1
|
Mookerjee SA, Gerencser AA, Watson MA, Brand MD. Controlled power: how biology manages succinate-driven energy release. Biochem Soc Trans 2021; 49:2929-2939. [PMID: 34882231 PMCID: PMC8786295 DOI: 10.1042/bst20211032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
Oxidation of succinate by mitochondria can generate a higher protonmotive force (pmf) than can oxidation of NADH-linked substrates. Fundamentally, this is because of differences in redox potentials and gearing. Biology adds kinetic constraints that tune the oxidation of NADH and succinate to ensure that the resulting mitochondrial pmf is suitable for meeting cellular needs without triggering pathology. Tuning within an optimal range is used, for example, to shift ATP consumption between different consumers. Conditions that overcome these constraints and allow succinate oxidation to drive pmf too high can cause pathological generation of reactive oxygen species. We discuss the thermodynamic properties that allow succinate oxidation to drive pmf higher than NADH oxidation, and discuss the evidence for kinetic tuning of ATP production and for pathologies resulting from substantial succinate oxidation in vivo.
Collapse
Affiliation(s)
- Shona A. Mookerjee
- Department of Biological and Pharmaceutical Sciences, Touro University California College of Pharmacy, Vallejo, CA, U.S.A
- Buck Institute for Research on Aging, Novato, CA, U.S.A
| | | | | | - Martin D. Brand
- Department of Biological and Pharmaceutical Sciences, Touro University California College of Pharmacy, Vallejo, CA, U.S.A
- Buck Institute for Research on Aging, Novato, CA, U.S.A
| |
Collapse
|
2
|
Ranganathan A, Owiredu S, Jang DH, Eckmann DM. Prophylaxis of mitochondrial dysfunction caused by cellular decompression from hyperbaric exposure. Mitochondrion 2020; 52:8-19. [PMID: 32045716 DOI: 10.1016/j.mito.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction occurring in response to cellular perturbations can include altered mitochondrial motility and bioenergetic function having intracellular heterogeneity. Exogenous mitochondrial directed therapy may correct these dysfunctions. Using in vitro approaches, we find that cell perturbations induced by rapid decompression from hyperbaric conditions with specific gas exposures has differential effects on mitochondrial motility, inner membrane potential, cellular respiration, reactive oxygen species production, impaired maintenance of cell shape and altered intracellular distribution of bioenergetic capacity in perinuclear and cell peripheral domains. Addition of a first-generation cell-permeable succinate prodrug to support mitochondrial function has positive overall effects in blunting the resultant bioenergy responses. Our results with this model of perturbed cell function induced by rapid decompression indicate that alterations in bioenergetic state are partitioned within the cell, as directly assessed by a combination of mitochondrial respiration and dynamics measurements. Reductions in the observed level of dysfunction produced can be achieved with application of the cell-permeable succinate prodrug.
Collapse
Affiliation(s)
- Abhay Ranganathan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Shawn Owiredu
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
3
|
Migliaccio V, Gregorio ID, Putti R, Lionetti L. Mitochondrial Involvement in the Adaptive Response to Chronic Exposure to Environmental Pollutants and High-Fat Feeding in a Rat Liver and Testis. Cells 2019; 8:E834. [PMID: 31387296 PMCID: PMC6721750 DOI: 10.3390/cells8080834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/28/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
In our modern society, exposure to stressful environmental stimuli, such as pollutants and/or chronic high-fat feeding, continuously induce tissular/organ metabolic adaptation to promote cellular survival. In extreme conditions, cellular death and tissular/organ damage occur. Mitochondria, as a cellular energy source, seem to play an important role in facing cellular stress induced by these environmental stimuli. On the other hand, mitochondrial dysfunction and oxidative stress play a key role in environmental stress-induced metabolic diseases. However, little is known about the combined effect of simultaneous exposure to chronic high-fat feeding and environmental pollutants on metabolic alterations at a tissular and cellular level, including mitochondrial dysfunction and oxidative stress induction. Our research group recently addressed this topic by analysing the effect of chronic exposure to a non-toxic dose of the environmental pollutant dichlorodiphenyldichloroethylene (DDE) associated with high-fat feeding in male Wistar rats. In this review, we mainly summarize our recent findings on mitochondrial adaptive response and oxidative stress induction in the liver, the main tissue involved in fat metabolism and pollutant detoxification, and in male gonads, the main targets of endocrine disruption induced by both high-fat feeding and environmental pollutants.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084 Fisciano, Italy.
- Department of Biology, University of Naples, Federico II, 80126 Naples, Italy.
| | - Ilaria Di Gregorio
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084 Fisciano, Italy
| | - Rosalba Putti
- Department of Biology, University of Naples, Federico II, 80126 Naples, Italy
| | - Lillà Lionetti
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
4
|
Wollenman LC, Vander Ploeg MR, Miller ML, Zhang Y, Bazil JN. The effect of respiration buffer composition on mitochondrial metabolism and function. PLoS One 2017; 12:e0187523. [PMID: 29091971 PMCID: PMC5665555 DOI: 10.1371/journal.pone.0187523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022] Open
Abstract
Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffers and substrate combinations to determine the optimal conditions to support mitochondrial function through ADP-stimulated respiration and uncoupled respiration using FCCP. The buffers consisted of a standard KCl based buffer (B1) and three modified buffers with chloride replaced by the K-lactobionate, sucrose, and the antioxidant taurine (B2) or K-gluconate (B3). The fourth buffer (B4) was identical to B2 except that K-lactobionate was replaced with K-gluconate. The substrate combinations consisted of metabolites that utilize different pathways of mitochondrial metabolism. To test mitochondrial function, we used isolated cardiac guinea pig mitochondria and measured oxygen consumption for three respiratory states using an Oroboros Oxygraph-2k. These states were the leak state (energized mitochondria in the absence of adenylates), ADP-stimulated state (energized mitochondria in the presence of saturating ADP concentrations), and uncoupled state (energized mitochondria in the presence of FCCP). On average across all substrate combinations, buffers B2, B3, and B4 had an increase of 16%, 26%, and 35% for the leak state, ADP-simulated state, and uncoupled state, respectively, relative to rates using B1. The common feature distinguishing these buffers from B1 is the notable lack of high chloride concentrations. Based on the respiratory rate metrics obtained with the substrate combinations, we conclude that the adenine nucleotide translocase, the dicarboxylate carrier, and the alpha-ketoglutarate exchanger are partially inhibited by chloride. Therefore, when the goal is to maximize ADP-stimulated respiration, buffers containing K-lactobionate or K-gluconate are superior choices compared to the standard KCl-based buffers.
Collapse
Affiliation(s)
- Lucas C. Wollenman
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
- Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Matthew R. Vander Ploeg
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Mackinzie L. Miller
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI, United States of America
- Nephrology and Hypertension, Henry Ford Hospital, Detroit, MI, United States of America
| | - Yizhu Zhang
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
5
|
Zolfaghari PS, Carré JE, Parker N, Curtin NA, Duchen MR, Singer M. Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis. Am J Physiol Endocrinol Metab 2015; 308:E713-25. [PMID: 25714676 PMCID: PMC4420898 DOI: 10.1152/ajpendo.00562.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/18/2015] [Indexed: 12/31/2022]
Abstract
Muscle dysfunction is a common feature of severe sepsis and multiorgan failure. Recent evidence implicates bioenergetic dysfunction and oxidative damage as important underlying pathophysiological mechanisms. Increased abundance of uncoupling protein-3 (UCP3) in sepsis suggests increased mitochondrial proton leak, which may reduce mitochondrial coupling efficiency but limit reactive oxygen species (ROS) production. Using a murine model, we examined metabolic, cardiovascular, and skeletal muscle contractile changes following induction of peritoneal sepsis in wild-type and Ucp3(-/-) mice. Mitochondrial membrane potential (Δψm) was measured using two-photon microscopy in living diaphragm, and contractile function was measured in diaphragm muscle strips. The kinetic relationship between membrane potential and oxygen consumption was determined using a modular kinetic approach in isolated mitochondria. Sepsis was associated with significant whole body metabolic suppression, hypothermia, and cardiovascular dysfunction. Maximal force generation was reduced and fatigue accelerated in ex vivo diaphragm muscle strips from septic mice. Δψm was lower in the isolated diaphragm from septic mice despite normal substrate oxidation kinetics and proton leak in skeletal muscle mitochondria. Even though wild-type mice exhibited an absolute 26 ± 6% higher UCP3 protein abundance at 24 h, no differences were seen in whole animal or diaphragm physiology, nor in survival rates, between wild-type and Ucp3(-/-) mice. In conclusion, this murine sepsis model shows a hypometabolic phenotype with evidence of significant cardiovascular and muscle dysfunction. This was associated with lower Δψm and alterations in mitochondrial ATP turnover and the phosphorylation pathway. However, UCP3 does not play an important functional role, despite its upregulation.
Collapse
Affiliation(s)
- Parjam S Zolfaghari
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom; Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Jane E Carré
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom
| | - Nadeene Parker
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Nancy A Curtin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom
| |
Collapse
|
6
|
Gauthier LD, Greenstein JL, Cortassa S, O'Rourke B, Winslow RL. A computational model of reactive oxygen species and redox balance in cardiac mitochondria. Biophys J 2013; 105:1045-56. [PMID: 23972856 PMCID: PMC3752118 DOI: 10.1016/j.bpj.2013.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/13/2013] [Accepted: 07/12/2013] [Indexed: 02/07/2023] Open
Abstract
Elevated levels of reactive oxygen species (ROS) play a critical role in cardiac myocyte signaling in both healthy and diseased cells. Mitochondria represent the predominant cellular source of ROS, specifically the activity of complexes I and III. The model presented here explores the modulation of electron transport chain ROS production for state 3 and state 4 respiration and the role of substrates and respiratory inhibitors. Model simulations show that ROS production from complex III increases exponentially with membrane potential (ΔΨm) when in state 4. Complex I ROS release in the model can occur in the presence of NADH and succinate (reverse electron flow), leading to a highly reduced ubiquinone pool, displaying the highest ROS production flux in state 4. In the presence of ample ROS scavenging, total ROS production is moderate in state 3 and increases substantially under state 4 conditions. The ROS production model was extended by combining it with a minimal model of ROS scavenging. When the mitochondrial redox status was oxidized by increasing the proton permeability of the inner mitochondrial membrane, simulations with the combined model show that ROS levels initially decline as production drops off with decreasing ΔΨm and then increase as scavenging capacity is exhausted. Hence, this mechanistic model of ROS production demonstrates how ROS levels are controlled by mitochondrial redox balance.
Collapse
|
7
|
Abstract
We show that the rate at which electrons pass through the respiratory chain in mitochondria and respiring prokaryotic cells is described by the product of three terms, one describing electron donation, one acceptance, and a third, the thermodynamic drive. We apply the theory of nonequilibrium thermodynamics in the context of the chemiosmotic model of proton translocation and energy conservation. This approach leads to a closed-form expression that predicts steady-state electron flux as a function of chemical conditions and the proton motive force across the mitochondrial inner membrane or prokaryotic cytoplasmic membrane. The rate expression, derived considering reverse and forward electron flow, is the first to account for both thermodynamic and kinetic controls on the respiration rate. The expression can be simplified under specific conditions to give rate laws of various forms familiar in cellular physiology and microbial ecology. The expression explains the nonlinear dependence of flux on electrical potential gradient, its hyperbolic dependence on substrate concentration, and the inhibiting effects of reaction products. It provides a theoretical basis for investigating life under unusual conditions, such as microbial respiration in alkaline waters.
Collapse
Affiliation(s)
- Qusheng Jin
- Department of Geology, University of Illinois, Urbana 61801-2919, USA.
| | | |
Collapse
|
8
|
Mollica MP, Iossa S, Liverini G, Soboll S. Steady state changes in mitochondrial electrical potential and proton gradient in perfused liver from rats fed a high fat diet. Mol Cell Biochem 1998; 178:213-7. [PMID: 9546602 DOI: 10.1023/a:1006899632413] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work the protonmotive force (delta p), as well as the subcellular distribution of malate, ATP, and ADP were determined in perfused liver from rats fed a low fat or high fat diet, using density gradient fractionation in non aqueous solvents. Rats fed a high fat diet, despite an enhanced hepatic oxygen consumption, exhibit similar delta p to that found in rats fed a low fat diet, but when we consider the two components of delta p, we find a significant decrease in mitochondrial/cytosolic pH difference (delta pH(m)) and a significant increase in mitochondrial membrane potential (delta psi(m)) in rats fed a high fat diet compared to rats fed a low fat diet, which tend to compensate each other. In rats fed a high fat diet the concentration ratio of malate and ATP/ADP does not reflect the changes in delta pH(m) and delta psi(m), which represent the respective driving force for their transport. The findings are in line with an increase in substrate supply to the respiratory chain which is, however, accompanied by a higher energy turnover in livers from HFD rats. By this way the liver could contribute to the lack of weight gain from the high caloric intake in HFD rats.
Collapse
Affiliation(s)
- M P Mollica
- Department of General and Environmental Physiology, University of Naples FEDERICO II, Italy
| | | | | | | |
Collapse
|