson, AZ 85721, USA
| | - Sheila N. Patek
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Xudong Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Neil D. Tsutsui
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Andrew V. Suarez
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology and Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
De la Mora A, Pérez-Lachaud G, Lachaud JP. Mandible strike: The lethal weapon of Odontomachus opaciventris against small prey. Behav Processes 2008; 78:64-75. [DOI: 10.1016/j.beproc.2008.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 12/12/2007] [Accepted: 01/07/2008] [Indexed: 11/27/2022]
|
25
|
Patek SN, Nowroozi BN, Baio JE, Caldwell RL, Summers AP. Linkage mechanics and power amplification of the mantis shrimp's strike. J Exp Biol 2007; 210:3677-88. [DOI: 10.1242/jeb.006486] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMantis shrimp (Stomatopoda) generate extremely rapid and forceful predatory strikes through a suite of structural modifications of their raptorial appendages. Here we examine the key morphological and kinematic components of the raptorial strike that amplify the power output of the underlying muscle contractions. Morphological analyses of joint mechanics are integrated with CT scans of mineralization patterns and kinematic analyses toward the goal of understanding the mechanical basis of linkage dynamics and strike performance. We test whether a four-bar linkage mechanism amplifies rotation in this system and find that the rotational amplification is approximately two times the input rotation, thereby amplifying the velocity and acceleration of the strike. The four-bar model is generally supported, although the observed kinematic transmission is lower than predicted by the four-bar model. The results of the morphological, kinematic and mechanical analyses suggest a multi-faceted mechanical system that integrates latches, linkages and lever arms and is powered by multiple sites of cuticular energy storage. Through reorganization of joint architecture and asymmetric distribution of mineralized cuticle, the mantis shrimp's raptorial appendage offers a remarkable example of how structural and mechanical modifications can yield power amplification sufficient to produce speeds and forces at the outer known limits of biological systems.
Collapse
Affiliation(s)
- S. N. Patek
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - B. N. Nowroozi
- Ecology and Evolutionary Biology, University of California–Irvine,Irvine, CA 92697-2525, USA
| | - J. E. Baio
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - R. L. Caldwell
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - A. P. Summers
- Ecology and Evolutionary Biology, University of California–Irvine,Irvine, CA 92697-2525, USA
| |
Collapse
|
26
|
Spence AJ, Neeves KB, Murphy D, Sponberg S, Land BR, Hoy RR, Isaacson MS. Flexible multielectrodes can resolve multiple muscles in an insect appendage. J Neurosci Methods 2007; 159:116-24. [PMID: 16899299 DOI: 10.1016/j.jneumeth.2006.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/06/2006] [Accepted: 07/06/2006] [Indexed: 11/22/2022]
Abstract
Research into the neuromechanical basis of behavior, either in biomechanics, neuroethology, or neuroscience, is frequently limited by methods of data collection. Two of the most pressing needs are for methods with which to (1) record from multiple neurons or muscles simultaneously and (2) perform this recording in intact, behaving animals. In this paper we present the fabrication and testing of flexible multielectrode arrays (fMEAs) that move us significantly towards these goals. The fMEAs were used to record the activity of several distinct units in the coxa of the cockroach Blaberus discoidalis. The devices fabricated here address the first goal in two ways: (1) their flexibility allows them to be inserted into an animal and guided through internal tissues in order to access distinct groups of neurons and muscles and (2) their recording site geometry has been tuned to suit the anatomy under study, yielding multichannel spike waveforms that are easily separable under conditions of spike overlap. The flexible nature of the devices simultaneously addresses the second goal, in that it is less likely to interfere with the natural movement of the animal.
Collapse
Affiliation(s)
- Andrew J Spence
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720-3140, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Paul J, Gronenberg W. Motor control of the mandible closer muscle in ants. JOURNAL OF INSECT PHYSIOLOGY 2002; 48:255-267. [PMID: 12770126 DOI: 10.1016/s0022-1910(01)00171-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Despite their simple design, ant mandible movements cover a wide range of forces, velocities and amplitudes. The mandible is controlled by the mandible closer muscle, which is composed of two functionally distinct subpopulations of muscle fiber types: fast fibers (short sarcomeres) and slow ones (long sarcomeres). The entire muscle is controlled by 10-12 motor neurons, 4-5 of which exclusively supply fast muscle fibers. Slow muscle fibers comprise a posterior and an antero-lateral group, each of which is controlled by 1-2 motor neurons. In addition, 3-4 motor neurons control all muscle fibers together. Simultaneous recordings of muscle activity and mandible movement reveal that fast movements require rapid contractions of fast muscle fibers. Slow and subtle movements result from the activation of slow muscle fibers. Forceful movements are generated by simultaneous co-activation of all muscle fiber types. Retrograde tracing shows that most dendritic arborizations of the different sets of motor neurons share the same neuropil in the subesophageal ganglion. In addition, fast motor neurons and neurons supplying the lateral group of slow closer muscle fibers each invade specific parts of the neuropil that is not shared by the other motor neuron groups. Some bilateral overlap between the dendrites of left and right motor neurons exists, particularly in fast motor neurons. The results explain how a single muscle is able to control the different movement parameters required for the proper function of ant mandibles.
Collapse
Affiliation(s)
- Jürgen Paul
- Theodor Boveri Institut der Universität, Lehrstuhl für Verhaltensphysiologie und Soziobiologie, Am Hubland, D-97074, Würzburg, Germany
| | | |
Collapse
|
28
|
Abstract
Ants use their mandibles for almost any task, including prey-catching, fighting, leaf-cutting, brood care and communication. The key to the versatility of mandible functions is the mandible closer muscle. In ants, this muscle is generally composed of distinct muscle fiber types that differ in morphology and contractile properties. Fast contracting fibers have short sarcomeres (2-3 microm) and attach directly to the closer apodeme, that conveys the muscle power to the mandible joint. Slow but forceful contracting fibers have long sarcomeres (5-6 microm) and attach to the apodeme either directly or via thin thread-like filaments. Volume proportions of the fiber types are species-specific and correlate with feeding habits. Two biomechanical models explain why species that rely on fast mandible strikes, such as predatory ants, have elongated head capsules that accommodate long muscle fibers directly attached to the apodeme at small angles, whereas species that depend on forceful movements, like leaf-cutting ants, have broader heads and many filament-attached fibers. Trap-jaw ants feature highly specialized catapult mechanisms. Their mandible closing is known as one of the fastest movements in the animal kingdom. The relatively large number of motor neurons that control the mandible closer reflects the importance of this muscle for the behavior of ants as well as other insects.
Collapse
Affiliation(s)
- J Paul
- Universität Würzburg, Theodor-Boveri-Institut (Biozentrum), Lehrstuhl für Verhaltensphysiologie und Soziobiologie, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
29
|
Burrows M, Morris G. The kinematics and neural control of high-speed kicking movements in the locust. J Exp Biol 2001; 204:3471-81. [PMID: 11707497 DOI: 10.1242/jeb.204.20.3471] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe tibiae of locust hind legs can be extended fully in a kick in 3 ms with peak angular velocities of at least 80° ms–1. If the mass of the distal part of the leg is halved, then the extension is complete in less than 1 ms with angular velocities of more than 200° ms–1. The high velocities and the associated power are generated by a preceding storage of energy and its sudden release produced by a specific motor pattern and specialisations of the femoro-tibial joints. To understand the dynamics of these rapid movements and the interrelations between joint mechanics and the motor pattern, kicks were analysed with high-speed video images coupled to simultaneous intracellular recordings from identified leg motor neurones. The first movement is a full tibial flexion followed by co-contraction of the extensor and flexor tibiae muscles for 0.3–1 s, during which the distal end of the femur is flattened dorso-ventrally and expanded laterally. The two semi-lunar processes on the distal femur are bent when the fast extensor tibiae motor neurone spikes so that their tips move ventrally by up to 0.6 mm. The inward projections of these processes into the femur form the proximal part of the hinge joint with the tibia, so that the pivot of the joint also changes and the tibia therefore moves proximally and ventrally, widening the gap between it and the femur. Extension of the tibia begins on average 34 ms after the flexor motor neurones are inhibited at the end of the co-contraction phase. The tibia then begins to extend slowly, reaching peak velocities only when it has extended by 60–70°. The semi-lunar processes do not start to unfurl until the tibia has extended by 55°, so they cannot provide the initial energy for extension. An audible click is produced when the semi-lunar processes unfurl. The peak velocity of tibial extension is correlated with the amount of bending of the semi-lunar processes and with the number of fast extensor motor spikes, but the same amount of semi-lunar bending can be produced by both short and long co-contractions. When the tibia reaches full extension, inertial forces may cause it to bend by as much as 33° at a plane of weakness in the proximal tibia, thus allowing further extension of the distal end.
Collapse
Affiliation(s)
- M Burrows
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
30
|
Just S, Gronenberg W. The control of mandible movements in the ant Odontomachus. JOURNAL OF INSECT PHYSIOLOGY 1999; 45:231-240. [PMID: 12770370 DOI: 10.1016/s0022-1910(98)00118-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ants use their mandibles to manipulate many different objects including food, brood and nestmates. Different tasks require the modification of mandibular force and speed. Besides normal mandible movements the trap-jaw ant Odontomachus features a particularly fast mandible reflex during which both mandibles close synchronously within 3 ms. The mandibular muscles that govern mandible performance are controlled by four opener and eight closer motor neurons. During slow mandible movements different motor units can be activated successively, and fine tuning is assisted by co-activation of the antagonistic muscles. Fast and powerful movements are generated by the additional activation of two particular motor units which also contribute to the mandible strike. The trap-jaw reflex is triggered by a fast trigger muscle which is derived from the mandible closer. Intracellular recording reveals that trigger motor neurons can generate regular as well as particularly large postsynaptic potentials, which might be passively propagated over the short distance to the trigger muscle. The trigger motor neurons are dye-coupled and receive input from both sides of the body without delay, which ensures the synchronous release of both mandibles.
Collapse
Affiliation(s)
- S Just
- Theodor Boveri Institut der Universität, Lehrstuhl für Verhaltensphysiologie und Soziobiologie, Am Hubland, D-97074, Würzburg, Germany
| | | |
Collapse
|
31
|
Alpert GD, Hölldobler B, Gronenberg W. Jaws that snap: control of mandible movements in the ant Mystrium. JOURNAL OF INSECT PHYSIOLOGY 1998; 44:241-253. [PMID: 12769958 DOI: 10.1016/s0022-1910(97)00145-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ants of the genus Mystrium employ a peculiar snap-jaw mechanism in which the closed mandibles cross over to deliver a stunning blow to an adversary within about 0.5 ms. The mandible snapping is preceded by antennation and antennal withdrawal. The strike is initiated by contact of the adversary with mechanosensory hairs at the side of the mandible, and is powered by large yet slow closer muscles whose energy is stored by a catapult mechanism. Recording of closer muscle activity indicates that the mandibles are not triggered by any fast muscle. Instead, we suppose that activity differences between the left and right mandible muscles imbalance a pivot at the mandible tip and release the strike. The likelihood for the strike to occur can be modulated by an alarm pheromone. The presence of specialized sensilla and of a complex muscle receptor organ shows that the mandibles are also adapted to functions other than snapping and suggests that the force of the mandible can be finely adjusted for other tasks.
Collapse
Affiliation(s)
- G D. Alpert
- Museum of Comparative Zoology, Harvard University, Cambridge, USA
| | | | | |
Collapse
|
32
|
|
33
|
The fast mandible strike in the trap-jaw ant Odontomachus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1995. [DOI: 10.1007/bf00219064] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|