1
|
Wen L, Chang HX, Brown PJ, Domier LL, Hartman GL. Genome-wide association and genomic prediction identifies soybean cyst nematode resistance in common bean including a syntenic region to soybean Rhg1 locus. HORTICULTURE RESEARCH 2019; 6:9. [PMID: 30622722 PMCID: PMC6312554 DOI: 10.1038/s41438-018-0085-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/18/2018] [Accepted: 08/13/2018] [Indexed: 05/27/2023]
Abstract
A genome-wide association study (GWAS) was applied to detect single nucleotide polymorphisms (SNPs) significantly associated with resistance to Heterodera glycines (HG) also known as the soybean cyst nematode (SCN) in the core collection of common bean, Phaseolus vulgaris. There were 84,416 SNPs identified in 363 common bean accessions. GWAS identified SNPs on chromosome (Chr) 1 that were significantly associated with resistance to HG type 2.5.7. These SNPs were in linkage disequilibrium with a gene cluster orthologous to the three genes at the Rhg1 locus in soybean. A novel signal on Chr 7 was detected and associated with resistance to HG type 1.2.3.5.6.7. Genomic predictions (GPs) for resistance to these two SCN HG types in common bean achieved prediction accuracy of 0.52 and 0.41, respectively. Our study generated a high-quality SNP panel for 363 common bean accessions and demonstrated that both GWAS and GP were effective strategies to understand the genetic architecture of SCN resistance in common bean.
Collapse
Affiliation(s)
- Liwei Wen
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
- Present Address: Monsanto, St. Louis, MO 63167 USA
| | - Hao-Xun Chang
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
- Present Address: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Patrick J. Brown
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
- Present Address: Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Leslie L. Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
- United States Department of Agriculture—Agricultural Research Service, Urbana, IL USA
| | - Glen L. Hartman
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
- United States Department of Agriculture—Agricultural Research Service, Urbana, IL USA
| |
Collapse
|
2
|
Li Y, Guo N, Zhao J, Zhou B, Xu R, Ding H, Zhao W, Gai J, Xing H. Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking x 7605 under two ecological sites. J Genet 2016; 95:975-982. [PMID: 27994197 DOI: 10.1007/s12041-016-0726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode that feeds on the roots of soybean and most economically devastating pathogen of soybean (Glycine max (L.) Merr.) worldwide. Host plant resistance is the most effective control method. To understand SCN resistance in different environments, two recombinant-inbred lines (RILs) populations NJ(RN)P7 (217 F2:8:11 lines) and JN(RN)P7 (248 F2:7:9 lines) were developed from the cross of the cultivars Peking x 7605 in Nanjing and Jinan, respectively, and examined in this study. Peking is resistant to SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 populations. Three recessive genes conditioned the inheritance of resistance to SCN race 1 in both populations, but significant difference was detected for the mean of FI on two populations (DM= -16.68, P< 0.01). This indicated that natural selection may affect resistance to SCN. By analysing the variation of phenotype, the genetic structure of the two populations was determined to be different. The inheritance and variation of resistance were confirmed by simple sequence repeat (SSR) markers. For the two populations, 10 SSR markers showed polymorphism of resistant and susceptible DNA bulks. Some markers associated with the resistance of SCN races 1, 2, 3 and 5, and two markers, Satt163 and Satt309, reportedly related to rgh1 were detected both in NJ(RN)P7 and JN(RN)P7 populations. The results support the view that a disease acts as a selective force on plant resistance characteristics, which may alter the relative fitness of resistance alleles.
Collapse
Affiliation(s)
- Yongchun Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Maldonado dos Santos JV, Valliyodan B, Joshi T, Khan SM, Liu Y, Wang J, Vuong TD, de Oliveira MF, Marcelino-Guimarães FC, Xu D, Nguyen HT, Abdelnoor RV. Evaluation of genetic variation among Brazilian soybean cultivars through genome resequencing. BMC Genomics 2016; 17:110. [PMID: 26872939 PMCID: PMC4752768 DOI: 10.1186/s12864-016-2431-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean [Glycine max (L.) Merrill] is one of the most important legumes cultivated worldwide, and Brazil is one of the main producers of this crop. Since the sequencing of its reference genome, interest in structural and allelic variations of cultivated and wild soybean germplasm has grown. To investigate the genetics of the Brazilian soybean germplasm, we selected soybean cultivars based on the year of commercialization, geographical region and maturity group and resequenced their genomes. RESULTS We resequenced the genomes of 28 Brazilian soybean cultivars with an average genome coverage of 14.8X. A total of 5,835,185 single nucleotide polymorphisms (SNPs) and 1,329,844 InDels were identified across the 20 soybean chromosomes, with 541,762 SNPs, 98,922 InDels and 1,093 CNVs that were exclusive to the 28 Brazilian cultivars. In addition, 668 allelic variations of 327 genes were shared among all of the Brazilian cultivars, including genes related to DNA-dependent transcription-elongation, photosynthesis, ATP synthesis-coupled electron transport, cellular respiration, and precursors of metabolite generation and energy. A very homogeneous structure was also observed for the Brazilian soybean germplasm, and we observed 41 regions putatively influenced by positive selection. Finally, we detected 3,880 regions with copy-number variations (CNVs) that could help to explain the divergence among the accessions evaluated. CONCLUSIONS The large number of allelic and structural variations identified in this study can be used in marker-assisted selection programs to detect unique SNPs for cultivar fingerprinting. The results presented here suggest that despite the diversification of modern Brazilian cultivars, the soybean germplasm remains very narrow because of the large number of genome regions that exhibit low diversity. These results emphasize the need to introduce new alleles to increase the genetic diversity of the Brazilian germplasm.
Collapse
Affiliation(s)
- João Vitor Maldonado dos Santos
- Brazilian Corporation of Agricultural Research (Embrapa Soja), Carlos João Strass road, Warta County, PR, Brazil.
- Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina, PR, Brazil.
| | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Trupti Joshi
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- Department of Computer Science, University of Missouri, Columbia, MO, 65211, USA.
| | - Saad M Khan
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Yang Liu
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Juexin Wang
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Tri D Vuong
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | | | | | - Dong Xu
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- Department of Computer Science, University of Missouri, Columbia, MO, 65211, USA.
| | - Henry T Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Ricardo Vilela Abdelnoor
- Brazilian Corporation of Agricultural Research (Embrapa Soja), Carlos João Strass road, Warta County, PR, Brazil.
- Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina, PR, Brazil.
| |
Collapse
|
4
|
NAN HY, LI YH, CHANG RZ, QIU LJ. Development and Identification of InDel Markers Based on rhg1 Gene for Re-sistance to Soybean Cyst Nematode ( Heterodera glycines Ichinohe). ACTA AGRONOMICA SINICA 2009. [DOI: 10.3724/sp.j.1006.2009.01236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Geffroy V, Sévignac M, Billant P, Dron M, Langin T. Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two independent genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:407-15. [PMID: 18060540 DOI: 10.1007/s00122-007-0678-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 11/13/2007] [Indexed: 05/11/2023]
Abstract
Anthracnose, caused by the hemibiotrophic fungal pathogen Colletotrichum lindemuthianum is a devastating disease of common bean. Resistant cultivars are economical means for defense against this pathogen. In the present study, we mapped resistance specificities against 7 C. lindemuthianum strains of various geographical origins revealing differential reactions on BAT93 and JaloEEP558, two parents of a recombinant inbred lines (RILs) population, of Meso-american and Andean origin, respectively. Six strains revealed the segregation of two independent resistance genes. A specific numerical code calculating the LOD score in the case of two independent segregating genes (i.e. genes with duplicate effects) in a RILs population was developed in order to provide a recombination value (r) between each of the two resistance genes and the tested marker. We mapped two closely linked Andean resistance genes (Co-x, Co-w) at the end of linkage group (LG) B1 and mapped one Meso-american resistance genes (Co-u) at the end of LG B2. We also confirmed the complexity of the previously identified B4 resistance gene cluster, because four of the seven tested strains revealed a resistance specificity near Co-y from JaloEEP558 and two strains identified a resistance specificity near Co-9 from BAT93. Resistance genes found within the same cluster confer resistance to different strains of a single pathogen such as the two anthracnose specificities Co-x and Co-w clustered at the end of LG B1. Clustering of resistance specificities to multiple pathogens such as fungi (Co-u) and viruses (I) was also observed at the end of LG B2.
Collapse
Affiliation(s)
- Valérie Geffroy
- Institut de Biotechnologie des Plantes (IBP), INRA, Université Paris-Sud, UMR-CNRS 8618, bât. 630, 91405, Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
6
|
Mudge J, Cannon SB, Kalo P, Oldroyd GED, Roe BA, Town CD, Young ND. Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. BMC PLANT BIOLOGY 2005; 5:15. [PMID: 16102170 PMCID: PMC1201151 DOI: 10.1186/1471-2229-5-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 08/15/2005] [Indexed: 05/04/2023]
Abstract
BACKGROUND Recent genome sequencing enables mega-base scale comparisons between related genomes. Comparisons between animals, plants, fungi, and bacteria demonstrate extensive synteny tempered by rearrangements. Within the legume plant family, glimpses of synteny have also been observed. Characterizing syntenic relationships in legumes is important in transferring knowledge from model legumes to crops that are important sources of protein, fixed nitrogen, and health-promoting compounds. RESULTS We have uncovered two large soybean regions exhibiting synteny with M. truncatula and with a network of segmentally duplicated regions in Arabidopsis. In all, syntenic regions comprise over 500 predicted genes spanning 3 Mb. Up to 75% of soybean genes are colinear with M. truncatula, including one region in which 33 of 35 soybean predicted genes with database support are colinear to M. truncatula. In some regions, 60% of soybean genes share colinearity with a network of A. thaliana duplications. One region is especially interesting because this 500 kbp segment of soybean is syntenic to two paralogous regions in M. truncatula on different chromosomes. Phylogenetic analysis of individual genes within these regions demonstrates that one is orthologous to the soybean region, with which it also shows substantially denser synteny and significantly lower levels of synonymous nucleotide substitutions. The other M. truncatula region is inferred to be paralogous, presumably resulting from a duplication event preceding speciation. CONCLUSION The presence of well-defined M. truncatula segments showing orthologous and paralogous relationships with soybean allows us to explore the evolution of contiguous genomic regions in the context of ancient genome duplication and speciation events.
Collapse
Affiliation(s)
- Joann Mudge
- Dept of Plant Pathology, 495 Borlaug Hall, University of Minnesota, St. Paul, MN 55108 USA
| | - Steven B Cannon
- Dept of Plant Pathology, 495 Borlaug Hall, University of Minnesota, St. Paul, MN 55108 USA
| | - Peter Kalo
- Dept. of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Norwich, NR4 7UH, UK
| | - Giles ED Oldroyd
- Dept. of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Norwich, NR4 7UH, UK
| | - Bruce A Roe
- The Advanced Center for Genome Technology (ACGT), Stephenson Research & Technology Center, University of Oklahoma, Norman OK 73019 USA
| | - Christopher D Town
- The Institute for Genomic Research (TIGR), 9712 Medicago Center Drive, Rockville, MN 20850 USA
| | - Nevin D Young
- Dept of Plant Pathology, 495 Borlaug Hall, University of Minnesota, St. Paul, MN 55108 USA
| |
Collapse
|
7
|
Vaghchhipawala ZE, Schlueter JA, Shoemaker RC, Mackenzie SA. Soybean FGAM synthase promoters direct ectopic nematode feeding site activity. Genome 2004; 47:404-13. [PMID: 15060594 DOI: 10.1139/g03-110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soybean cyst nematode (SCN) resistance in soybean is a complex oligogenic trait. One of the most important nematode resistance genes, rhg1, has been mapped to a distal region of molecular linkage group G in soybean. A simplified genetic system to identify soybean genes with modified expression in response to SCN led to the identification of several genes within the nematode feeding sites. The genes were mapped to reveal their linkage relationship to known QTLs associated with soybean cyst nematode (SCN) resistance. One candidate, a phosphoribosyl formyl glycinamidine (FGAM) synthase (EC 6.3.5.3) gene, mapped to the same genomic interval as the major SCN resistance gene rhg1 within linkage group G. Isolation of FGAM synthase from a soybean bacterial artificial chromosome (BAC) library revealed two highly homologous paralogs. The genes appeared to be well conserved between bacteria and humans. Promoter analysis of the two soybean homologs was carried out with the Arabidopsis thaliana - Heterodera schachtii system to investigate gene response to nematode feeding. The two promoters and their derived deletion constructions effected green fluorescent protein (GFP) expression within nematode feeding sites. The 1.0-kb promoter sequence immediately adjacent to the translation start site was sufficient to direct expression of GFP within syncytia. A wound-inducible element and a floral organ expression sequence were also identified within these promoters. Although a nematode-responsive element could not be identified, the observed expression of GFP within feeding sites supports the hypothesis that plant gene expression is redirected within feeding sites to benefit the parasite.
Collapse
|
8
|
Lorieux M, Reversat G, Garcia Diaz SX, Denance C, Jouvenet N, Orieux Y, Bourger N, Pando-Bahuon A, Ghesquière A. Linkage mapping of Hsa-1(Og), a resistance gene of African rice to the cyst nematode, Heterodera sacchari. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:691-696. [PMID: 12721640 DOI: 10.1007/s00122-003-1285-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 01/02/2003] [Indexed: 05/24/2023]
Abstract
Inheritance of resistance to cyst nematode (Heterodera sacchari) in Oryza sativa was investigated by inoculation tests with isolate 244 from Congo in segregating populations derived from hybridisation between O. sativa and its African sister cultivated species, O. glaberrima. We found that the resistance was controlled by one major gene, Hsa-1(Og), with codominance of susceptible and resistant alleles. To map Hsa-1(Og) on the rice genome, we pooled the data obtained from segregation of the resistance trait and microsatellite markers in three kinds of progeny: BC(1)F(3), BC(1)F(4), and pseudo-F(2) populations. Hsa-1(Og) was unambiguously located between Cornell University's RM206 and RM254 markers on chromosome 11. Two additional microsatellite markers derived from Monsanto publicly available sequences were found to be tightly linked to the Hsa-1(Og) gene. It is possible that numerous plant resistances to a pathogen in fact exhibit a codominant inheritance, possibly explaining misleading conclusions in several reports on resistance segregation.
Collapse
Affiliation(s)
- M Lorieux
- IRD, UMR 5096, Rice Genomics Unit, B.P. 64501, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Foster-Hartnett D, Mudge J, Larsen D, Danesh D, Yan H, Denny R, Peñuela S, Young ND. Comparative genomic analysis of sequences sampled from a small region on soybean (Glycine max) molecular linkage group G. Genome 2002; 45:634-45. [PMID: 12175066 DOI: 10.1139/g02-027] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eight DNA markers spanning an interval of approximately 10 centimorgans (cM) on soybean (Glycine max) molecular linkage group G (MLG-G) were used to identify bacterial artificial chromosome (BAC) clones. Twenty-eight BAC clones in eight distinct contiguous groups (contigs) were isolated from this genome region, along with 59 BAC clones on 17 contigs homoeologous to those on MLG-G. BAC clones in four of the MLG-G contigs were also digested to produce subclones and detailed physical maps. All of the BAC-ends were sequenced, as were the subclones, to estimate proportions in different sequence categories, compare similarities among homoeologs, and explore microsynteny with Arabidopsis. Homoeologous BAC contigs were enriched in repetitive sequences compared with those on MLG-G or the soybean genome as a whole. Fingerprint and cross-hybridization comparisons between MLG-G and homoeologous contigs revealed cases of highly similar physical organization between soybean duplicates, as did DNA sequence comparisons. Twenty-seven out of 78 total sequences on soybean MLG-G showed significant similarity to Arabidopsis. The homologs mapped to six compact genome segments in Arabidopsis, with the longest containing seven homologs spanning two million base pairs. These results extend previous observations of large-scale duplication and selective gene loss in Arabidopsis, suggesting that networks of conserved synteny between Arabidopsis and other angiosperm families can stretch over long physical distances.
Collapse
|
10
|
Cohn JR, Uhm T, Ramu S, Nam YW, Kim DJ, Penmetsa RV, Wood TC, Denny RL, Young ND, Cook DR, Stacey G. Differential regulation of a family of apyrase genes from Medicago truncatula. PLANT PHYSIOLOGY 2001; 125:2104-19. [PMID: 11299390 PMCID: PMC88866 DOI: 10.1104/pp.125.4.2104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2000] [Accepted: 12/04/2000] [Indexed: 05/18/2023]
Abstract
Four putative apyrase genes were identified from the model legume Medicago truncatula. Two of the genes identified from M. truncatula (Mtapy1 and Mtapy4) are expressed in roots and are inducible within 3 h after inoculation with Sinorhizobium meliloti. The level of mRNA expression of the other two putative apyrases, Mtapy2 and Mtapy3, was unaffected by rhizobial inoculation. Screening of a bacterial artificial chromosome library of M. truncatula genomic DNA showed that Mtapy1, Mtapy3, and Mtapy4 are present on a single bacterial artificial chromosome clone. This apyrase cluster was mapped to linkage group seven. A syntenic region on soybean linkage group J was found to contain at least two apyrase genes. Screening of nodulation deficient mutants of M. truncatula revealed that two such mutants do not express apyrases to any detectable level. The data suggest a role for apyrases early in the nodulation response before the involvement of root cortical cell division leading to the nodule structure.
Collapse
Affiliation(s)
- J R Cohn
- Center for Legume Research, Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|