1
|
Amiri M, Jafari AH, Makkiabadi B, Nazari S. A Novel Unsupervised Spatial–Temporal Learning Mechanism in a Bio-inspired Spiking Neural Network. Cognit Comput 2022. [DOI: 10.1007/s12559-022-10097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Recognizing intertwined patterns using a network of spiking pattern recognition platforms. Sci Rep 2022; 12:19436. [PMID: 36376426 PMCID: PMC9663434 DOI: 10.1038/s41598-022-23320-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022] Open
Abstract
Artificial intelligence computing adapted from biology is a suitable platform for the development of intelligent machines by imitating the functional mechanisms of the nervous system in creating high-level activities such as learning, decision making and cognition in today's systems. Here, the concentration is on improvement the cognitive potential of artificial intelligence network with a bio-inspired structure. In this regard, four spiking pattern recognition platforms for recognizing digits and letters of EMNIST, patterns of YALE, and ORL datasets are proposed. All networks are developed based on a similar structure in the input image coding, model of neurons (pyramidal neurons and interneurons) and synapses (excitatory AMPA and inhibitory GABA currents), and learning procedure. Networks 1-4 are trained on Digits, Letters, faces of YALE and ORL, respectively, with the proposed un-supervised, spatial-temporal, and sparse spike-based learning mechanism based on the biological observation of the brain learning. When the networks have reached the highest recognition accuracy in the relevant patterns, the main goal of the article, which is to achieve high-performance pattern recognition system with higher cognitive ability, is followed. The pattern recognition network that is able to detect the combination of multiple patterns which called intertwined patterns has not been discussed yet. Therefore, by integrating four trained spiking pattern recognition platforms in one system configuration, we are able to recognize intertwined patterns. These results are presented for the first time and could be the pioneer of a new generation of pattern recognition networks with a significant ability in smart machines.
Collapse
|
3
|
Cáceres ARR, Campo Verde Arboccó F, Cardone DA, Sanhueza MDLÁ, Casais M, Vega Orozco AS, Laconi MR. Superior mesenteric ganglion neural modulation of ovarian angiogenesis, apoptosis and proliferation by the neuroactive steroid allopregnanolone. J Neuroendocrinol 2022; 34:e13056. [PMID: 34739183 DOI: 10.1111/jne.13056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022]
Abstract
Allopregnanolone (ALLO), a potent neuroactive steroid, is synthesized and active in the peripheral nervous system. Previous studies have shown that ALLO participates in the central regulation of reproduction with effects on ovarian physiology, although there is little evidence for its ability to modulate peripheral tissues. The present study aimed to determine whether ALLO, administered to an ex vivo system that comprises the superior mesenteric ganglion (SMG), the ovarian nervous plexus (ONP) and the ovary (O), or to the denervated ovary (DO), was able to modify ovarian apoptosis, proliferation and angiogenesis. For this purpose, the SMG-ONP-O system and DO were incubated during 120 min at 37°C, in the presence of two ALLO doses (0.06 µm and 6 µm). The intrinsic and extrinsic pathways of apoptosis were analyzed. Incubation of the SMG-ONP-O system with ALLO 0.06 µm led to an increase in the BAX/BCL-2 ratio and a reduction of FAS-L mRNA levels. ALLO 6 µm induced a decrease of FAS-L levels. Incubation of DO with ALLO 0.06 µm reduced FAS-L, whereas ALLO 6 µm significantly increased it. Cyclin D1 mRNA was measured to evaluate proliferation. Treatment with ALLO 6 µm increased proliferation in both SMG-ONP-O and DO. ALLO 0.06 µm produced an increase of Cyclin D1 in DO only. Administration of either ALLO dose led to a higher ovarian expression of vascular endothelial growth factor in the SMG-ONP-O system, but a lower one in the DO system. ALLO 6 µm induced ovarian sensitization to GABA by increasing GABAA receptor expression. In conclusion, ALLO participates in the peripheral neural modulation of ovarian physiology. It can also interact directly with the ovarian tissue, modulating key mechanisms involved in normal and pathological processes in a dose-dependent manner.
Collapse
Affiliation(s)
- Antonella Rosario Ramona Cáceres
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
- Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - Fiorella Campo Verde Arboccó
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
| | - Daniela Alejandra Cardone
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
| | - María de Los Ángeles Sanhueza
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
| | - Marilina Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Adriana Soledad Vega Orozco
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Myriam Raquel Laconi
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
- Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| |
Collapse
|
4
|
Nazari S, Amiri M, Faez K, Van Hulle MM. Information Transmitted From Bioinspired Neuron-Astrocyte Network Improves Cortical Spiking Network's Pattern Recognition Performance. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:464-474. [PMID: 30990195 DOI: 10.1109/tnnls.2019.2905003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We trained two spiking neural networks (SNNs), the cortical spiking network (CSN) and the cortical neuron-astrocyte network (CNAN), using a spike-based unsupervised method, on the MNIST and alpha-digit data sets and achieve an accuracy of 96.1% and 77.35%, respectively. We then connected CNAN to CSN by preserving maximum synchronization between them thanks to the concept of prolate spheroidal wave functions (PSWF). As a result, CSN receives additional information from CNAN without retraining. The important outcome is that CSN reaches 70.57% correct classification rate on capital letters without being trained on them. The overall contribution of transfer is 87.47%. We observed that for CSN the classifying neurons that relate to digits 0-9 of the alpha-digit data set are completely supported by the ones that relate to digits 0-9 of the MNIST data set. This means that CSN recognizes the similarity between the digits of the MNIST and alpha-digit data sets and classifies each digit of both data sets in the same class.
Collapse
|
5
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
6
|
Nazari S, Faez K. Establishing the flow of information between two bio-inspired spiking neural networks. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2018.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Nazari S, faez K. Spiking pattern recognition using informative signal of image and unsupervised biologically plausible learning. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.10.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Empowering the impaired astrocytes in the tripartite synapses to improve accuracy of pattern recognition. Soft comput 2018. [DOI: 10.1007/s00500-018-03671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Neurochemical correlates of functional plasticity in the mature cortex of the brain of rodents. Behav Brain Res 2017; 331:102-114. [DOI: 10.1016/j.bbr.2017.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023]
|
10
|
Herrera-Rincon C, Torets C, Sanchez-Jimenez A, Avendaño C, Panetsos F. Chronic electrical stimulation of transected peripheral nerves preserves anatomy and function in the primary somatosensory cortex. Eur J Neurosci 2012; 36:3679-90. [DOI: 10.1111/ejn.12000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 08/01/2012] [Accepted: 08/13/2012] [Indexed: 01/18/2023]
Affiliation(s)
- Celia Herrera-Rincon
- Neurocomputing and Neurorobotics Research Group; Universidad Complutense de Madrid; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC); Madrid; Spain
| | - Carlos Torets
- Neurocomputing and Neurorobotics Research Group; Universidad Complutense de Madrid; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC); Madrid; Spain
| | | | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience; Universidad Autonoma de Madrid; Madrid; Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group; Universidad Complutense de Madrid; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC); Madrid; Spain
| |
Collapse
|
11
|
Kaliszewska A, Bijata M, Kaczmarek L, Kossut M. Experience-Dependent Plasticity of the Barrel Cortex in Mice Observed with 2-DG Brain Mapping and c-Fos: Effects of MMP-9 KO. Cereb Cortex 2011; 22:2160-70. [DOI: 10.1093/cercor/bhr303] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Afarinesh MR, Sheibani V, Arabzadeh S, Shamsizadeh A. Effect of chronic morphine exposure on response properties of rat barrel cortex neurons. Addict Biol 2008; 13:31-9. [PMID: 18201293 DOI: 10.1111/j.1369-1600.2007.00087.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic exposure to morphine can impair performance in tasks which need sensory processing. Using single unit recordings we investigate the effect of chronic morphine exposure on the firing properties of neurons in layers IV and V of the whisker-related area of rat primary somatosensory cortex. In urethane-anesthetized animals, neuronal activity was recorded in response to principal and adjacent whisker deflections either stimulated independently or in a conditioning test paradigm. A condition test ratio (CTR) was calculated for assessing the inhibitory receptive field. In layer IV, chronic morphine treatment did not change the spontaneous discharge activity. On responses to principal and adjacent whisker deflections did not show any significant changes following chronic morphine exposure. The magnitude Off responses to adjacent whisker deflection decreased while its response latency increased. In addition, there was a significant increase in the latency of Off responses to principal whisker deflection. CTR did not change significantly following morphine exposure. Layer V neurons, on the other hand, did not show any significant changes in their spontaneous activity or their evoked responses following morphine exposure. Our results suggest that chronic morphine exposure has a subtle modulatory effect on response properties of neurons in barrel cortex.
Collapse
|
13
|
Zhao CS, Hartikainen S, Schallert T, Sivenius J, Jolkkonen J. CNS-active drugs in aging population at high risk of cerebrovascular events: evidence from preclinical and clinical studies. Neurosci Biobehav Rev 2007; 32:56-71. [PMID: 17599405 DOI: 10.1016/j.neubiorev.2007.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 05/10/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
The recovery process following cerebral insults such as stroke is affected by aging and pharmacotherapy. The use of medication including CNS-active drugs has increased in the elderly during recent years. However, surprisingly little is known about how safe they are with respect to severity of sensorimotor and cognitive impairments or recovery of function following possible cerebrovascular accidents. This review examines the experimental and clinical literature, primarily from 1995 onwards, concerning medication in relation to cerebrovascular events and functional recovery. Special attention is directed to polypharmacy and to new CNS-active drugs, which the elderly are already taking or are prescribed to treat emerging, stroke-induced psychiatric symptoms. The neurobiological mechanisms affected by these drugs are discussed.
Collapse
|
14
|
Rema V, Armstrong-James M, Jenkinson N, Ebner FF. Short exposure to an enriched environment accelerates plasticity in the barrel cortex of adult rats. Neuroscience 2006; 140:659-72. [PMID: 16616426 PMCID: PMC2860223 DOI: 10.1016/j.neuroscience.2006.02.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 01/11/2006] [Accepted: 02/22/2006] [Indexed: 12/02/2022]
Abstract
Cortical sensory neurons adapt their response properties to use and disuse of peripheral receptors in their receptive field. Changes in synaptic strength can be generated in cortex by simply altering the balance of input activity, so that a persistent bias in activity levels modifies cortical receptive field properties. Such activity-dependent plasticity in cortical cell responses occurs in rat cortex when all but two whiskers are trimmed for a period of time at any age. The up-regulation of evoked responses to the intact whiskers is first seen within 24 h in the supragranular layers [Laminar comparison of somatosensory cortical plasticity. Science 265(5180):1885-1888] and continues until a new stable state is achieved [Experience-dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci U S A 90(5):2082-2086; Armstrong-James M, Diamond ME, Ebner FF (1994) An innocuous bias in whisker use in adult rat modifies receptive fields of barrel cortex neurons. J Neurosci 14:6978-6991]. These and many other results suggest that activity-dependent changes in cortical cell responses have an accumulation threshold that can be achieved more quickly by increasing the spike rate arising from the active region of the receptive field. Here we test the hypothesis that the rate of neuronal response change can be accelerated by placing the animals in a high activity environment after whisker trimming. Test stimuli reveal an highly significant receptive field bias in response to intact and trimmed whiskers in layer IV as well as in layers II-III neurons in only 15 h after whisker trimming. Layer IV barrel cells fail to show plasticity after 15-24 h in a standard cage environment, but produce a response bias when activity is elevated by the enriched environment. We conclude that elevated activity achieves the threshold for response modification more quickly, and this, in turn, accelerates the rate of receptive field plasticity.
Collapse
Key Words
- experience-dependent modifications
- use-dependent plasticity
- enriched environment
- whisker-pairing
- deprivation
- receptive field changes
- dc, d cut whisker
- dp, d paired whisker
- ee, enriched environment
- eewp, enriched environment whisker-paired
- ld, light/dark
- ltd, long-term depression
- ltp, long-term potentiation
- nmda, n-methyl-d-aspartate
- psths, post-stimulus time histograms
- sc, standard cage
- scwp, standard cage whisker-paired
- s.e.m., standard error of the mean
- sg, supragranular layer
- mwu, mann-whitney u
- wmpsr, wilcoxon matched pair sign rank
- wp, whisker-pairing
Collapse
Affiliation(s)
- V Rema
- National Brain Research Centre, Nainwal Mode, Manesar, Haryana 122050, India.
| | | | | | | |
Collapse
|
15
|
Floyer-Lea A, Wylezinska M, Kincses T, Matthews PM. Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J Neurophysiol 2005; 95:1639-44. [PMID: 16221751 DOI: 10.1152/jn.00346.2005] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Movement representations within the human primary motor and somatosensory cortices can be altered by motor learning. Decreases in local GABA concentration and its release may facilitate this plasticity. Here we use in vivo magnetic resonance spectroscopy (MRS) to noninvasively measure serial changes in GABA concentration in humans in a brain region including the primary sensorimotor cortex contralateral to the hand used for an isometric motor sequence learning task. Thirty minutes of motor sequence learning reduced the mean GABA concentration within a 2 x 2 x 2-cm3 voxel by almost 20%. This reduction was specific to motor learning: 30 min of similar, movements with an unlearnable, nonrepetitive sequence were not associated with changes in GABA concentration. No significant changes in GABA concentration were found in the primary sensorimotor cortex ipsilateral to the hand used for learning. These changes suggest remarkably rapid, regionally specific short-term presynaptic modulation of GABAergic input that should facilitate motor learning. Although apparently confined to the contralateral hemisphere, the magnitude of changes seen within a large spectroscopic voxel suggests that these changes occur over a wide local neocortical field.
Collapse
Affiliation(s)
- Anna Floyer-Lea
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | |
Collapse
|
16
|
Farazifard R, Kiani R, Esteky H. Effects of GABAA receptor inhibition on response properties of barrel cortical neurons in C-Fiber-depleted rats. Brain Res 2005; 1050:27-32. [PMID: 15975565 DOI: 10.1016/j.brainres.2005.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2004] [Revised: 05/03/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
C-fiber depletion results in expansion of low threshold somatosensory mechanoreceptive fields. In this study, we investigated the role of intact C-fibers in GABAA-mediated inhibition in barrel cortical neurons. We used electronically controlled mechanical stimulation of whiskers to quantitatively examine the responses of barrel cells to whisker displacements. After systemic injection of picrotoxin neuronal responses were recorded at 5 min intervals for 20 min and then at 10 min intervals for 100 min. Picrotoxin injection caused a 3-fold increase in response magnitude of adjacent whisker stimulation and 1.4-fold increase in response magnitude of principal whisker stimulation with a maximum enhancement 50 min after the injection. There was no significant change in spontaneous activity following picrotoxin injection. The response enhancement and receptive field expansion observed in normal rats were completely absent in the C-fiber-depleted rats. These results suggest that the GABAA-mediated inhibition that modulates the receptive field functional organization of the barrel cortex depends on intact C-fibers.
Collapse
Affiliation(s)
- Rasoul Farazifard
- Research Center for Brain and Cognitive Sciences, School of Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
17
|
Világi I, Bárdos G, Dénes K, Farkas B, Friedrich P. Enhancement of synaptic strength in the somatosensory cortex following nerve injury does not parallel behavioural alterations. Brain Res Bull 2005; 64:463-9. [PMID: 15639541 DOI: 10.1016/j.brainresbull.2004.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 06/11/2004] [Accepted: 06/14/2004] [Indexed: 11/28/2022]
Abstract
Following infraorbital nerve transection, underlying mechanisms of the altered synaptic strength were studied in rat barrel cortex slice experiments. In addition to the in vitro electrophysiological studies, open-field tests were run to detect possible behavioural changes associated with cortical oversensitization. Enhanced NMDA receptor-mediated component of the evoked field response appeared in the barrel cortex after nerve injury. The alteration was transient, very distinct on the first day following injury, and almost returned to normal level by the end of the second week. Behavioural changes had not followed this time-course since long-lasting alterations were detected in the open-field test. These observations are in agreement with findings that showed biphasic regenerative processes following nerve injuries in other cortical areas.
Collapse
Affiliation(s)
- I Világi
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| | | | | | | | | |
Collapse
|
18
|
Weiss T, Miltner WHR, Liepert J, Meissner W, Taub E. Rapid functional plasticity in the primary somatomotor cortex and perceptual changes after nerve block. Eur J Neurosci 2004; 20:3413-23. [PMID: 15610174 DOI: 10.1111/j.1460-9568.2004.03790.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mature human primary somatosensory cortex displays a striking plastic capacity to reorganize itself in response to changes in sensory input. Following the elimination of afferent return, produced by either amputation, deafferentation by dorsal rhizotomy, or nerve block, there is a well-known but little-understood 'invasion' of the deafferented region of the brain by the cortical representation zones of still-intact portions of the brain adjacent to it. We report here that within an hour of abolishing sensation from the radial and medial three-quarters of the hand by pharmacological blockade of the radial and median nerves, magnetic source imaging showed that the cortical representation of the little finger and the skin beneath the lower lip, whose intact cortical representation zones are adjacent to the deafferented region, had moved closer together, presumably because of their expansion across the deafferented area. A paired-pulse transcranial magnetic stimulation procedure revealed a motor cortex disinhibition for two muscles supplied by the unaffected ulnar nerve. In addition, two notable perceptual changes were observed: increased two-point discrimination ability near the lip and mislocalization of touch of the intact ulnar portion of the fourth finger to the neighbouring third finger whose nerve supply was blocked. We suggest that disinhibition within the somatosensory system as a functional correlate for the known enlargement of cortical representation zones might account for not only the 'invasion' phenomenon, but also for the observed behavioural correlates of the nerve block.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Biological and Clinical Psychology, Friedrich-Schiller-University Jena, Am Steiger 3 Haus 1, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
19
|
Machín R, Blasco B, Bjugn R, Avendaño C. The size of the whisker barrel field in adult rats: minimal nondirectional asymmetry and limited modifiability by chronic changes of the sensory input. Brain Res 2004; 1025:130-8. [PMID: 15464753 DOI: 10.1016/j.brainres.2004.07.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2004] [Indexed: 11/25/2022]
Abstract
We have evaluated quantitatively the whisker barrel field (posteromedial barrel subfield, PMBSF) size in rats raised in standard cages and in rats chronically exposed to an enriched sensory environment. Some animals were subjected to either chronic trimming of the right whiskers, or permanent transection of the right infraorbital nerve. Coronal brain sections were Nissl-stained or reacted for cytochrome oxidase. All, except the IoN-transected rats, showed +/-5% variation in mean PMBSF thickness, with no consistent side bias. In the transected animals, however, the left PMBSF was a significant 3.1% shallower than the right. This denervation-dependent radial shrinkage was consistent with an 11% volume shrinkage of the deafferented PMBSF. The mean volume of the PMBSF ranged between 8.7 and 9.5 mm(3), with moderate interindividual variability (3.5% to 11%). No significant differences in PMBSF volume were found between groups in the right hemisphere, nor in the right vs. left ratios. However, the PMBSF volume was a significant 6.6% larger in the enriched animals without whisker trimming. The PMBSF volume correlated positively with neocortical volume, and with PMBSF cortex thickness, in rats exposed to enriched environment. These data show that: (1) there is a moderate interanimal and lateral variability in the PMBSF volume, with no side preference; (2) exposing young adult rats to an enriched environment induces a discrete but significant enlargement of the PMBSF; (3) the effects of whisker trimming on the contralateral PMBSF, if any, are lost in the interanimal and lateral variability; and (4) such changes reach significance, however, when studied in combination with exposure to an enriched environment.
Collapse
Affiliation(s)
- Raquel Machín
- Department of Morphology, School of Medicine, Autonoma University of Madrid, c/Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Massie A, Cnops L, Smolders I, Van Damme K, Vandenbussche E, Vandesande F, Eysel UT, Arckens L. Extracellular GABA concentrations in area 17 of cat visual cortex during topographic map reorganization following binocular central retinal lesioning. Brain Res 2003; 976:100-8. [PMID: 12763627 DOI: 10.1016/s0006-8993(03)02717-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system of mammals, plays an important role in cortical reorganization following sensory deprivation, by regulating the level of cortical inhibition and gating changes in receptive field size and synaptic efficacy. In cats it has been shown that 2 weeks after the induction of binocular retinal lesions, GABAergic inhibition, as determined by immunocytochemistry, is decreased in the deafferented region of area 17, whereas 3 months post-lesion, normal GABAergic control is restored within the cortical scotoma. In this study we used in vivo microdialysis to investigate the extracellular GABA concentrations 1-2 months post-lesion, in the sensory-deprived and remote, non-deprived region of area 17. Data were collected at those sample times and sites for which the extracellular glutamate concentrations had been determined in a previous investigation to elucidate the role of this excitatory neurotransmitter in cortical reorganization. As for glutamate, we observed significantly increased extracellular GABA concentrations in non-deprived area 17, whereas in deafferented area 17, extracellular GABA concentrations were comparable to those observed in normal, control subjects. These data suggest that 1-2 months post-lesion the deafferented cortex behaves like normal visual cortex, in contrast to remote, non-deprived cortex. Notwithstanding the increase in extracellular GABA concentration of 134%, the parallel increase in glutamate concentration of 269% could give rise to a net increase in excitability in remote area 17. We therefore suggest that LTP-like mechanisms, and thereby cortical reorganization, might still be facilitated, while possible excessive hyperexcitability is balanced by the moderately increased GABAergic control.
Collapse
Affiliation(s)
- Ann Massie
- Laboratory of Neuroendocrinology and Immunological Biotechnology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rapid, experience-dependent changes in levels of synaptic zinc in primary somatosensory cortex of the adult mouse. J Neurosci 2002. [PMID: 11923427 DOI: 10.1523/jneurosci.22-07-02617.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrophysiological studies have established that the adult cerebral cortex undergoes immediate functional reorganizations after perturbations of the sensory periphery. These activity-dependent modifications are thought to be mediated via the rapid regulation of the synaptic strength of existing connections. Recent studies have implicated synaptic zinc as contributing to activity-dependent mechanisms of cortical plasticity, such as long-term potentiation and long-term depression, by virtue of its potent ability to modulate glutamatergic neurotransmission. To investigate the role of synaptic zinc in cortical plasticity, we examined changes in the barrel-specific distribution of zinc in axon terminals innervating the primary somatosensory cortex of adult mice at different time points after whisker plucking. In layer IV of normal adult mice, zinc staining in the barrel field was characterized by intense staining in inter-barrel septae and low levels of staining in barrel hollows. Within 3 hr, and up to 1 week after the removal of a row of whiskers, zinc staining increased significantly in barrel hollows corresponding to the plucked whiskers. With longer survival times, levels of zinc staining gradually declined in deprived barrel hollows, returning to normal levels by 2-3 weeks after whisker removal. Increased levels of zinc staining in deprived barrel hollows were highly, negatively correlated with the length of whiskers as they regrew. These results indicate that levels of synaptic zinc in the neocortex are rapidly regulated by changes in sensory experience and suggest that zinc may participate in the plastic changes that normally occur in the cortex on a moment-to-moment basis.
Collapse
|
22
|
Lech M, Skibinska A, Kossut M. Delayed upregulation of GABA(A) alpha1 receptor subunit mRNA in somatosensory cortex of mice following learning-dependent plasticity of cortical representations. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 96:82-6. [PMID: 11731012 DOI: 10.1016/s0169-328x(01)00271-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Experience-dependent modifications of cortical representational maps are accompanied by changes in several components of GABAergic inhibitory neurotransmission system. We examined with in situ hybridization to 35S-labeled oligoprobe changes of expression of GABA(A) receptor alpha1 subunit mRNA in the barrel cortex of mice after sensory conditioning training. One day and 5 days after the end of short lasting (3 daily sessions) training an increased expression of GABA(A) alpha1 mRNA was observed at the cortical site where the plastic changes were previously found. Learning associated activation of the cerebral cortex increases expression of GABA(A) receptor mRNA after a short post-training delays.
Collapse
Affiliation(s)
- M Lech
- Department of Neurophysiology, Nencki Institute, 3 Pasteur St., 02-093, Warsaw, Poland
| | | | | |
Collapse
|
23
|
Dupont E, Canu MH, Langlet C, Falempin M. Time course of recovery of the somatosensory map following hindpaw sensory deprivation in the rat. Neurosci Lett 2001; 309:121-4. [PMID: 11502360 DOI: 10.1016/s0304-3940(01)02050-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hindlimb sensory deprivation is known to induce a decrease in the cortical representation of hindpaw, and an increase in the size of the cutaneous receptive fields. The aim of the present study was to determine (i) the time-course of recovery when the rat retrieves a normal use of its limbs after a 14-day period of sensory disruption and (ii) whether a 1-day period of sensory deprivation is sufficient to induce a plasticity. Our results indicate that the remodelling of the cortical map was not observed after 1 day of sensory deprivation. On the other hand, the recovery was achieved after 6 h. These findings suggest that a procedure reducing sensory function resulted in reversible changes in the somatosensory cortex. The recovery was more rapid than the induction of plasticity.
Collapse
Affiliation(s)
- E Dupont
- Laboratoire de Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, bâtiment SN4, 59655 Villeneuve d'Ascq cedex, France
| | | | | | | |
Collapse
|
24
|
Tremere L, Hicks TP, Rasmusson DD. Role of inhibition in cortical reorganization of the adult raccoon revealed by microiontophoretic blockade of GABA(A) receptors. J Neurophysiol 2001; 86:94-103. [PMID: 11431491 DOI: 10.1152/jn.2001.86.1.94] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical reorganization was induced by amputation of the 4th digit in 11 adult raccoons. Animals were studied at various intervals, ranging from 2 to 37 wk, after amputation. Recordings were made from a total of 129 neurons in the deafferented cortical region using multibarrel micropipettes. Several types of receptive fields were described in reorganized cortex: restricted fields were similar in size to the normal receptive fields in nonamputated animals; multi-regional fields included sensitive regions on both adjacent digits and/or the underlying palm and were either continuous over the entire field or consisted of split fields. The proportion of neurons with restricted fields increased with time after amputation and was greater than previously found in subcortical regions. A GABA(A) receptor antagonist (bicuculline methiodide), glutamate, and GABA were administered iontophoretically to these neurons while determining their receptive fields and thresholds. Bicuculline administration resulted in expansion of the receptive field in 60% of the 93 neurons with cutaneous fields. In most cases (33 neurons) this consisted of a simple expansion around the borders of the predrug receptive field, and the average expansion (426%) was not different from that seen in nonamputated animals. In some neurons (n = 4), bicuculline produced an expansion from one digit onto the adjacent palm or another digit, an effect never seen in control animals. Bicuculline also changed the split fields of seven neurons into continuous fields by exposing a responsive region between the split fields. Finally, bicuculline changed the internal receptive field organization of 10 neurons by revealing subfields with reduced thresholds. In contrast to the situation in nonamputated animals, iontophoretic administration of glutamate also produced receptive field expansion in some neurons (n = 6), but the size and/or shape of the change was different from that produced by bicuculline, indicating that the effects of bicuculline were not due to an overall facilitation of neuronal activity. These results are consistent with the hypotheses that an important component of long-term cortical reorganization is the gradual reduction in effective receptive field size and that intracortical inhibitory networks are partially responsible for these changes.
Collapse
Affiliation(s)
- L Tremere
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
25
|
Czupryn A, Skangiel-Kramska J. Deprivation and denervation differentially affect zinc-containing circuitries in the barrel cortex of mice. Brain Res Bull 2001; 55:287-95. [PMID: 11470329 DOI: 10.1016/s0361-9230(01)00457-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the neocortex, a population of glutamatergic synapses contains chelatable zinc that is released upon depolarization. The present study compares the effect of chronic tactile deprivation and vibrissectomy performed at different postnatal ages on the synaptic zinc distribution in the mouse barrel cortex. We found that a chronic unilateral tactile deprivation resulted in an increase of synaptic zinc in deprived barrels. Distribution and intensity of zinc staining in non-deprived barrels resembled the control situation. The increase of zinc staining was observed if chronic deprivation started in early postnatal life or in adolescent mice but not in 70-day-old animals. This suggests that a critical period exists for plasticity of zinc containing terminals in the barrel cortex. The alteration of zinc staining was localized to not only the thalamorecipient layers IV but also layer II/III, and upper layer V. Neonatal denervation of selected vibrissal rows resulted in rearrangement of synaptic zinc distribution following cytoarchitectonic alterations in the barrel field. However, no changes in the intensity of zinc staining were observed. Vibrissectomy performed after the critical period for barrel formation did not affect either the distribution or intensity of zinc staining. It appears that the integrity of vibrissa-barrel pathway is necessary to induce activity-dependent alterations in synaptic zinc.
Collapse
Affiliation(s)
- A Czupryn
- Department of Neurophysiology, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
26
|
Siucinska E, Kossut M, Stewart MG. GABA immunoreactivity in mouse barrel field after aversive and appetitive classical conditioning training involving facial vibrissae. Brain Res 1999; 843:62-70. [PMID: 10528111 DOI: 10.1016/s0006-8993(99)01881-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously reported that a classical conditioning paradigm involving stimulation of a row of facial vibrissae produced an expansion of the cortical representation of the "trained row", labeled with 2-deoxyglucose (2DG), in layer IV of the barrel field. The present study has examined the pattern of GABA immunoreactivity (GABA-IR) in the cortical representation of row B of the facial vibrissae after (i) 3 days of aversive training, and (ii) 2 months of appetitive training, where stimulation of row B of vibrissae on one side of the snout was used as a conditioned stimulus. The most notable observation was a greater density of GABA-IR cells concentrated in the hollows of the "trained row" B barrels compared to the hollows in the barrel field of the opposite hemisphere in the same mouse. After aversive training, we noted a 2-fold increase in the density of GABA-IR neurons in the hollows of row B; after reward training, the increase amounted to 49%. In contrast, GABA-IR was unchanged in the control groups, which received only stimulation of vibrissae without the unconditioned stimulus. The classification of labeled neurons according to size revealed that the increase in density of GABA-IR neurons was confined to the small (12-15 microm) diameter group. We concluded that the GABAergic system undergoes up-regulation, after both associative learning paradigms, and that the population of small, GABAergic neurons plays an active role in use-dependent plasticity.
Collapse
Affiliation(s)
- E Siucinska
- Department of Neurophysiology, Nencki Institute of Experimental Biology 3 Pasteur St. 02-093, Warsaw, Poland.
| | | | | |
Collapse
|
27
|
Gierdalski M, Jablonska B, Smith A, Skangiel-Kramska J, Kossut M. Deafferentation induced changes in GAD67 and GluR2 mRNA expression in mouse somatosensory cortex. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:111-9. [PMID: 10407193 DOI: 10.1016/s0169-328x(99)00153-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Partial vibrissectomy in adult mice induces body map plasticity in SI barrel cortex. To examine if the disturbed balance of cortical activation affects the excitatory and inhibitory neurotransmitter systems, we studied glutamic acid decarboxylase (GAD 67) and AMPA receptor subunit GluR2 mRNA expression in the barrel cortex. At varying times post-vibrissectomy, sparing row C of whiskers on one side of the snout, the brains were processed for in situ hybridization using specific [(35)S]oligonucleotides to detect the laminar localization of GAD67 and GluR2 mRNAs. Three and seven days after vibrissectomy, the expression of GAD67 was decreased in the deafferented cortex, while 30 days post-lesion, no effects were observed. At 3 days post-lesion, an ipsilateral decrease in GAD67 mRNA expression was also observed. No decreases in GluR2 transcripts were found in the deafferented cortex, but an increased expression was observed in the representation of the spared row C of whiskers 3 days after vibrissectomy. Seven and 30 days post lesion no changes in GluR2 expression were found. These data indicate that in the barrel cortex, peripheral deafferentation transiently regulates GAD67 and GluR2 expression at the transcriptional level. We suggest that this may be a manifestation of adaptive processes.
Collapse
Affiliation(s)
- M Gierdalski
- Department of Neurophysiology, Nencki Institute, 3 Pasteur st, 02-093, Warsaw, Poland
| | | | | | | | | |
Collapse
|
28
|
Schiene K, Staiger JF, Bruehl C, Witte OW. Enlargement of cortical vibrissa representation in the surround of an ischemic cortical lesion. J Neurol Sci 1999; 162:6-13. [PMID: 10064162 DOI: 10.1016/s0022-510x(98)00292-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been shown that cortical lesions are associated with an increase of excitability in surrounding brain regions, and with a downregulation of GABA(A) receptors. In the present study we investigated whether this increased excitability affects the cortical map of inputs represented in areas surrounding the lesioned brain area. Focal lesions with a diameter of 2-2.5 mm were induced photochemically in the hindlimb area at the border of the primary somatosensory cortex of the rat. One week after lesioning, the cortical representation of the B3 vibrissa was studied using 14C-deoxyglucose (DG) autoradiography. In all animals mechanical stimulation of the B3 vibrissa produced a column-shaped DG-labeling in the somatosensory cortex, corresponding to the B3-barrel with a maximum of the glucose uptake in layer IV. In control animals without cortical lesions (n=6), stimulation increased the glucose uptake rate by 50.8+/-10.5% in layer IV. In lesioned animals (n=6) maximum DG-uptake in layer IV (54.8+/-8.6%) did not differ significantly from that in controls. However, as compared to control animals, lesioned animals showed also increased glucose uptake within the activated column in layers II/II (51.+/-11.1%, lesioned animals; 31.8+/-11.2%, controls; P<0.05, lesioned vs. control) and V (47.5+/-5.8%, lesioned animals, 28.8+/-10.5%, controls; P<0.05, lesioned vs. control). The diameter of the metabolically activated B3-barrel area of layer IV was expanded from 461.8+/-77.6 microm in control animals to 785.5+/-103.6 microm; P<0.01) in lesioned animals. Lesioned animals also showed expansion of the activated area in layers II/III (890.4+/-134.8 microm, lesioned animals; 430.6+/-95.1 microm, controls; P<0.01) and layer V (1117.5+/-163.6 microm, lesioned animals; 648.7+/-114.1 microm, controls; P<0.01). The depth profile of the activation columns showed a maximum in layer IV in control animals, which was expanded towards layers II/III and layer V in lesioned animals. It is concluded that cortical lesions alter the representational area of neighboring afferent inputs through disinhibition or 'unmasking' of pre-existing silent or ineffectual intracortical synapses. The present observations raise the possibility that the brain supports recovery from lesions by decreasing GABAergic inhibition, thereby facilitating a remapping of the cortical representation in neighboring brain areas.
Collapse
Affiliation(s)
- K Schiene
- Neurologische Klinik, der Heinrich Heine Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
29
|
Qü M, Buchkremer-Ratzmann I, Schiene K, Schroeter M, Witte OW, Zilles K. Bihemispheric reduction of GABAA receptor binding following focal cortical photothrombotic lesions in the rat brain. Brain Res 1998; 813:374-80. [PMID: 9838197 DOI: 10.1016/s0006-8993(98)01063-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Focal brain lesions may lead to neuronal dysfunctions in remote (exofocal) brain regions. In the present study, focal lesions were induced in the hindlimb representation area of the parietal cerebral cortex in rats using the technique of photothrombosis. Photothrombosis occurs after illumination of the brain through the intact skull following intravenous injection of the photosensitive dye Rose Bengal. This resulted in cortical lesions with a diameter of about 2 mm. Quantitative receptor autoradiography was used to study alterations in the density of [3H]muscimol binding sites to GABAA receptors seven days after lesion induction. A reduced GABAA receptor binding (-13 to -27% of the control value) was found in layers II and III of remote exofocal regions in the ipsi- and contralateral cortex. The reduction was consistently more intense in the ipsilateral cortical areas than in those of the contralateral hemisphere. Using extracellular recordings, significant correlations between GABAA receptor binding and paired pulse inhibition could be demonstrated. The present investigation demonstrates that focal brain lesions cause a widespread, functionally effective down-regulation of GABAA receptors. These postlesional changes may result from lesion-induced alterations in cortical connectivity.
Collapse
Affiliation(s)
- M Qü
- C. and O. Vogt Institute of Brain Research, University of Düseldorf, Moorenstr. 5, D-40225, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Witte OW. Lesion-induced plasticity as a potential mechanism for recovery and rehabilitative training. Curr Opin Neurol 1998; 11:655-62. [PMID: 9870133 DOI: 10.1097/00019052-199812000-00008] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Brain lesions not only cause a functional deficit in the lesion area, but also affect the structurally intact brain network connected to the lesion. In brain areas surrounding the lesion, as well as those remote from it, the structural and functional plasticity of the brain is increased because of an alteration of transmitter receptor expression and membrane properties of neurones. Within the penumbra of brain ischaemia, as well as after trauma, an additional perilesional dysfunctional zone is found that contributes to the neurological deficit. The lesion-induced plasticity can be used for adaptation, which also may restore function in the perilesional zone, if adequate rehabilitative training is performed.
Collapse
Affiliation(s)
- O W Witte
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
31
|
Neumann-Haefelin T, Staiger JF, Redecker C, Zilles K, Fritschy JM, Möhler H, Witte OW. Immunohistochemical evidence for dysregulation of the GABAergic system ipsilateral to photochemically induced cortical infarcts in rats. Neuroscience 1998; 87:871-9. [PMID: 9759975 DOI: 10.1016/s0306-4522(98)00124-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deficits of GABAergic transmission have been reported to occur in tissue surrounding ischemic cortical lesions between a few days and several weeks after the insult. In the present experiments, we used immunohistochemistry with antibodies against parvalbumin and two major subunits of the GABA(A) receptor (alpha1, alpha2) to characterize the events that underlie these changes at different levels of circuit organization. Neocortical infarcts (2 mm diameter) consistently affecting medial parts of the primary somatosensory cortex were induced photochemically in adult male Wistar rats; animals were allowed to recover for one week before perfusion-fixation. When compared to controls the pattern of immunoreactivity had changed for the al subunit of the GABA(A) receptor seven days after the insult. Ipsilateral to the ischemic lesions, we found a decrease in staining intensity reaching up to 4 mm laterally, resulting in a partial or complete absence of the normal laminar staining pattern. No consistent changes were observed for the alpha2 subunit. Parvalbumin staining revealed pathological alterations in a rim of tissue surrounding the infarct, measuring up to 1 mm from the border of the infarcts. Parvalbumin-positive interneurons in this region showed signs of degeneration; both a reduction of the number of dendrites and, to a lesser extent and only immediately adjacent to the ischemic lesions, a reduction of the number of parvalbumin-positive neurons was readily apparent. The results provide evidence for both a differential regulation of two GABA(A) receptor subunits and degenerative changes of parvalbumin-containing interneurons ipsilateral to cortical infarcts. The relevance of these findings for mechanisms underlying long-term recovery, transient functional deficits and postinfarct seizures warrants further investigation.
Collapse
|
32
|
Bina KG, Park M, O'Dowd DK. Regulation of ?7 nicotinic acetylcholine receptors in mouse somatosensory cortex following whisker removal at birth. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980720)397:1<1::aid-cne1>3.0.co;2-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
|
34
|
Melzer P, Smith CB. Plasticity of cerebral metabolic whisker maps in adult mice after whisker follicle removal--I. Modifications in barrel cortex coincide with reorganization of follicular innervation. Neuroscience 1998; 83:27-41. [PMID: 9466397 DOI: 10.1016/s0306-4522(97)00332-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated alterations of the metabolic whisker map of barrel cortex after the removal of the follicles of left whiskers C1, C2 and C3 in adult albino mice. The quantitative autoradiographic [14C]deoxyglucose method was used to measure local cerebral metabolic rates for glucose in barrel cortex of mice two, four, eight, 64, 160 and 250 days after the lesion. Metabolic rates were measured in three groups of animals: (i) mice with lesions that had all whiskers clipped; (ii) mice with lesions that had left whiskers B1-3 and D1-3 stimulated; and (iii) unoperated mice that had left whiskers B1-3 and D1-3 stimulated. Compared with the metabolic rates in barrels C1-3 of stimulated unoperated mice, barrels C1-3 of stimulated mice with lesions showed the first discernible increase in metabolic rate four days after the lesion. The increase became distinct at 64 days, but attained statistical significance only approximately 160 days after the lesion. The lesion per se, i.e. without whisker stimulation, caused only a small increase in metabolic rate in barrels C1-3 accounting for not more than one fourth of the increase in metabolic rate measured after whisker deflection. The removal of whisker follicles C1-3 led, therefore, to an enlargement of the metabolic representations of the adjacent whiskers into the barrels deprived by the lesion. The gradual consolidation of the alterations of the metabolic whisker map coincided with the regeneration of follicular nerves in the whiskerpad. We detected anomalous deep nerves innervating follicles surrounding the lesion at approximately 64 days, and the number of myelinated nerve fibres in the deep nerves of these follicles was increasing with increasing time after the lesion. The coincidence of peripheral and central change suggests that the reorganization of the innervation of the sensory periphery plays an important role in the persistent alterations of the cortical somatotopy in adults following a lesion in the sensory periphery.
Collapse
Affiliation(s)
- P Melzer
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, MD 20892-4030, USA
| | | |
Collapse
|
35
|
Abstract
Histochemical localization of synaptic zinc was examined in the somatosensory (SI) barrel cortex of mouse. The laminar distribution and distribution within the barrel field were described. At postnatal day 3 (P3) and 5 (P5), very faint and uniform zinc staining was present in the lower part of the subplate. At P6, subtle laminar variations emerged. At P8, these variations were clearly observed. Intense zinc staining was found in layers I, II, III, and V. Layers IV and VI showed a weaker staining. From this postnatal age to adult, uneven patchy distribution of synaptic zinc in layer IV could be distinguished in coronal sections. In tangential sections through layer IV, zinc staining showed a barrel-like pattern due to a higher zinc concentration in septa and the surrounding cortex. Barrel sides revealed a lower zinc concentration compared with the barrel hollow. With brain maturation, the zinc staining increased more intensely outside the barrel field, thus producing a progressively higher contrast between the barrel field and adjacent cortical regions. The differences in zinc staining between the barrel side and barrel hollow diminished with age but were still visible at P70. The changes in synaptic zinc distribution probably reflect the process of synaptic maturation of glutamatergic terminals projecting to the SI cortex. The time course of postnatal changes in terminal zinc distribution suggests that synaptic zinc is not involved in the mechanisms of barrel formation.
Collapse
Affiliation(s)
- A Czupryn
- Department of Neurophysiology, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
36
|
Golshani P, Truong H, Jones EG. Developmental expression of GABA(A) receptor subunit and GAD genes in mouse somatosensory barrel cortex. J Comp Neurol 1997; 383:199-219. [PMID: 9182849 DOI: 10.1002/(sici)1096-9861(19970630)383:2<199::aid-cne7>3.0.co;2-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In situ hybridization histochemistry with radioactive cRNA probes was used to study patterns of gene expression for alpha1, alpha2, alpha4, alpha5, beta1, beta2, and gamma2 subunit mRNAs of typeAgamma aminobutyric acid (GABA(A)) receptors and for 67-kDa glutamic acid decarboxylase (GAD67) mRNA in mouse barrel cortex during the period (postnatal days 1-12; P1-P12) when thalamocortical innervation of layer IV barrels is occurring. The alpha1, beta2, and gamma2 subunit mRNAs increased substantially with age, especially in layers V and VI, and throughout the period studied, invariably had the same laminar-specific patterns of expression. All three mRNAs were highly expressed in the dense cortical plate at P1. In layer IV after differentiation of barrels, they were expressed in cells of both barrel walls and hollows but especially in the walls. The alpha2, alpha4, alpha5, and beta1 subunit mRNAs were expressed at lower levels and had different laminar patterns of distribution; alpha2 and alpha4 showed switches between layers over time; alpha5 was invariably associated with the subplate or its derivative, beta1 with layer IV. Levels of alpha2 mRNA did not change over time; alpha4 and beta1 mRNAs increased and alpha5 decreased. GAD67 mRNA was highest in layer I at P1 and progressively increased in other layers. These results suggest that postnatal development of GABA(A) receptors is mainly directed at the production of receptors assembled from alpha1, beta2, and gamma2 subunits, with beta1 contributing in layer IV. Other subunits may be associated with receptors involved in trophic actions of GABA during development and may give GABA(A) receptor-mediated responses in the developing cortex their particular physiological profile.
Collapse
Affiliation(s)
- P Golshani
- Department of Anatomy and Neurobiology, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
37
|
Gordon B, Kinch G, Kato N, Keele C, Lissman T, Fu LN. Development of MK-801, kainate, AMPA, and muscimol binding sites and the effect of dark rearing in rat visual cortex. J Comp Neurol 1997; 383:73-81. [PMID: 9184987 DOI: 10.1002/(sici)1096-9861(19970623)383:1<73::aid-cne6>3.0.co;2-i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We used quantitative autoradiography to determine whether the development of glutamate receptors correlates with the plastic period for monocular deprivation in rat visual cortex. To study glutamate receptors, we incubated sections of rat visual cortex with tritiated (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10imin e maleate (MK-801), tritiated kainate, and tritiated amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA). [3H]MK-801 is a noncompetitive ligand for the N-methyl-D-aspartate (NMDA) receptor. [3H]kainate and [3H]AMPA are competitive ligands for non-NMDA receptors. To compare glutamate binding sites with a nonglutamate binding site, we studied [3H]muscimol, which binds to gamma-aminobutyric acid (GABA)A receptors. [3H]MK-801 binding was maximal at postnatal day 26 (P26) and decreased in adulthood. [3H]AMPA binding was maximal at P18. [3H]kainate binding and [3H]muscimol binding were not age dependent. Dark rearing partially prevented the age-dependent decrease in [3H]MK-801 binding but had no effect on [3H]kainate or [3H]AMPA binding. Dark rearing decreased muscimol binding in adult animals. These results suggest that NMDA receptors, but not other glutamate receptors or GABAA receptors, are likely to be critical for developmental plasticity in rat visual cortex.
Collapse
Affiliation(s)
- B Gordon
- Institute of Neuroscience, University of Oregon, Eugene 97403, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Lane RD, Killackey HP, Rhoades RW. Blockade of GABAergic inhibition reveals reordered cortical somatotopic maps in rats that sustained neonatal forelimb removal. J Neurophysiol 1997; 77:2723-35. [PMID: 9163388 DOI: 10.1152/jn.1997.77.5.2723] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A previous study from this laboratory demonstrated that forelimb removal at birth results in invasion of the cuneate nucleus (CN) by sciatic nerve axons and the development of CN cells including thalamic projection neurons with receptive fields that include both the forelimb stump and the hindlimb. However, recordings from unit clusters in lamina IV of the primary somatosensory cortex (SI) of these animals revealed the presence of only a very few sites in the forelimb stump representation where responses to hindlimb stimulation could also be recorded. In the present study we tested the possibility that input from the hindlimb was suppressed in lamina IV of the cortical stump representation via GABAergic inhibitory mechanisms by mapping this cortical region, applying the gamma-aminobutyric acid-A (GABA(A)) and GABA(B) receptor antagonists bicuculline and phaclofen (50 microM each), and then remapping the same sites. In six neonatally manipulated rats, 15 of 242 sites (6.2%) in the stump representation responded to hindlimb stimulation before GABA receptor blockade and 107 (44.2%) of the same sites responded to stimulation of the hindlimb during blockade (P < 0.05). In six normal adult rats, 7 of 264 sites (2.7%) in the forelimb representation responded to hindlimb stimulation before the application of bicuculline and phaclofen. During GABA receptor blockage, 31 of these sites (11.7%) responded to such stimulation (P < 0.02 vs. the untreated normal cortex and P < 0.01 vs. the neonatally manipulated rats treated with GABA blockers). To specifically test the role of GABA(A) versus GABA(B) receptors in the inhibition of hindlimb input to the SI stump representation in rats that sustained neonatal forelimb removal, either bicuculline or phaclofen alone was applied to SI in nine neonatally manipulated animals. In four rats treated with bicuculline, 12 of 184 sites (6.5%) in the stump representation responded to hindlimb stimulation before treatment and 61 of 184 sites (33.2%) responded to such stimulation during application (P < 0.01). In animals (n = 5) treated with phaclofen, 18 of 251 sites (7.2%) responded to hindlimb stimulation before treatment and 64 of these sites (25.5%) responded to such stimulation during application (P < 0.05). There was no significant difference between the results obtained with bicuculline alone, phaclofen alone, or the two GABA blockers delivered together (P > 0.05). These results indicate that hindlimb input to the portion of SI representing the forelimb stump is functionally suppressed in rats that have sustained neonatal forelimb removal and that GABAergic inhibition, mediated by both GABA(A) and GABA(B) receptors, is involved in this process.
Collapse
Affiliation(s)
- R D Lane
- Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo 43699, USA
| | | | | |
Collapse
|
39
|
Dolan S, Cahusac PM. Differential effect of whisker trimming on excitatory and inhibitory transmission in primary somatosensory cortex of the adult rat in vivo. Neuroscience 1996; 70:79-92. [PMID: 8848139 DOI: 10.1016/0306-4522(95)00375-s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of sensory deprivation on excitatory and inhibitory activity in the primary somatosensory cortex were studied in the adult rat. Excitatory and inhibitory transmission generated by whisker stimulation, and neuronal responsiveness to iontophoretically applied excitatory amino acids were recorded. Whisker input deprivation, through whisker trimming for a median of 24 days, resulted in a significant decrease in excitatory transmission to surround whisker stimulation. In contrast, the response magnitude to principal whisker stimulation remained unchanged. However, the response latencies to principal whisker and surround whisker stimulation were significantly reduced, which led to altered temporal response distributions in deprived cells. Neurons deprived of sensory input were significantly less responsive to glutamate, N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionate and kainate. Following deprivation, no change was observed in cortical inhibitory transmission measured 30-200 ms post-stimulus. These results show that excitatory transmission (including excitatory amino acid receptor function) is altered by adult whisker deprivation.
Collapse
Affiliation(s)
- S Dolan
- Department of Psychology, University of Stirling, Scotland, U.K
| | | |
Collapse
|
40
|
Głazewski S, Kossut M, Skangiel-Kramska J. NMDA receptors in mouse barrel cortex during normal development and following vibrissectomy. Int J Dev Neurosci 1995; 13:505-14. [PMID: 8553884 DOI: 10.1016/0736-5748(95)00051-h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The development of N-methyl-D-aspartate (NMDA) receptors and the effects of vibrissectomy upon [3H]MK-801 binding were examined in the barrel cortex of mice. Autoradiographic studies showed that initially very low binding of [3H]MK-801 sharply increased during the second postnatal week reaching the adult level by the end of the third week. Scatchard analysis performed on cortical membrane preparations indicated that this rise of [3H]MK-801 labelling was due to an increase in the number of binding sites and a decrease of Kd at postnatal day 15 and 28. The interlaminar differences of labelling were registered from postnatal day 8. Changes of interlaminar distribution were found during the second and third postnatal weeks. In adult barrel cortex the highest binding was found in supragranular layers. In layer IV of the cortex, the pattern of binding resembled the pattern of barrels. Unilateral denervation of vibrissae performed in neonatal and adult mice did not alter the intensity of [3H]MK-801 labelling or the laminar distribution of binding sites. These results suggest that NMDA receptor binding does not reflect the plastic changes occurring in the barrel cortex.
Collapse
Affiliation(s)
- S Głazewski
- Department of Neurophysiology, Nencki Institute, Warsaw, Poland
| | | | | |
Collapse
|
41
|
Land PW, de Blas AL, Reddy N. Immunocytochemical localization of GABAA receptors in rat somatosensory cortex and effects of tactile deprivation. Somatosens Mot Res 1995; 12:127-41. [PMID: 7502603 DOI: 10.3109/08990229509101504] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Immunocytochemical techniques were used to investigate the distribution of gamma-aminobutyric acidA (GABAA) receptors in the rat primary somatosensory cortex (SI). Monoclonal antibody 62-3G1 (de Blas et al., 1988; Victorica et al., 1988), which recognizes an epitope common to the beta 2 and beta 3 subunits of the GABAA receptor, produces staining of small punctate structures throughout the neuropil, and around somata and linear processes in all laminae of SI. Receptor immunostaining is relatively intense in upper lamina I and in lamina IV, where patches of intense receptor staining are interleaved with narrow zones of moderate immunoreactivity. Staining is lightest in lamina Vb, where stained puncta appear to be aligned with radially oriented processes, and moderate in the remaining laminae. Tangential sections through lamina IV reveal that each large cortical barrel encompasses several patches of intense receptor staining that are aligned with the corners or edges of individual barrels; interbarrel septa are moderately of intense cytochrome oxidase (CO) histochemical staining. A similar correspondence is apparent between a complex lattice of dense receptor clustering and a plexus of dark CO staining in the cortical trunk representation. Six to eight weeks of tactile deprivation produced by simple whisker trimming have no visible effect on GABAA receptor distribution. This is the case for rats whose whiskers were trimmed only during adulthood and for rats deprived from the day of birth until examination 6-8 weeks later. However, electrocautery ablation of whisker follicles leads to a marked decline in GABAA receptor immunoreactivity in cortical barrels associated with the ablated follicles. Our findings indicate that there is reasonable, though not perfect, correspondence between the distribution of GABAA receptors and the distribution of GABA-containing neurons and terminals in rat SI. These elements are associated with regions of intense oxidative metabolic activity revealed by CO staining. The density of GABAA receptors is reduced in lamina IV following complete loss of peripheral afferent input. However, less severe tactile deprivation, which is known to affect cortical neuron responsiveness, produces little or no change in receptor distribution.
Collapse
Affiliation(s)
- P W Land
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|