1
|
Pietilä R, Del Gaudio F, He L, Vázquez-Liébanas E, Vanlandewijck M, Muhl L, Mocci G, Bjørnholm KD, Lindblad C, Fletcher-Sandersjöö A, Svensson M, Thelin EP, Liu J, van Voorden AJ, Torres M, Antila S, Xin L, Karlström H, Storm-Mathisen J, Bergersen LH, Moggio A, Hansson EM, Ulvmar MH, Nilsson P, Mäkinen T, Andaloussi Mäe M, Alitalo K, Proulx ST, Engelhardt B, McDonald DM, Lendahl U, Andrae J, Betsholtz C. Molecular anatomy of adult mouse leptomeninges. Neuron 2023; 111:3745-3764.e7. [PMID: 37776854 DOI: 10.1016/j.neuron.2023.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.
Collapse
Affiliation(s)
- Riikka Pietilä
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Francesca Del Gaudio
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Elisa Vázquez-Liébanas
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Lars Muhl
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Giuseppe Mocci
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Katrine D Bjørnholm
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurosurgery, Uppsala University Hospital, 75185 Uppsala, Sweden; Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Alexander Fletcher-Sandersjöö
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - A Jantine van Voorden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Monica Torres
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, 00014 Helsinki, Finland
| | - Li Xin
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Helena Karlström
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jon Storm-Mathisen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Linda Hildegard Bergersen
- Brain and Muscle Energy Group, Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; Center for Healthy Aging, Copenhagen University, 2200 Copenhagen, Denmark
| | - Aldo Moggio
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emil M Hansson
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria H Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, 00014 Helsinki, Finland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Donald M McDonald
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden.
| |
Collapse
|
2
|
Sosa MJ, Shih AY, Bonney SK. The elusive brain perivascular fibroblast: a potential role in vascular stability and homeostasis. Front Cardiovasc Med 2023; 10:1283434. [PMID: 38075961 PMCID: PMC10704358 DOI: 10.3389/fcvm.2023.1283434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
In the brain, perivascular fibroblasts (PVFs) reside within the perivascular spaces (PVSs) of arterioles and large venules, however their physiological and pathophysiological roles remain largely unknown. PVFs express numerous extracellular matrix proteins that are found in the basement membrane and PVS surrounding large diameter vessels. PVFs are sandwiched between the mural cell layer and astrocytic endfeet, where they are poised to interact with mural cells, perivascular macrophages, and astrocytes. We draw connections between the more well-studied PVF pro-fibrotic response in ischemic injury and the less understood thickening of the vascular wall and enlargement of the PVS described in dementia and neurodegenerative diseases. We postulate that PVFs may be responsible for stability and homeostasis of the brain vasculature, and may also contribute to changes within the PVS during disease.
Collapse
Affiliation(s)
- Maria J. Sosa
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Stephanie K. Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| |
Collapse
|
3
|
Iwase A, Tsutsumi T, Kawasaki R, Suehiro J, Sekine A, Araie M. Effects of optic nerve head-related parameters on retinal vessel calibers measurement results on fundus photographs. BMC Ophthalmol 2022; 22:215. [PMID: 35549690 PMCID: PMC9097128 DOI: 10.1186/s12886-022-02428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/29/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although relationship between the retinal vessel caliber (RVC) and glaucoma is well known, there has been a paucity of information on the effects of glaucoma-related optic nerve head (ONH) structural factors on the RVC. Information on this relationship should be useful in studying possible roles of ocular circulation in the development and progression of glaucoma. METHOD Subjects were from Kumejima Study participants aged 40 years and older in Kumejima, Japan. Normal subjects and eyes were defined according to standardized systemic and ocular examinations. The central retinal artery and vein equivalents (CRAE and CRVE) were determined on fundus photographs by correcting the magnification using the refractive error, corneal curvature, and axial length (AL) of an individual eye and paraxial ray tracing; the ONH structural parameters were determined by planimetry. RESULTS In a total of 558 right eyes (558 normal subjects), aged 49.0 ± 7.1 (standard deviation) years with gradable photographs and planimetric results, CRAE averaged 136.1 ± 12.3 μm and CRVE 216.9 ± 17.4 μm. After adjustment for the effects of confounding factors in multivariate analysis, the AL (P < 0.001), rim area (P = 0.019), disc area (P = 0.042), and smoking (P = 0.035-0.043) correlated positively, and the mean blood pressure (P < 0.001) negatively with CRAE; the AL (P < 0.001), rim area (P = 0.001), disc area (P = 0.005), smoking (P < 0.001), and male sex (P = 0.013) correlated positively, and the β-peripapillary atrophy (β-PPA) area (P = 0.044), vertical Cup/Disc ratio (v-C/D) (P = 0.035), and age (P < 0.001) negatively with CRVE. CONCLUSION The current study showed significant effects of rim area, v-C/D or β-PPA area determined on the photographs on the RVC measurement results. Further, it showed a necessity to incorporate the glaucoma-related ONH structural parameters as co-variables to correctly estimate the effects of various factors on the RVC.
Collapse
Affiliation(s)
- Aiko Iwase
- Tajimi Iwase Eye Clinic, 3-101-1, Hon-machi, Tajimi, Gifu Prefecture, Tajimi, 507-0033, Japan.
| | | | - Ryo Kawasaki
- Department of Informatics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Suehiro
- Topcon Corporation, Itabashi-ku, Tokyo, Japan
| | | | - Makoto Araie
- Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
4
|
Gonzalez-Fernandez E, Liu Y, Auchus AP, Fan F, Roman RJ. Vascular contributions to cognitive impairment and dementia: the emerging role of 20-HETE. Clin Sci (Lond) 2021; 135:1929-1944. [PMID: 34374423 PMCID: PMC8783562 DOI: 10.1042/cs20201033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The accumulation of extracellular amyloid-β (Aβ) and intracellular hyperphosphorylated τ proteins in the brain are the hallmarks of Alzheimer's disease (AD). Much of the research into the pathogenesis of AD has focused on the amyloid or τ hypothesis. These hypotheses propose that Aβ or τ aggregation is the inciting event in AD that leads to downstream neurodegeneration, inflammation, brain atrophy and cognitive impairment. Multiple drugs have been developed and are effective in preventing the accumulation and/or clearing of Aβ or τ proteins. However, clinical trials examining these therapeutic agents have failed to show efficacy in preventing or slowing the progression of the disease. Thus, there is a need for fresh perspectives and the evaluation of alternative therapeutic targets in this field. Epidemiology studies have revealed significant overlap between cardiovascular and cerebrovascular risk factors such as hypertension, diabetes, atherosclerosis and stroke to the development of cognitive impairment. This strong correlation has given birth to a renewed focus on vascular contributions to AD and related dementias. However, few genes and mechanisms have been identified. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that plays a complex role in hypertension, autoregulation of cerebral blood flow and blood-brain barrier (BBB) integrity. Multiple human genome-wide association studies have linked mutations in the cytochrome P450 (CYP) 4A (CYP4A) genes that produce 20-HETE to hypertension and stroke. Most recently, genetic variants in the enzymes that produce 20-HETE have also been linked to AD in human population studies. This review examines the emerging role of 20-HETE in AD and related dementias.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Alexander P. Auchus
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| |
Collapse
|
5
|
Price BR, Johnson LA, Norris CM. Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev 2021; 68:101335. [PMID: 33812051 PMCID: PMC8168445 DOI: 10.1016/j.arr.2021.101335] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Astrocyte reactivity is a hallmark of neuroinflammation that arises with Alzheimer’s disease (AD) and nearly every other neurodegenerative condition. While astrocytes certainly contribute to classic inflammatory processes (e.g. cytokine release, waste clearance, and tissue repair), newly emerging technologies for measuring and targeting cell specific activities in the brain have uncovered essential roles for astrocytes in synapse function, brain metabolism, neurovascular coupling, and sleep/wake patterns. In this review, we use a holistic approach to incorporate, and expand upon, classic neuroinflammatory concepts to consider how astrocyte dysfunction/reactivity modulates multiple pathological and clinical hallmarks of AD. Our ever-evolving understanding of astrocyte signaling in neurodegeneration is not only revealing new drug targets and treatments for dementia but is suggesting we reimagine AD pathophysiological mechanisms.
Collapse
Affiliation(s)
- Brittani R Price
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, 02111, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Physiology, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA.
| |
Collapse
|
6
|
The interplay of neurovasculature and adult hippocampal neurogenesis. Neurosci Lett 2021; 760:136071. [PMID: 34147540 DOI: 10.1016/j.neulet.2021.136071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023]
Abstract
The subgranular zone of the dentate gyrus provides a local microenvironment (niche) for neural stem cells. In the adult brain, it has been established that the vascular compartment of such niches has a significant role in regulating adult hippocampal neurogenesis. More recently, evidence showed that neurovascular coupling, the relationship between blood flow and neuronal activity, also regulates hippocampal neurogenesis. Here, we review the most recent articles on addressing the intricate relationship between neurovasculature and adult hippocampal neurogenesis and a novel pathway where functional hyperemia enhances hippocampal neurogenesis. In the end, we have further reviewed recent research showing that impaired neurovascular coupling may cause declined neurogenesis and contribute to brain damage in neurodegenerative diseases.
Collapse
|
7
|
Gezalian MM, Mangiacotti L, Rajput P, Sparrow N, Schlick K, Lahiri S. Cerebrovascular and neurological perspectives on adrenoceptor and calcium channel modulating pharmacotherapies. J Cereb Blood Flow Metab 2021; 41:693-706. [PMID: 33210576 PMCID: PMC7983505 DOI: 10.1177/0271678x20972869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/02/2023]
Abstract
Adrenoceptor and calcium channel modulating medications are widely used in clinical practice for acute neurological and systemic conditions. It is generally assumed that the cerebrovascular effects of these drugs mirror that of their systemic effects - and this is reflected in how these medications are currently used in clinical practice. However, recent research suggests that there are distinct cerebrovascular-specific effects of these medications that are related to the unique characteristics of the cerebrovascular anatomy including the regional heterogeneity in density and distribution of adrenoceptor subtypes and calcium channels along the cerebrovasculature. In this review, we critically evaluate existing basic science and clinical research to discuss known and putative interactions between adrenoceptor and calcium channel modulating pharmacotherapies, the neurovascular unit, and cerebrovascular anatomy. In doing so, we provide a rationale for selecting vasoactive medications based on lesion location and lay a foundation for future investigations that will define neuroprotective paradigms of adrenoceptor and calcium channel modulating therapies to improve neurological outcomes in acute neurological and systemic disorders.
Collapse
Affiliation(s)
- Michael M Gezalian
- Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Luigi Mangiacotti
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Padmesh Rajput
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicklaus Sparrow
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Konrad Schlick
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shouri Lahiri
- Departments of Neurology, Neurosurgery, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
8
|
The Neurovascular Unit Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22042022. [PMID: 33670754 PMCID: PMC7922832 DOI: 10.3390/ijms22042022] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.
Collapse
|
9
|
Echagarruga CT, Gheres KW, Norwood JN, Drew PJ. nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice. eLife 2020; 9:e60533. [PMID: 33016877 PMCID: PMC7556878 DOI: 10.7554/elife.60533] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cortical neural activity is coupled to local arterial diameter and blood flow. However, which neurons control the dynamics of cerebral arteries is not well understood. We dissected the cellular mechanisms controlling the basal diameter and evoked dilation in cortical arteries in awake, head-fixed mice. Locomotion drove robust arterial dilation, increases in gamma band power in the local field potential (LFP), and increases calcium signals in pyramidal and neuronal nitric oxide synthase (nNOS)-expressing neurons. Chemogenetic or pharmocological modulation of overall neural activity up or down caused corresponding increases or decreases in basal arterial diameter. Modulation of pyramidal neuron activity alone had little effect on basal or evoked arterial dilation, despite pronounced changes in the LFP. Modulation of the activity of nNOS-expressing neurons drove changes in the basal and evoked arterial diameter without corresponding changes in population neural activity.
Collapse
Affiliation(s)
| | - Kyle W Gheres
- Molecular, Cellular, and Integrative Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
| | - Jordan N Norwood
- Cell and Developmental Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
| | - Patrick J Drew
- Bioengineering Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Molecular, Cellular, and Integrative Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Cell and Developmental Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Departments of Engineering Science and Mechanics, Biomedical Engineering, and Neurosurgery, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
10
|
Rutten-Jacobs LCA, Rost NS. Emerging insights from the genetics of cerebral small-vessel disease. Ann N Y Acad Sci 2020; 1471:5-17. [PMID: 30618052 PMCID: PMC6614021 DOI: 10.1111/nyas.13998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Cerebral small-vessel disease (cSVD) is a common cause of stroke, functional decline, vascular cognitive impairment, and dementia. Pathological processes in the brain's microcirculation are tightly interwoven with pathology in the brain parenchyma, and this interaction has been conceptualized as the neurovascular unit (NVU). Despite intensive research efforts to decipher the NVU's structure and function to date, molecular mechanisms underlying cSVD remain poorly understood, which hampers the development of cSVD-specific therapies. Important steps forward in understanding the disease mechanisms underlying cSVD have been made using genetic approaches in studies of both monogenic and sporadic SVD. We provide an overview of the NVU's structure and function, the implications for cSVD, and the underlying molecular mechanisms of dysfunction that have emerged from recent genetic studies of both monogenic and sporadic diseases of the small cerebral vasculature.
Collapse
Affiliation(s)
- Loes C A Rutten-Jacobs
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Natalia S Rost
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Nowak M, Brown TD, Graham A, Helgeson ME, Mitragotri S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng Transl Med 2020; 5:e10153. [PMID: 32440560 PMCID: PMC7237148 DOI: 10.1002/btm2.10153] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Nanoparticle-based therapeutic formulations are being increasingly explored for the treatment of various ailments. Despite numerous advances, the success of nanoparticle-based technologies in treating brain diseases has been limited. Translational hurdles of nanoparticle therapies are attributed primarily to their limited ability to cross the blood-brain barrier (BBB), which is one of the body's most exclusive barriers. Several efforts have been focused on developing affinity-based agents and using them to increase nanoparticle accumulation at the brain endothelium. Very little is known about the role of fundamental physical parameters of nanoparticles such as size, shape, and flexibility in determining their interactions with and penetration across the BBB. Using a three-dimensional human BBB microfluidic model (μHuB), we investigate the impact of these physical parameters on nanoparticle penetration across the BBB. To gain insights into the dependence of transport on nanoparticle properties, two separate parameters were measured: the number of nanoparticles that fully cross the BBB and the number that remain associated with the endothelium. Association of nanoparticles with the brain endothelium was substantially impacted by their physical characteristics. Hard particles associate more with the endothelium compared to soft particles, as do small particles compared to large particles, and spherical particles compared to rod-shaped particles. Transport across the BBB also exhibited a dependence on nanoparticle properties. A nonmonotonic dependence on size was observed, where 200 nm particles exhibited higher BBB transport compared to 100 and 500 nm spheres. Rod-shaped particles exhibited higher BBB transport when normalized by endothelial association and soft particles exhibited comparable transport to hard particles when normalized by endothelial association. Tuning nanoparticles' physical parameters could potentially enhance their ability to cross the BBB for therapeutic applications.
Collapse
Affiliation(s)
- Maksymilian Nowak
- John A. Paulson School of Engineering and Applied SciencesHarvard University29 Oxford St. CambridgeMA02138
- Wyss Institute of Biologically Inspired EngineeringHarvard University3 Blackfan CircleBostonMA02115
| | - Tyler D. Brown
- John A. Paulson School of Engineering and Applied SciencesHarvard University29 Oxford St. CambridgeMA02138
- Wyss Institute of Biologically Inspired EngineeringHarvard University3 Blackfan CircleBostonMA02115
| | - Adam Graham
- Center for Nanoscale SystemsHarvard University11 Oxford St. CambridgeMA02138
| | - Matthew E. Helgeson
- Department of Chemical EngineeringUniversity of California, Santa BarbaraSanta BarbaraCA93106
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard University29 Oxford St. CambridgeMA02138
- Wyss Institute of Biologically Inspired EngineeringHarvard University3 Blackfan CircleBostonMA02115
| |
Collapse
|
12
|
Coelho‐Santos V, Shih AY. Postnatal development of cerebrovascular structure and the neurogliovascular unit. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e363. [PMID: 31576670 PMCID: PMC7027551 DOI: 10.1002/wdev.363] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
The unceasing metabolic demands of brain function are supported by an intricate three-dimensional network of arterioles, capillaries, and venules, designed to effectively distribute blood to all neurons and to provide shelter from harmful molecules in the blood. The development and maturation of this microvasculature involves a complex interplay between endothelial cells with nearly all other brain cell types (pericytes, astrocytes, microglia, and neurons), orchestrated throughout embryogenesis and the first few weeks after birth in mice. Both the expansion and regression of vascular networks occur during the postnatal period of cerebrovascular remodeling. Pial vascular networks on the brain surface are dense at birth and are then selectively pruned during the postnatal period, with the most dramatic changes occurring in the pial venular network. This is contrasted to an expansion of subsurface capillary networks through the induction of angiogenesis. Concurrent with changes in vascular structure, the integration and cross talk of neurovascular cells lead to establishment of blood-brain barrier integrity and neurovascular coupling to ensure precise control of macromolecular passage and metabolic supply. While we still possess a limited understanding of the rules that control cerebrovascular development, we can begin to assemble a view of how this complex process evolves, as well as identify gaps in knowledge for the next steps of research. This article is categorized under: Nervous System Development > Vertebrates: Regional Development Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Vanessa Coelho‐Santos
- Center for Developmental Biology and Regenerative MedicineSeattle Children's Research InstituteSeattleWashington
- Department of PediatricsUniversity of WashingtonSeattleWashington
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative MedicineSeattle Children's Research InstituteSeattleWashington
- Department of PediatricsUniversity of WashingtonSeattleWashington
| |
Collapse
|
13
|
Nowak M, Helgeson ME, Mitragotri S. Delivery of Nanoparticles and Macromolecules across the Blood–Brain Barrier. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Maksymilian Nowak
- School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02318 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University 3 Blackfan Circle Boston MA 02115 USA
| | - Matthew E. Helgeson
- Department of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02318 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University 3 Blackfan Circle Boston MA 02115 USA
| |
Collapse
|
14
|
Sorensen CM, Cupples WA. Myoendothelial communication in the renal vasculature and the impact of drugs used clinically to treat hypertension. Curr Opin Pharmacol 2019; 45:49-56. [PMID: 31071677 DOI: 10.1016/j.coph.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022]
Abstract
The renal vasculature has many peculiarities including highly irregular branching. Renal blood flow must sustain adequate perfusion and maintain a high glomerular filtration. Renal autoregulation helps control renal blood flow. The local autoregulatory mechanism, tubuloglomerular feedback, elicits a vasoconstriction that can be found not only in neighboring nephrons but over large areas of the kidney indicating that the renal vasculature supports strong conduction of vascular responses. The basis for conduction is intercellular communication through gap junctions. The endothelium is strongly coupled and serves as a vascular conduction highway leading the signal to the vascular smooth muscle cells through myoendothelial coupling. Extensive intercellular coupling is also found in renin secreting cells where gap junctions seem to tie the cells together to improve control of renin secretion. Lack of coupling leads to dysregulation of renin secretion and hypertension. However, the activity of the renin-angiotensin system also controls gap junction expression in the kidney. Treatment reducing angiotensin II activity, as used in hypertension treatment, can affect expression of renal and vascular gap junction.
Collapse
Affiliation(s)
| | - William A Cupples
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Canada
| |
Collapse
|
15
|
Mun J, Kang HM, Jung J, Park C. Role of hydrogen sulfide in cerebrovascular alteration during aging. Arch Pharm Res 2019; 42:446-454. [DOI: 10.1007/s12272-019-01135-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023]
|
16
|
The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017; 96:17-42. [PMID: 28957666 DOI: 10.1016/j.neuron.2017.07.030] [Citation(s) in RCA: 1352] [Impact Index Per Article: 193.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Abstract
The concept of the neurovascular unit (NVU), formalized at the 2001 Stroke Progress Review Group meeting of the National Institute of Neurological Disorders and Stroke, emphasizes the intimate relationship between the brain and its vessels. Since then, the NVU has attracted the interest of the neuroscience community, resulting in considerable advances in the field. Here the current state of knowledge of the NVU will be assessed, focusing on one of its most vital roles: the coupling between neural activity and blood flow. The evidence supports a conceptual shift in the mechanisms of neurovascular coupling, from a unidimensional process involving neuronal-astrocytic signaling to local blood vessels to a multidimensional one in which mediators released from multiple cells engage distinct signaling pathways and effector systems across the entire cerebrovascular network in a highly orchestrated manner. The recently appreciated NVU dysfunction in neurodegenerative diseases, although still poorly understood, supports emerging concepts that maintaining neurovascular health promotes brain health.
Collapse
|
17
|
Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT. In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:834-46. [PMID: 25700985 DOI: 10.1016/j.ajpath.2014.11.016] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023]
Abstract
Several proteins have been identified as amyloid forming in humans, and independent of protein origin, the fibrils are morphologically similar. Therefore, there is a potential for structures with amyloid seeding ability to induce both homologous and heterologous fibril growth; thus, molecular interaction can constitute a link between different amyloid forms. Intravenous injection with preformed fibrils from islet amyloid polypeptide (IAPP), proIAPP, or amyloid-beta (Aβ) into human IAPP transgenic mice triggered IAPP amyloid formation in pancreas in 5 of 7 mice in each group, demonstrating that IAPP amyloid could be enhanced through homologous and heterologous seeding with higher efficiency for the former mechanism. Proximity ligation assay was used for colocalization studies of IAPP and Aβ in islet amyloid in type 2 diabetic patients and Aβ deposits in brains of patients with Alzheimer disease. Aβ reactivity was not detected in islet amyloid although islet β cells express AβPP and convertases necessary for Aβ production. By contrast, IAPP and proIAPP were detected in cerebral and vascular Aβ deposits, and presence of proximity ligation signal at both locations showed that the peptides were <40 nm apart. It is not clear whether IAPP present in brain originates from pancreas or is locally produced. Heterologous seeding between IAPP and Aβ shown here may represent a molecular link between type 2 diabetes and Alzheimer disease.
Collapse
Affiliation(s)
- Marie E Oskarsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan F Paulsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
18
|
Innervation of the brain, intracerebral Schwann cells and intracerebral and intraventricular schwannomas. Childs Nerv Syst 2014; 30:815-24. [PMID: 24643709 DOI: 10.1007/s00381-014-2394-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023]
Abstract
The cerebral vasculature and the choroid plexus are innervated by peripheral nerves. The anatomy of the vascular supply to the brain and its related perivascular nerves is reviewed. Intracerebral and intraventricular schwannomas most likely come from neoplastic transformation of Schwann cells investing the perivascular nerves and nerves within the choroid plexus.
Collapse
|
19
|
Endothelial control of vasodilation: integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids. Pflugers Arch 2013; 466:389-405. [PMID: 23748495 DOI: 10.1007/s00424-013-1303-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/17/2022]
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) are fatty acid epoxides that play an important role in the control of vascular tone in selected coronary, renal, carotid, cerebral and skeletal muscle arteries. Vasodilation due to endothelium-dependent smooth muscle hyperpolarization (EDH) has been suggested to involve EETs as a transferable endothelium-derived hyperpolarizing factor. However, this activity may also be due to EETs interacting with the components of other primary EDH-mediated vasodilator mechanisms. Indeed, the transfer of hyperpolarization initiated in the endothelium to the adjacent smooth muscle via gap junction connexins occurs separately or synergistically with the release of K(+) ions at discrete myoendothelial microdomain signalling sites. The net effects of such activity are smooth muscle hyperpolarization, closure of voltage-dependent Ca(2+) channels, phospholipase C deactivation and vasodilation. The spatially localized and key components of the microdomain signalling complex are the inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum Ca(2+) store, Ca(2+)-activated K(+) (KCa), transient receptor potential (TRP) and inward-rectifying K(+) channels, gap junctions and the smooth muscle Na(+)/K(+)-ATPase. Of these, TRP channels and connexins are key endothelial effector targets modulated by EETs. In an integrated manner, endogenous EETs enhance extracellular Ca(2+) influx (thereby amplifying and prolonging KCa-mediated endothelial hyperpolarization) and also facilitate the conduction of this hyperpolarization to spatially remote vessel regions. The contribution of EETs and the receptor and channel subtypes involved in EDH-related microdomain signalling, as a candidate for a universal EDH-mediated vasodilator mechanism, vary with vascular bed, species, development and disease and thus represent potentially selective targets for modulating specific artery function.
Collapse
|
20
|
Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol 2013; 304:H1598-614. [PMID: 23585139 DOI: 10.1152/ajpheart.00490.2012] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Maintenance of brain function depends on a constant blood supply. Deficits in cerebral blood flow are linked to cognitive decline, and they have detrimental effects on the outcome of ischemia. Hypertension causes alterations in cerebral artery structure and function that can impair blood flow, particularly during an ischemic insult or during periods of low arterial pressure. This review will focus on the historical discoveries, novel developments, and knowledge gaps in 1) hypertensive cerebral artery remodeling, 2) vascular function with emphasis on myogenic reactivity and endothelium-dependent dilation, and 3) blood-brain barrier function. Hypertensive artery remodeling results in reduction in the lumen diameter and an increase in the wall-to-lumen ratio in most cerebral arteries; this is linked to reduced blood flow postischemia and increased ischemic damage. Many factors that are increased in hypertension stimulate remodeling; these include the renin-angiotensin-aldosterone system and reactive oxygen species levels. Endothelial function, vital for endothelium-mediated dilation and regulation of myogenic reactivity, is impaired in hypertension. This is a consequence of alterations in vasodilator mechanisms involving nitric oxide, epoxyeicosatrienoic acids, and ion channels, including calcium-activated potassium channels and transient receptor potential vanilloid channel 4. Hypertension causes blood-brain barrier breakdown by mechanisms involving inflammation, oxidative stress, and vasoactive circulating molecules. This exposes neurons to cytotoxic molecules, leading to neuronal loss, cognitive decline, and impaired recovery from ischemia. As the population ages and the incidence of hypertension, stroke, and dementia increases, it is imperative that we gain a better understanding of the control of cerebral artery function in health and disease.
Collapse
Affiliation(s)
- Paulo W Pires
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
21
|
Sandow SL, Senadheera S, Bertrand PP, Murphy TV, Tare M. Myoendothelial contacts, gap junctions, and microdomains: anatomical links to function? Microcirculation 2012; 19:403-15. [PMID: 22074364 DOI: 10.1111/j.1549-8719.2011.00146.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In several species and in many vascular beds, ultrastructural studies describe close contact sites between the endothelium and smooth muscle of <∼20nm. Such sites are thought to facilitate the local action of signaling molecules and/or the passage of current, as metabolic and electrical coupling conduits between the arterial endothelium and smooth muscle. These sites have the potential for bidirectional communication between the endothelium and smooth muscle, as a key pathway for coordinating vascular function. The aim of this brief review is to summarize the literature on the ultrastructural anatomy and distribution of key components of MECC sites in arteries. In addition to their traditional role of facilitating electrical coupling between the two cell layers, data on the role of MECC sites in arteries, as signaling microdomains involving a spatial localization of channels, receptors and calcium stores are highlighted. Diversity in the density and specific characteristics of MECC sites as signaling microdomains suggests considerable potential for functional diversity within and between arteries in health and disease.
Collapse
Affiliation(s)
- Shaun L Sandow
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
22
|
Watanabe K, Takeishi H, Hayakawa T, Sasaki H. Three-dimensional organization of the perivascular glial limiting membrane and its relationship with the vasculature: a scanning electron microscope study. Okajimas Folia Anat Jpn 2011; 87:109-21. [PMID: 21174940 DOI: 10.2535/ofaj.87.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To examine the three-dimensional structure of the perivascular glial limiting membrane (Glm) and its relationship with the vasculature in rat/mouse cerebral cortices, serial ion-etched plastic sections were observed under the scanning electron microscope and their images were reconstructed. In the case of arterioles and venules close to the pial surface, cord-like principal processes predominantly formed the endfeet; whereas in the case of capillaries and venules, sheet-like secondary processes chiefly formed Glm. Moreover, it was found that several plate-like structures protruded from the basement membrane surrounding the arterioles to penetrate into the astrocytic somata. The perivascular Glm was formed by monolayers of astrocytic processes and/or somata irrespective of the types of blood vessel. However, the thickness of the perivascular Glm, varied greatly according to the type of blood vessel. The thickness of Glm decreased in the order of arterioles, venules and capillaries. The outer surface of the perivascular Glm was extremely irregular, and sheet-like processes arising from this Glm infiltrated into the surrounding neuropil.
Collapse
Affiliation(s)
- Kota Watanabe
- Department of Anatomy, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | |
Collapse
|
23
|
Lim LS, Saw SM, Cheung N, Mitchell P, Wong TY. Relationship of retinal vascular caliber with optic disc and macular structure. Am J Ophthalmol 2009; 148:368-75. [PMID: 19481730 DOI: 10.1016/j.ajo.2009.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 11/29/2022]
Abstract
PURPOSE To examine the relationships of retinal vascular caliber with optic disc, macular, and retinal nerve fiber layer (RNFL) characteristics as measured with optical coherence tomography (OCT). DESIGN Observational cross-sectional study. METHODS This study included a subset of healthy children enrolled in the Singapore Cohort Study of the Risk Factors of Myopia (SCORM). Optic disc, macular, and RNFL morphology were measured with Stratus OCT 3. Digital retinal photography was performed and retinal arteriolar and venular caliber measured using validated imaging software. RESULTS One hundred and four children (mean age 11.51 +/- 0.52 years; 50% male) were included. In multivariate analyses, smaller horizontal integrated rim width and rim area were associated with narrower retinal arterioles and venules (all P < .05), and shorter horizontal rim length was associated with narrower venules (P = .04). Optic disc diameter was not associated with arteriolar or venular caliber. Larger vertical cup-to-disc ratios and cup-to-disc-area ratios were associated with narrower venules but not arterioles (P = .01 and P = .003, respectively). A thinner average RNFL measurement was associated with narrower arterioles and venules, and smaller total macular volume was associated with narrower venules. CONCLUSIONS Thinner optic disc rims and RNFL measurements were associated with narrower retinal arterioles and venules, and larger cup-to-disc ratios with narrower venules. These findings suggest that retinal vessel caliber varies systematically with morphologic differences in the optic nerve head, retina, and macula.
Collapse
|
24
|
|
25
|
Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 2008; 55:281-8. [PMID: 18541276 DOI: 10.1016/j.neuropharm.2008.04.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 01/07/2023]
Abstract
We outline the mechanisms currently thought to be responsible for controlling cerebral blood flow (CBF) in the physiologic state and during ischemia, focusing on the arterial pial and penetrating microcirculation. Initially, we categorize the cerebral circulation and then review the vascular anatomy. We draw attention to a number of unique features of the cerebral vasculature, which are relevant to the microcirculatory response during ischemia: arterial histology, species differences, collateral flow, the venous drainage, the blood-brain barrier, astrocytes and vascular nerves. The physiology of the arterial microcirculation is then assessed. Lastly, we review the changes during ischemia which impact on the microcirculation. Further understanding of the normal cerebrovascular anatomy and physiology as well as the pathophysiology of ischemia will allow the rational development of a pharmacologic therapy for human stroke and brain injury.
Collapse
Affiliation(s)
- Tobias Kulik
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
The control and maintenance of vascular tone is due to a balance between vasoconstrictor and vasodilator pathways. Vasomotor responses to neural, metabolic and physical factors vary between vessels in different vascular beds, as well as along the same bed, particularly as vessels become smaller. These differences result from variation in the composition of neurotransmitters released by perivascular nerves, variation in the array and activation of receptor subtypes expressed in different vascular beds and variation in the signal transduction pathways activated in either the vascular smooth muscle or endothelial cells. As the study of vasomotor responses often requires pre-existing tone, some of the reported heterogeneity in the relative contributions of different vasodilator mechanisms may be compounded by different experimental conditions. Biochemical variations, such as the expression of ion channels, connexin subtypes and other important components of second messenger cascades, have been documented in the smooth muscle and endothelial cells in different parts of the body. Anatomical variations, in the presence and prevalence of gap junctions between smooth muscle cells, between endothelial cells and at myoendothelial gap junctions, between the two cell layers, have also been described. These factors will contribute further to the heterogeneity in local and conducted responses.
Collapse
Affiliation(s)
- C E Hill
- Autonomic Synapse Group, Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 0200 ACT, Australia.
| | | | | |
Collapse
|
27
|
Holtzer CA, Marani E, de Priester W, Thomeer RT. The process of decompaction and myelin removal after C7 ventral root avulsion in the cat. Arch Physiol Biochem 1998; 106:116-27. [PMID: 9894867 DOI: 10.1076/apab.106.2.116.4389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An electron microscopical study was carried out on the ventral horn in order to investigate the microvascular changes after C7 ventral root avulsion in cats. Endothelial cells: At 2 days after avulsion the endothelial cells contained vacuoles filled with fibrous-like substances. After 14 days the endothelial phagosomes also contained myelin sheath-like and "soap-bubble" structures. Tight junctions between the endothelial cells remained present without exception. From 14 up to 90 days, intraluminal debris was observed. Edema and glia: From 2 up to 30 days after avulsion perivascular edema was noted around blood vessels and polymorphonuclear granulocytes were found mainly in the peri-endothelial space. Eight days after avulsion, the number of astrocytic processes around the blood vessels and the phagocytic activity of perivascular cells increased. Myelin sheath-like structures were encountered in phagosomes of the pericytes. After 14 days the distribution of astrocytic processes around the blood vessels had stabilized and remained so until day 90 after avulsion. In the same period the phagocytic activity decreased, and the myelin sheath-like material in the perivascular cell phagosomes gradually disappeared. The amount of microglial cells around the blood vessels showed an increase after 30 days survival and then stabilized. These results indicate transport of debris from the neuropil across the endothelial cells into the blood vessel lumen after ventral root avulsion.
Collapse
Affiliation(s)
- C A Holtzer
- Dept. Physiology, Leiden University Medical Center, The Netherlands
| | | | | | | |
Collapse
|
28
|
Abstract
The vasculature of the peripheral portion of the human eighth cranial nerve (VIIIN) was investigated by light and transmission electron microscopy. Arterioles and venules running longitudinally around the VIIIN formed the extrinsic vascular system. The anatomical relationship between these extrinsic vessels and the VIIIN sheath was similar to that between blood vessels on the surface of the brain and the pia mater. In the endoneurium, postcapillary venules and large capillaries were sparsely distributed and longitudinally arranged, and these microvessels formed the intrinsic microvascular system, which was supported by the extrinsic vascular system via anastomosing vessels. The ultrastructural features of the internal auditory artery and its main branches were the same as those of other intracranial arteries. Ultrastructural study also revealed myo-endothelial junctions in anastomosing arterioles, and endothelio-pericytic junctions in extrinsic and anastomosing venules. Microvascular endothelial cells were connected by tight junctions in both the vestibular ganglion and the rest of the VIIIN. These features of the vasculature were considered to be effective for maintenance of the endoneurial fluid and regulation of the circulation in the peripheral portion of the human VIIIN.
Collapse
Affiliation(s)
- T Matsunaga
- Department of Otolaryngology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | |
Collapse
|
29
|
Dietrich HH, Dacey RG. Effects of extravascular acidification and extravascular alkalinization on constriction and depolarization in rat cerebral arterioles in vitro. J Neurosurg 1994; 81:437-42. [PMID: 8057152 DOI: 10.3171/jns.1994.81.3.0437] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The relationship between cell membrane potential, vessel diameter, and pH in small cerebral arterioles is not completely understood. This study involved direct, simultaneous measurement of cell membrane potential and vessel diameter at various extracellular pH levels. Arterioles ranging from 44 to 91 microns in diameter were isolated, transferred to a temperature-controlled microscope chamber, which was used as an organ bath, and observed through an inverted videomicroscope. Two vessel cannulation procedures were used: a single-sided cannulation with the other side occluded, and a double-sided and perfused cannulation. After cannulation, the vessels were pressurized to 60 mm Hg intraluminally and the bath temperature was raised to 37 degrees C. Cell membrane potentials of vessel wall cells were obtained after the bath temperature reached 37 degrees C with the vessels partly constricted and again after spontaneous tone (constriction) of the healthy vessels had developed. The effect of extraluminal pH on cell membrane potentials was studied by changing the bath pH from 7.3 to either 7.65 or 6.8 in the single-sided cannulation. The average cell membrane potential for vessels at 37 degrees C, with 60 mm Hg of intraluminal pressure and pH 7.3, was -37.5 mV. The cell membrane potential depolarized to -30.9 mV at pH 7.65 and hyperpolarized to -58.4 mV at pH 6.8, with a slope of 25.8 mV/pH unit. The effect of depolarizing extracellular potassium ions on the cell membrane potential was examined by perfusing two vessels with modified Ringer's solution containing 70 mM KCl. This perfusion method decreased the vessel diameter by 48% and depolarized the observed cell membrane potential from -41.9 to -19.8 mV, with a slope of -0.42 mV per percentage diameter change. These data provide the first measurements of membrane potentials of isolated penetrating arteriole wall cells in vitro. The results indicate that the cell membrane potential relates linearly to the vessel diameter. This new technique opens the possibility for studying vessel response to stimuli under controlled conditions and regulatory mechanisms such as the propagation of vasomotor responses.
Collapse
Affiliation(s)
- H H Dietrich
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
30
|
Polder TW, Jerusalem CR, Eling WM. Morphological characteristics of intracerebral arterioles in clinical (Plasmodium falciparum) and experimental (Plasmodium berghei) cerebral malaria. J Neurol Sci 1991; 101:35-46. [PMID: 2027026 DOI: 10.1016/0022-510x(91)90016-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spastic constriction of intracerebral arterioles was identified in clinical (P. falciparum) and experimental (P. berghei) cerebral malaria. Morphological criteria were used to characterize pathologically spastic constriction of arterioles. The significance of spastic constriction of intracerebral arterioles for microcirculatory disturbance in relation to development of cerebral malaria is discussed.
Collapse
Affiliation(s)
- T W Polder
- Department of Neurosurgery, University Hospital Nijmegen, The Netherlands
| | | | | |
Collapse
|
31
|
Barron KD, Dentinger MP, Kimelberg HK, Nelson LR, Bourke RS, Keegan S, Mankes R, Cragoe EJ. Ultrastructural features of a brain injury model in cat. I. Vascular and neuroglial changes and the prevention of astroglial swelling by a fluorenyl (aryloxy) alkanoic acid derivative (L-644,711). Acta Neuropathol 1988; 75:295-307. [PMID: 3348086 DOI: 10.1007/bf00690538] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present qualitative and quantitative ultrastructural observations on the changes induced in neuroglia and blood vessels of gray matter of cat brain by an experimental acceleration-deceleration injury which, when used alone, causes negligible morbidity and mortality, but, when combined with systemic hypoxia, leads to coma and delayed death in approximately 50% of experimental subjects. An increase in the proportion of neuropil occupied by astrocytic cytoplasm is detectable qualitatively in layer Vb of pericruciate cortex 20 min after injury without hypoxia, and is maximal (22%, as measured morphometrically, vs 11.4% in controls) 40 min afterward. Near-normal values (14.1%) are obtained 100 min following the insult. If trauma is succeeded 40 min later by a 60-min period of hypoxia, there is prolongation of astrocytic edema and other neuroglial accompaniments of the traumatic lesion, such as aggregation of nuclear nucleoprotein granules and, in astrocytes, fusion of rosette ribosomes and enlargement of mitochondria. A decrease in luminal area occurs in capillaries 40 min after trauma applied alone. Hypoxia without trauma leads to a significant increase in capillary luminal area, which, however, is abolished when trauma precedes the hypoxic interlude. Intravenous injection of a non-diuretic, fluorenyl derivative (L-644,711) of (aryloxy)alkanoic acid loop diuretics, completely prevents the astrocytic swelling ordinarily present 40 min after acceleration-deceleration injury. Also, L-644,711 improves mortality and morbidity scores in cats subjected to trauma with hypoxia. We suggest that astroglial swelling may be a critical step in the evolving pathology of this head injury model and its prevention, as by L-644,711 administration, may have relevance to the treatment of cerebral edema in human head injury and other clinical disorders accompanied by astrocytic swelling.
Collapse
Affiliation(s)
- K D Barron
- Research Service, Veterans Administration Medical Center, Albany, NY 12208
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Roggendorf W, Opitz H, Schuppan D. Altered expression of collagen type VI in brain vessels of patients with chronic hypertension. A comparison with the distribution of collagen IV and procollagen III. Acta Neuropathol 1988; 77:55-60. [PMID: 3239376 DOI: 10.1007/bf00688243] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The vascular extracellular matrix (ECM) plays an important role in the histopathology of cerebral microcirculation, but its characterization is still incomplete. For that reason we investigated paraffin-embedded and cryostat sections of intracerebral and meningeal vessels from eight normotensive and six hypertensive humans using monospecific affinity-purified polyclonal antibodies against human/monkey amino-terminal procollagen I + III peptide (P I P, P III P), collagen IV (7-S and NC1 domains), VI, and laminin (P 1 fragment) by applying peroxidase-antiperoxidase- and alkaline phosphatase-antialkaline phosphatase techniques. In normotensives, laminin and collagen IV were codistributed in the basal lamina of meningeal and intraparenchymal vessels. Collagen VI was only present in the adventitia of meningeal vessels and larger intraparenchymal arteries and veins, whereas it was absent from cortical vessels including capillaries. Intensive staining for collagen VI was observed in the choroid plexus, the superficial glia and sheath of cranial nerves. In hypertensives, the basement membrane constituents laminin and collagen IV appeared ubiquitously increased. Here, collagen VI was also deposited in the broadened vascular intima and media of larger arteries and in cortical vessels. In both groups collagen VI and P III P appeared to be codistributed. Our results indicate that significant qualitative change sin ECM of cerebral blood vessels are taking place during the development of hypertension, such as (1) an atypical deposition or an increase of collagen VI which by interconnecting collagen fibrils (I and III) might exert a stabilizing (sclerosing) function in the ECM, and (2) a thickening of vascular basement membranes caused by an accumulation of its major components laminin and collagen IV.
Collapse
Affiliation(s)
- W Roggendorf
- Institut für Hirnforschung, Universität Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
33
|
Abstract
We give an electron microscopic description of vascular convulates, which occur along with normal brain aging. They consist of up to 10 vessels which are surrounded by a common perivascular space. We can make clear that the convolutes consist exclusively of normal arterioles. Each single vessel shows endothelial cells without pores. The media is mostly composed of a single layer of smooth muscle cells which are surrounded by adventitial cells or their processes. The adventitial cells show a high amount of lipid inclusions. From microangiographic research it is obvious that the absolute increase in length of the vessels is the main factor in the genesis of vascular convolutes. According to experimental animal studies it seems likely that recurrent hypoxic conditions lead to a considerable increase in length in the cerebral arterioles in old people.
Collapse
|
34
|
Larson DM, Sheridan JD. Junctional transfer in cultured vascular endothelium: II. Dye and nucleotide transfer. J Membr Biol 1985; 83:157-67. [PMID: 3999117 DOI: 10.1007/bf01868747] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vascular endothelial cultures, derived from large vessels, retain many of the characteristics of their in vivo counterparts. However, the observed reduction in size and complexity of intercellular gap and tight junctions in these cultured cells (Larson, D.M., and Sheridan, J.D., 1982, J. Cell Biol. 92:183) suggests that important functions, thought to be mediated by these structures, may be altered in vitro. In our continuing studies on intercellular communication in vessel wall cells, we have quantitated the extent of junctional transfer of small molecular tracers (the fluorescent dye Lucifer Yellow CH and tritiated uridine nucleotides) in confluent cultures of calf aortic (BAEC) and umbilical vein (BVEC) endothelium. Both BAEC and BVEC show extensive (and quantitatively equivalent) dye and nucleotide transfer. As an analogue of intimal endothelium, we have also tested dye transfer in freshly isolated sheets of endothelium. Transfer in BAEC and BVEC sheets was more rapid, extensive and homogeneous than in the cultured cells, implying a reduction in molecular coupling as endothelium adapts to culture conditions. In addition, we have documented heterocellular nucleotide transfer between cultured endothelium and vascular smooth muscle cells, of particular interest considering the prevalence of "myo-endothelial" junctions in vivo. These data yield further information on junctional transfer in cultured vascular endothelium and have broad implications for the functional integration of the vessel wall in the physiology and pathophysiology of the vasculature.
Collapse
|
35
|
Habeck JO, Holzhausen HJ. An ultrastructural study of the vascular alterations within the carotid bodies of spontaneously hypertensive rats (SHR). EXPERIMENTAL PATHOLOGY 1985; 27:195-200. [PMID: 4029353 DOI: 10.1016/s0232-1513(85)80059-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electron microscopic studies of the fine structural changes of the arterioles within the carotid bodies of spontaneously hypertensive rats (SHR) in the established phase of hypertension revealed partly hyperplastic endothelial cells. In the subendothelial space a multiplication of the basal laminae was observed often of a whirl-like shape. The smooth muscle cells of the media were hypertrophied, bizarre and with numerous projections. They exhibited a marked increase in cell organelles. The extracellular space was extensively enlarged and partly vacuolated. It contained a basement membrane-like material which was connected with the basal laminae of the myocytes. All these alterations produced a pad-like thickening of the arteriolar wall which narrowed the vessel lumen. These findings and their possible effects on carotid body function are discussed.
Collapse
|
36
|
Nakagawa Y, Cervós-Navarro J, Artigas J. A possible paracellular route for the resolution of hydrocephalic edema. Acta Neuropathol 1984; 64:122-8. [PMID: 6475500 DOI: 10.1007/bf00695575] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Considering the possibility of a paracellular route for edema resolution we studied the microvasculature of the subependymal and subcortical white matter in hydrocephalic rats. Normal adult rats were used as controls. After injection of kaolin suspension into the cisterna magna, the animals were killed at intervals of 1, 2, 4, and 8 weeks. In hydrocephalic rats at 1 week after kaolin injection, widening of the interendothelical cleft between the tight junction (dehiscence) was seen in 27 of 76 (35%) vessels. At 2 weeks after kaolin injection, the number of the dehiscences had increased (39/7:56%) and some were enlarged, forming interendothelial blisters. At 4 weeks in hydrocephalic rats, both dehiscences and blisters were still prominent (45/73:63%) and at 8 weeks the dehiscences were still prominent, but the number of the blisters had decreased (25/81:31%). The blisters and dehiscences were most pronounced in the corpus callosum and occipital regions. Following i.v. injection of horseradish peroxidase, the interendothelial dehiscences and blisters were completely devoid of the marker substance. These findings indicate that in obstructive hydrocephalus the tight junctions may constitute part of a paracellular pathway for the resorption of interstitial edema fluid.
Collapse
|
37
|
Sapsford I, Buontempo J, Weller RO. Basement membrane surfaces and perivascular compartments in normal human brain and glial tumours. A scanning electron microscope study. Neuropathol Appl Neurobiol 1983; 9:181-94. [PMID: 6877515 DOI: 10.1111/j.1365-2990.1983.tb00106.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The relationship of perivascular tissues to arteries and veins in normal brain and glial tumors were investigated by light microscopy and by scanning and transmission electron microscopy. Vessels and perivascular tissues were separated through various planes by careful tearing of fixed tissue blocks of brain and tumour. Mirror surfaces of torn blocks were examined by scanning electron microscopy and the identity of the vessels and other structure confirmed by transmission electron microscopy. Perivascular glial basement membranes remained adherent to arterial adventitia in both normal brain and in tumour so that the torn surface around the vessel exposed perivascular glial processes attached to the vessel walls. A clear plane of separation of perivascular glial basement membrane from the adventitia of veins was achieved in glial tumours. Mirror surfaces showed the smooth undulating sheet of basement membrane separated from the fine fibrillary connective tissue of the vessel wall. Tears in the basement membrane revealed the perivascular glial processes. The structure of the perivascular basement membrane is discussed in relation to its role as an attachment site for perivascular glial and as an impedence to inflammatory cell migration into brain parenchyma.
Collapse
|
38
|
Roggendorf W, Cervós-Navarro J. Ultrastructural characteristics of spasm in intracerebral arterioles. J Neurol Neurosurg Psychiatry 1982; 45:120-5. [PMID: 7200126 PMCID: PMC1083038 DOI: 10.1136/jnnp.45.2.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Following craniotomy, three groups of cats were subjected to three different stimuli: group A hyperventilation, group B electroshock, and group C direct electric current. During electric stimuli, pial vessels were observed through a cranial window. Immediately after electric current application, some arterial vessels showed segmental spastic constriction. Tissue samples for electron-microscopy were taken from the parietal lobe and nucleus caudatus. In all three groups of animals, different types of constriction of blood vessels were observed. The respiratory alkalosis achieved by hyperventilation led to physiological constriction of the arterioles. The electric stimuli led to spastic constriction of the meningeal and intracerebral arteries and arterioles in group B and C; the entire vessel wall was greatly deformed and the vessel lumen was almost obstructed. Electroshock resulted in only moderate structural changes of the smooth muscle cells. Direct current, however, caused an extreme and bizarre smooth muscle deformation. The results show that spastic constrictions of arterioles can be clearly distinguished from physiological, that is non-spastic constriction, by morphological parameters. Electric stimulation of cerebral vessels could be an experimental condition for further investigation of intracerebral vasospasm.
Collapse
|
39
|
Larson DM, Sheridan JD. Intercellular junctions and transfer of small molecules in primary vascular endothelial cultures. J Biophys Biochem Cytol 1982; 92:183-91. [PMID: 7056799 PMCID: PMC2112005 DOI: 10.1083/jcb.92.1.183] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ultrastructure of gap and tight junctions and the cell-to-cell transfer of small molecules were studied in primary cultures and freshly isolated sheets of endothelial cells from calf aortae and umbilical veins. In thin sections and in freeze-fracture replicas, the gap and tight junctions in the freshly isolated cells from both sources appeared similar to those found in the intimal endothelium. Most of the interfaces in replicas had complex arrays of multiple gap junctions either intercalated within tight junction networks or interconnected by linear particle strands. The particle density in the center of most gap junctions was noticeably reduced. In confluent monolayers, after 3-5 days in culture, gap and tight junctions were present, although reduced in complexity and apparent extent. Despite the relative simplicity of the junctions, the cell-to-cell transfer of potential changes, dye (Lucifer Yellow CH), and nucleotides was readily detectable in cultures of both endothelial cell types. The extent and rapidity of dye transfer in culture was only slightly less than that in sheets of freshly isolated cells, perhaps reflecting a reduced gap junctional area combined with an increase in cell size in vitro.
Collapse
|
40
|
Hoyes AD, Barber P. Quantitative ultrastructural studies on arteriolar innervation in the rat ureter. Microvasc Res 1981; 21:165-74. [PMID: 7219199 DOI: 10.1016/0026-2862(81)90029-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Lange W, Halata Z. Comparative studies on the pre- and postterminal blood vessels in the cerebellar cortex of Rhesus monkey, cat, and rat. ANATOMY AND EMBRYOLOGY 1979; 158:51-62. [PMID: 118682 DOI: 10.1007/bf00315951] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the rhesus monkey, cat and rat, pial arteries give off branches which run vertically through all three layers of the cerebellar cortex. The large cortical arteries are surrounded by a perivascular space in the molecular layer. Their wall consists of several layers of smooth-muscle cells and the luminal endothelium. As the arteries reach the deeper layers of the cerebellar cortex, the number of smooth-muscle cells is reduced. In the rat, sometimes no smooth-muscle cells are detectable in the preterminal arterial vessels. If these deep arteries branch off by dichotomy of terminal vessels there occurs a gradual or complete loss of myocytes in all three species. In the cat, where cortical arteries give off branches at right angles, there is a sphincter-like accumulation of smooth-muscle cells at the opening to the smaller branch. The postterminal vessels and veins in all species exhibit the same mural structure found in capillaries. The wall consists only of an endothelium and occasional pericytes embedded in the basal lamina. Even the large veins which run to the pial veins show this simple mural structure.
Collapse
|
42
|
Mitchell J, Weller RO, Evans H. Reestablishment of the blood brain barrier to peroxidase following cold injury to mouse cortex. Acta Neuropathol 1979; 46:45-9. [PMID: 452862 DOI: 10.1007/bf00684803] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Anderson BG, Anderson WD. Shunting in intracranial microvasculature demonstrated by SEM of corrosion-casts. THE AMERICAN JOURNAL OF ANATOMY 1978; 153:617-24. [PMID: 727157 DOI: 10.1002/aja.1001530410] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of methyl methacrylate corrosion-casts has made it possible to examine the intracranial microvasculature on a three-dimensional scale with the scanning electron microscope. By this means we have compared regions of four cerebral and cerebellar arteries among three domestic animal species. The results of this study suggest that there are from one to three different levels of interarteriolar anastomosis between branches of the same or adjacent vessels. In the horse and ox anastomoses were demonstrated (1) at the level of the precapillary arterioles, (2) along the arterioles, and (3) between small pial arteries. In the dog only the first-named anastomoses were evident in this study. These morphological characteristics may explain in part, the shunting mechanism by which hypoxia may be reduced among intracranial capillary networks.
Collapse
|
44
|
Anderson BG, Anderson WD. Scanning electron microscopy of microcorrosion casts; intracranial and abdominal microvasculature in domestic animals. THE AMERICAN JOURNAL OF ANATOMY 1978; 153:523-36. [PMID: 727152 DOI: 10.1002/aja.1001530404] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of methyl methacrylate corrosion casts prepared for portions of the vascular system has made it possible to examine numerous and extensive areas of microscopic structures on a 3-dimensional scale with the scanning electron microscope. By this means we have examined the arterial microvasculature of intracranial vessels among three domestic animal species. In addition, these vessels have been compared with the terminal branches of abdominal arteries in the dog. The results of this study suggest that the sphincteric control mechanisms of the vessels in the two regions may be structurally different from one another. In the case of the intracranial vessels, the terminal portion of the arteriole is continued by a precapillary arteriole composed of a chain-like series of muscular constrictions. This is most suitably described as a precapillary sphincter area, which terminates at the capillary. In the abdominal vessels, the precapillary arteriole is generally followed by a single precapillary sphincter at the origin of the capillary. These morphological characteristics may account, in part, for the difference in response of vessels in these two regions in hypovolemic shock.
Collapse
|
45
|
Roggendorf W, Cervós-Navarro J, Lazaro-Lacalle MD. Ultrastructure of venules in the cat brain. Cell Tissue Res 1978; 192:461-74. [PMID: 699028 DOI: 10.1007/bf00212326] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracerebral venules of the cat were examined to establish criteria for a distinct separation between the venous and arterial system, and to characterize, in greater detail, the mural construction of individual venules. The intracerebral venules compared with those of other organs. Venules do not have a vascular wall composed clearly of endothelium, media, and adventitia, as is characteristic of arteries and arterioles. The venous endothlium has a similar structure to that of capillaries. The periendothelial cells of the venule differ in shape depending on the vascular diameter. The number of periendothelial cell processes in postcapillary venules increases progressively. Segments in which the basal lamina of the endothelium merges with that of the glia cover a smaller portion of the circumference than in venous capillary loops. In collecting venules, the endothelium is almost completely enveloped by periendothelial cells which have a larger number of filaments. There are no typical smooth muscle cells in the intracerebral venules. The perivascular space becomes wider in collecting venules, contains adventitial cells, phagocytes and a great number of collagen fibers.
Collapse
|