1
|
Maruta J. On labyrinthine function loss, motion sickness immunity, and velocity storage. Front Neurol 2024; 15:1426213. [PMID: 39006234 PMCID: PMC11239394 DOI: 10.3389/fneur.2024.1426213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Maruta J, Cho C, Raphan T, Yakushin SB. Symptom reduction in mal de débarquement syndrome with attenuation of the velocity storage contribution in the central vestibular pathways. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1331135. [PMID: 38486679 PMCID: PMC10937418 DOI: 10.3389/fresc.2024.1331135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Background The velocity storage mechanism of the central vestibular system is closely associated with the vestibulo-ocular reflex (VOR), but also contributes to the sense of orientation in space and the perception of self-motion. We postulate that mal de débarquement syndrome (MdDS) is a consequence of inappropriate sensory adaptation of velocity storage. The premise that a maladapted velocity storage may be corrected by spatial readaptation of the VOR has recently been translated into the development of the first effective treatment for MdDS. However, this treatment's initial impact may be reversed by subsequent re-triggering events. Presently, we hypothesized that MdDS symptoms could alternatively be reduced by attenuating the velocity storage contribution in the central vestibular pathways. Methods Forty-three patients with MdDS (aged 47 ± 14 yo; 36 women) were randomly assigned to two treatment groups and followed for 6 months. The horizontal VOR was tested with chair rotation during laboratory visits, and the strength of velocity storage was quantified with model-based parameters-the time constant (Tc) and the gain of coupling from the vestibular primary afferent signals (g0). To attenuate velocity storage, Group 1 underwent a progressively intensifying series of low-frequency earth-vertical oscillatory rotation coupled to conflicting visual stimuli. Group 2 underwent an established protocol combining head tilts and visual stimulation, designed to correct maladapted spatial orientation but not change the velocity storage strength. The symptom severity was self-rated on an 11-point scale and reported before and up to 6 months after the treatment. Results In Group 1, velocity storage was modified through reduction of g0 (p < 0.001) but not Tc. The symptom rating was at least halved initially in 43% of Group 1 (p = 0.04), the majority of whom retained a similar level of improvement during the 6-month follow-up period. In Group 2, no systematic change was induced in the parameters of velocity storage strength, as expected. The symptom rating was at least halved initially in 80% of Group 2 (p < 0.001), but paralleling previous findings, symptoms often returned subsequently. Conclusion Attenuation of velocity storage shows promise as a lasting remedy for MdDS that can complement the VOR readaptation approach.
Collapse
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Catherine Cho
- Department of Neurology, NYU Langone Medical Center, New York, NY, United States
- Department of Otolaryngology, NYU Langone Medical Center, New York, NY, United States
| | - Theodore Raphan
- Department of Computer and Information Science, Brooklyn College, Institute for Neural and Intelligent Systems, New York, NY, United States
- The Graduate School and University Center of the City University of New York, New York, NY, United States
| | - Sergei B. Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Rühl M, Kimmel R, Ertl M, Conrad J, Zu Eulenburg P. In Vivo Localization of the Human Velocity Storage Mechanism and Its Core Cerebellar Networks by Means of Galvanic-Vestibular Afternystagmus and fMRI. CEREBELLUM (LONDON, ENGLAND) 2023; 22:194-205. [PMID: 35212978 PMCID: PMC9985569 DOI: 10.1007/s12311-022-01374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Humans are able to estimate head movements accurately despite the short half-life of information coming from our inner ear motion sensors. The observation that the central angular velocity estimate outlives the decaying signal of the semicircular canal afferents led to the concept of a velocity storage mechanism (VSM). The VSM can be activated via visual and vestibular modalities and becomes manifest in ocular motor responses after sustained stimulation like whole-body rotations, optokinetic or galvanic vestibular stimulation (GVS). The VSM has been the focus of many computational modelling approaches; little attention though has been paid to discover its actual structural correlates. Animal studies localized the VSM in the medial and superior vestibular nuclei. A significant modulation by cerebellar circuitries including the uvula and nodulus has been proposed. Nevertheless, the corresponding neuroanatomical structures in humans have not been identified so far. The aim of the present study was to delineate the neural substrates of the VSM using high-resolution infratentorial fMRI with a fast T2* sequence optimized for infratentorial neuroimaging and via video-oculography (VOG). The neuroimaging experiment (n=20) gave first in vivo evidence for an involvement of the vestibular nuclei in the VSM and substantiate a crucial role for cerebellar circuitries. Our results emphasize the importance of cerebellar feedback loops in VSM most likely represented by signal increases in vestibulo-cerebellar hubs like the uvula and nodulus and lobule VIIIA. The delineated activation maps give new insights regarding the function and embedment of Crus I, Crus II, and lobule VII and VIII in the human vestibular system.
Collapse
Affiliation(s)
- Maxine Rühl
- Department of Neurology, University Hospital Munich, Ludwig Maximilians University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany.
| | - Rebecca Kimmel
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| | - Matthias Ertl
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Julian Conrad
- Department of Neurology, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| | - Peter Zu Eulenburg
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
- Institute for Neuroradiology, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
4
|
Umemoto S, Hirata Y. Emerging order of anomalous eye movements with progressive drowsiness. J Vis 2023; 23:17. [PMID: 36696121 PMCID: PMC9896843 DOI: 10.1167/jov.23.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has been widely recognized that human alertness is reflected in the eyes (e.g., when drowsiness, miosis, slow saccades, divergence, less compensatory vestibulo-ocular reflex, and less-accurate optokinetic response and smooth pursuit emerge). Previous studies that discovered these pupil/oculomotor anomalous behaviors along with lowering alertness evaluated only one or a few of them simultaneously, thus their emergence order is yet unknown. Presently, we focused on the following five pupil/oculomotor behaviors that can be evaluated under a natural stationary environment without giving external sensory stimulations: saccades, slow-phase eye movements, vergence, pupil diameter, and blinks. We demonstrate that their anomalous behaviors emerge in the following order: first: frequent saccades; second: slow saccades; third: divergence & miosis, then slow eye movement, while elongated eyelid closure duration emerges randomly in this sequence. These results provide a basis for the oculo-pupillometry-enabling objective monitoring of progressive drowsiness.
Collapse
Affiliation(s)
- Shunya Umemoto
- Department of Computer Science, Chubu University Graduate School of Engineering, Aichi, Japan.,
| | - Yutaka Hirata
- Department of Robotic Science and Technology, Chubu University College of Engineering, Aichi, Japan.,Academy of Emerging Sciences, Chubu University, Aichi, Japan.,Center for Mathematical Science and Artificial Intelligence, Chubu University, Aichi, Japan.,
| |
Collapse
|
5
|
Cullen KE. Vestibular motor control. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:31-54. [PMID: 37562876 DOI: 10.1016/b978-0-323-98818-6.00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The vestibular system is an essential sensory system that generates motor reflexes that are crucial for our daily activities, including stabilizing the visual axis of gaze and maintaining head and body posture. In addition, the vestibular system provides us with our sense of movement and orientation relative to space and serves a vital role in ensuring accurate voluntary behaviors. Neurophysiological studies have provided fundamental insights into the functional circuitry of vestibular motor pathways. A unique feature of the vestibular system compared to other sensory systems is that the same central neurons that receive direct input from the afferents of the vestibular component of the 8th nerve can also directly project to motor centers that control vital vestibular motor reflexes. In turn, these reflexes ensure stabilize gaze and the maintenance of posture during everyday activities. For instance, a direct three-neuron pathway mediates the vestibulo-ocular reflex (VOR) pathway to provide stable gaze. Furthermore, recent studies have advanced our understanding of the computations performed by the cerebellum and cortex required for motor learning, compensation, and voluntary movement and navigation. Together, these findings have provided new insights into how the brain ensures accurate self-movement during our everyday activities and have also advanced our knowledge of the neurobiological mechanisms underlying disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Departments of Biomedical Engineering, of Otolaryngology-Head and Neck Surgery, and of Neuroscience; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
6
|
Maruta J. Lasting alteration of spatial orientation induced by passive motion in rabbits and its possible relevance to mal de débarquement syndrome. Front Neurol 2023; 14:1110298. [PMID: 36908625 PMCID: PMC9994528 DOI: 10.3389/fneur.2023.1110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Background Mal de débarquement syndrome (MdDS) is a chronic disorder of spatial orientation with a persistent false sensation of self-motion, whose onset typically follows prolonged exposure to passive motion of a transport vehicle. Development of similar but transient after-sensations mimicking the exposed motion and associated postural instability, indicative of central vestibular adaptation, are common. The cause of MdDS is thought to be a subsequent failure to readapt to a stationary environment. However, vestibular plasticity pertinent to this illness has not been studied sufficiently. Because the rabbit's eye movement is sensitive to three-dimensional spatial orientation, characterizing maladaptation of the vestibulo-ocular reflex (VOR) induced in the animal may open an approach to understanding MdDS. Methods Three rabbits underwent a series of 2-h conditioning with an unnatural repetitive motion that involved a complex combination of roll, pitch, and yaw movements in a head-based reference frame, consisting of periodic rolling in darkness in a frame of reference that rotated about an earth-vertical axis. Eye movement in three dimensions was sampled during the conditioning stimulus as well as during test stimuli before and up to several days after conditioning. Results During roll-while-rotating conditioning, the roll component of the VOR was compensatory to the oscillation about the corresponding axis, but the pitch component was not, initially prominently phase-leading the head pitch motion but subsequently becoming patently phase-delayed. Unidirectional yaw nystagmus, weak but directionally compensatory to the earth-vertical axis rotation, was seen throughout the period of conditioning. After conditioning, simple side-to-side rolling induced an abnormal yaw ocular drift in the direction that opposed the nystagmus seen during conditioning, indicating a maladaptive change in spatial orientation. The impact of conditioning appeared to be partially retained even after 1 week and could be partially reversed or cumulated depending on the rotation direction in the subsequent conditioning. Conclusion The observed reversible long-term maladaptation of spatial orientation as well as the depth of knowledge available in relation to the vestibular cerebellar circuits in this species support the potential utility of a rabbit model in MdDS research.
Collapse
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Martellucci S, Castellucci A, Malara P, Ralli G, Pagliuca G, Botti C, Gallo A, Ghidini A, Asprella Libonati G. Is it possible to diagnose Posterior Semicircular Canal BPPV from the sitting position? The role of the Head Pitch Test and the upright tests along the RALP and LARP planes. Am J Otolaryngol 2022; 43:103474. [PMID: 35561430 DOI: 10.1016/j.amjoto.2022.103474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE The diagnosis of benign paroxysmal positional vertigo (BPPV) involving the posterior semicircular canal (PSC) is traditionally entrusted to positioning tests where patients are rapidly brought in the supine position. This prospective study aims to define the role of a diagnostic protocol for PSC-BPPV including only upright tests. MATERIALS AND METHODS 109 patients with PSC-BPPV were enrolled. The Head Pitch Test (HPT) was carried out first. If uneventful, the patient's head was turned 45° to each side and bent back-and-forth along the plane aligning either with the right anterior-left posterior (RALP) or left anterior-right posterior (LARP) canals, thus performing the upright RALP / upright LARP (uRALP/uLARP) test. Nystagmus observed was used to predict the diagnosis, which was therefore confirmed by Dix-Hallpike tests. RESULTS PSC-BPPV could be correctly diagnosed in 75.2% of cases with the sole HPT and in 87.2% of cases by adding the uRALP/uLARP test (Upright Protocol). The time elapsed from symptoms onset was closely related to the protocol sensitivity, as it reached 100% (64/64) in acute patients while decreased to 68.9% (31/45) in cases evaluated after 7 days (p < 0.001). CONCLUSIONS Upright maneuvers could correctly diagnose PSC-BPPV in most cases. uRALP/uLARP test demonstrated to improve the sensitivity of the HPT, mainly in recent-onset BPPV.
Collapse
|
8
|
Yakushin SB, Raphan T, Cho C. Treatment of Gravitational Pulling Sensation in Patients With Mal de Debarquement Syndrome (MdDS): A Model-Based Approach. Front Integr Neurosci 2022; 16:801817. [PMID: 35676926 PMCID: PMC9168314 DOI: 10.3389/fnint.2022.801817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Perception of the spatial vertical is important for maintaining and stabilizing vertical posture during body motion. The velocity storage pathway of vestibulo-ocular reflex (VOR), which integrates vestibular, optokinetic, and proprioception in the vestibular nuclei vestibular-only (VO) neurons, has spatio-temporal properties that are defined by eigenvalues and eigenvectors of its system matrix. The yaw, pitch and roll eigenvectors are normally aligned with the spatial vertical and corresponding head axes. Misalignment of the roll eigenvector with the head axes was hypothesized to be an important contributor to the oscillating vertigo during MdDS. Based on this, a treatment protocol was developed using simultaneous horizontal opto-kinetic stimulation and head roll (OKS-VOR). This protocol was not effective in alleviating the MdDS pulling sensations. A model was developed, which shows how maladaptation of the yaw eigenvector relative to the head yaw, either forward, back, or side down, could be responsible for the pulling sensation that subjects experience. The model predicted the sometimes counter-intuitive OKS directions that would be most effective in re-adapting the yaw eigenvector to alleviate the pulling sensation in MdDS. Model predictions were consistent with the treatment of 50 patients with a gravitational pulling sensation as the dominant feature. Overall, pulling symptoms in 72% of patients were immediately alleviated after the treatment and lasted for 3 years after the treatment in 58% of patients. The treatment also alleviated the pulling sensation in patients where pulling was not the dominant feature. Thus, the OKS method has a long-lasting effect comparable to that of OKS-VOR readaptation. The study elucidates how the spatio-temporal organization of velocity storage stabilizes upright posture and how maladaptation of the yaw eigenvector generates MdDS pulling sensations. Thus, this study introduces a new way to treat gravitational pull which could be used alone or in combination with previously proposed VOR readaptation techniques.
Collapse
Affiliation(s)
- Sergei B. Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Theodore Raphan,
| | - Theodore Raphan
- Institute for Neural and Intelligent Systems, Department of Computer and Information Science, Brooklyn College of the City University of New York, Brooklyn, NY, United States
- Department of Computer Science, Graduate Center of CUNY, New York, NY, United States
- Ph.D Program in Psychology and Neuroscience, Graduate Center of CUNY, New York, NY, United States
- Sergei B. Yakushin,
| | - Catherine Cho
- Department Neurology and Otolaryngology, NYU Robert I. Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
9
|
Maruta J. The Scientific Contributions of Bernard Cohen (1929-2019). Front Neurol 2021; 11:624243. [PMID: 33510708 PMCID: PMC7835511 DOI: 10.3389/fneur.2020.624243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Throughout Bernard Cohen's active career at Mount Sinai that lasted over a half century, he was involved in research on vestibular control of the oculomotor, body postural, and autonomic systems in animals and humans, contributing to our understanding of such maladies as motion sickness, mal de débarquement syndrome, and orthostatic syncope. This review is an attempt to trace and connect Cohen's varied research interests and his approaches to them. His influence was vast. His scientific contributions will continue to drive research directions for many years to come.
Collapse
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Yakushin SB, Zink R, Clark BC, Liu C. Readaptation Treatment of Mal de Debarquement Syndrome With a Virtual Reality App: A Pilot Study. Front Neurol 2020; 11:814. [PMID: 33013617 PMCID: PMC7461907 DOI: 10.3389/fneur.2020.00814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Mal de Debarquement syndrome (MdDS) is composed of constant phantom sensations of motion, which are frequently accompanied by increased sensitivity to light, inability to walk on a patterned floor, the sensation of ear fullness, head pressure, anxiety, and depression. This disabling condition generally occurs in premenopausal women within 2 days after prolonged passive motion (e.g., travel on a cruise ship, plane, or in a car). It has been previously hypothesized that MdDS is the result of maladaptive changes in the polysynaptic vestibulo-ocular reflex (VOR) pathway called velocity storage. Past research indicates that full-field optokinetic stimulation is an optimal way to activate velocity storage. Unfortunately, such devices are typically bulky and not commonly available. We questioned whether virtual reality (VR) goggles with a restricted visual field could effectively simulate a laboratory environment for MdDS treatment. A stripes program for optokinetic stimulation was implemented using Google Daydream Viewer. Five female patients (42 ± 10 years; range 26-50), whose average MdDS symptom duration was 2 months, participated in this study. Four patients had symptoms triggered by prolonged passive motion, and in one, symptoms spontaneously occurred. Symptom severity was self-scored by patients on a scale of 0-10, where 0 is no symptoms at all and 10 is the strongest symptoms that the patient could imagine. Static posturography was obtained to determine objective changes in body motion. The treatment was considered effective if the patient's subjective score improved by at least 50%. All five patients reported immediate improvement. On 2-month follow-ups, symptoms returned only in one patient. These data provide proof of concept for the limited-visual-field goggles potentially having clinical utility as a substitute for full-field optokinetic stimulation in treating patients with MdDS in clinics or via telemedicine.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Reilly Zink
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, United States
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Chang Liu
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, United States
| |
Collapse
|
11
|
Raphan T. Vestibular, locomotor, and vestibulo-autonomic research: 50 years of collaboration with Bernard Cohen. J Neurophysiol 2020; 123:329-345. [PMID: 31747361 PMCID: PMC6985855 DOI: 10.1152/jn.00485.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 01/27/2023] Open
Abstract
My collaboration on the vestibulo-ocular reflex with Bernard Cohen began in 1972. Until 2017, this collaboration included studies of saccades, quick phases of nystagmus, the introduction of the concept of velocity storage, the relationship of velocity storage to motion sickness, primate and human locomotion, and studies of vasovagal syncope. These studies have elucidated the functioning of the vestibuloocular reflex, the locomotor system, the functioning of the vestibulo-sympathetic reflex, and how blood pressure and heart rate are controlled by the vestibular system. Although it is virtually impossible to review all the contributions in detail in a single paper, this article traces a thread of modeling that I brought to the collaboration, which, coupled with Bernie Cohen's expertise in vestibular and sensory-motor physiology and clinical insights, has broadened our understanding of the role of the vestibular system in a wide range of sensory-motor systems. Specifically, the paper traces how the concept of a relaxation oscillator was used to model the slow and rapid phases of ocular nystagmus. Velocity information that drives the slow compensatory eye movements was used to activate the saccadic system that resets the eyes, giving rise to the relaxation oscillator properties and simulated nystagmus as well as predicting the types of unit activity that generated saccades and nystagmic beats. The slow compensatory component of ocular nystagmus was studied in depth and gave rise to the idea that there was a velocity storage mechanism or integrator that not only is a focus for visual-vestibular interaction but also codes spatial orientation relative to gravity as referenced by the otoliths. Velocity storage also contributes to motion sickness when there are visual-vestibular as well as orientation mismatches in velocity storage. The relaxation oscillator concept was subsequently used to model the stance and swing phases of locomotion, how this impacted head and eye movements to maintain gaze in the direction of body motion, and how these were affected by Parkinson's disease. Finally, the relaxation oscillator was used to elucidate the functional form of the systolic and diastolic beats during blood pressure and how vasovagal syncope might be initiated by cerebellar-vestibular malfunction.
Collapse
Affiliation(s)
- Theodore Raphan
- Institute of Neural and Intelligent Systems and Department of Computer and Information Science, Brooklyn College and Graduate Center, City University of New York, Brooklyn, New York
| |
Collapse
|
12
|
Cullen KE. Vestibular processing during natural self-motion: implications for perception and action. Nat Rev Neurosci 2019; 20:346-363. [PMID: 30914780 PMCID: PMC6611162 DOI: 10.1038/s41583-019-0153-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How the brain computes accurate estimates of our self-motion relative to the world and our orientation relative to gravity in order to ensure accurate perception and motor control is a fundamental neuroscientific question. Recent experiments have revealed that the vestibular system encodes this information during everyday activities using pathway-specific neural representations. Furthermore, new findings have established that vestibular signals are selectively combined with extravestibular information at the earliest stages of central vestibular processing in a manner that depends on the current behavioural goal. These findings have important implications for our understanding of the brain mechanisms that ensure accurate perception and behaviour during everyday activities and for our understanding of disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Abstract
Although motion of the head and body has been suspected or known as the provocative cause for the production of motion sickness for centuries, it is only within the last 20 yr that the source of the signal generating motion sickness and its neural basis has been firmly established. Here, we briefly review the source of the conflicts that cause the body to generate the autonomic signs and symptoms that constitute motion sickness and provide a summary of the experimental data that have led to an understanding of how motion sickness is generated and can be controlled. Activity and structures that produce motion sickness include vestibular input through the semicircular canals, the otolith organs, and the velocity storage integrator in the vestibular nuclei. Velocity storage is produced through activity of vestibular-only (VO) neurons under control of neural structures in the nodulus of the vestibulo-cerebellum. Separate groups of nodular neurons sense orientation to gravity, roll/tilt, and translation, which provide strong inhibitory control of the VO neurons. Additionally, there are acetylcholinergic projections from the nodulus to the stomach, which along with other serotonergic inputs from the vestibular nuclei, could induce nausea and vomiting. Major inhibition is produced by the GABAB receptors, which modulate and suppress activity in the velocity storage integrator. Ingestion of the GABAB agonist baclofen causes suppression of motion sickness. Hopefully, a better understanding of the source of sensory conflict will lead to better ways to avoid and treat the autonomic signs and symptoms that constitute the syndrome.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Mingjia Dai
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Catherine Cho
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| |
Collapse
|
14
|
Eron JN, Ogorodnikov D, Horn AKE, Yakushin SB. Adaptation of spatio-temporal convergent properties in central vestibular neurons in monkeys. Physiol Rep 2018; 6:e13750. [PMID: 30178612 PMCID: PMC6121125 DOI: 10.14814/phy2.13750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/29/2018] [Indexed: 02/04/2023] Open
Abstract
The spatio-temporal convergent (STC) response occurs in central vestibular cells when dynamic and static inputs are activated. The functional significance of STC behavior is not fully understood. Whether STC is a property of some specific central vestibular neurons, or whether it is a response that can be induced in any neuron at some frequencies is unknown. It is also unknown how the change in orientation of otolith polarization vector (orientation adaptation) affects STC behavior. A new complex model, that includes inputs with regular and irregular discharges from both canal and otolith afferents, was applied to experimental data to determine how many convergent inputs are sufficient to explain the STC behavior as a function of frequency and orientation adaptation. The canal-otolith and otolith-only neurons were recorded in the vestibular nuclei of three monkeys. About 42% (11/26 canal-otolith and 3/7 otolith-only) neurons showed typical STC responses at least at one frequency before orientation adaptation. After orientation adaptation in side-down head position for 2 h, some canal-otolith and otolith-only neurons altered their STC responses. Thus, STC is a property of weights of the regular and irregular vestibular afferent inputs to central vestibular neurons which appear and/or disappear based on stimulus frequency and orientation adaptation. This indicates that STC properties are more common for central vestibular neurons than previously assumed. While gravity-dependent adaptation is also critically dependent on stimulus frequency and orientation adaptation, we propose that STC behavior is also linked to the neural network responsible for localized contextual learning during gravity-dependent adaptation.
Collapse
Affiliation(s)
- Julia N. Eron
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Dmitri Ogorodnikov
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew York
- FNND LLCElmwood ParkNew Jersey
| | - Anja K. E. Horn
- Institute of Anatomy and Cell BiologyLudwig‐Maximilians‐UniversitätMunichGermany
| | - Sergei B. Yakushin
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
15
|
Chen L, Halmagyi GM. Central Lesions With Selective Semicircular Canal Involvement Mimicking Bilateral Vestibulopathy. Front Neurol 2018; 9:264. [PMID: 29740388 PMCID: PMC5928296 DOI: 10.3389/fneur.2018.00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
Bilateral vestibulopathy (BVP), which is due to peripheral lesions, may selectively involve certain semicircular canal (SCC). Recent eye movement recordings with search coil and video head impulse test (HIT) have provided insight in central lesions that can cause bilateral and selective SCC deficit mimicking BVP. Since neurological signs or ocular motor deficits maybe subtle or absent, it is critical to recognize central lesions correctly since there is prognostic and treatment implication. Acute floccular lesions cause bilateral horizontal SCC (HC) impairment while leaving vertical SCC function unaffected. Vestibular nuclear lesions affect bilateral HC and posterior SCC (PC) function, but anterior SCC (AC) function is spared. When both eyes are recorded, medial longitudinal fasciculus lesions cause horizontal dysconjugacy in HC function and catch-up saccades, as well as selective deficiency of PC over AC function. Combined peripheral and central lesions may be difficult to distinguish from BVP. Anterior inferior cerebellar artery stroke causes two types of deficits: 1. ipsilateral pan-SCC deficits and contralateral HC deficit and 2. bilateral HC deficit with vertical SCC sparing. Metabolic disorders such as Wernicke encephalopathy characteristically involve HC but not AC or PC function. Gaucher disease causes uniform loss of all SCC function but with minimal horizontal catch-up saccades. Genetic cerebellar ataxias and cerebellar-ataxia neuropathy vestibular areflexia syndrome typically do not spare AC function. While video HIT does not replace the gold-standard, search coil HIT, clinicians are now able to rapidly and accurately identify specific pattern of SCC deficits, which can aid differentiation of central lesions from BVP.
Collapse
Affiliation(s)
- Luke Chen
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
16
|
Laurens J, Angelaki DE. A unified internal model theory to resolve the paradox of active versus passive self-motion sensation. eLife 2017; 6:28074. [PMID: 29043978 PMCID: PMC5839740 DOI: 10.7554/elife.28074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022] Open
Abstract
Brainstem and cerebellar neurons implement an internal model to accurately estimate self-motion during externally generated (‘passive’) movements. However, these neurons show reduced responses during self-generated (‘active’) movements, indicating that predicted sensory consequences of motor commands cancel sensory signals. Remarkably, the computational processes underlying sensory prediction during active motion and their relationship to internal model computations during passive movements remain unknown. We construct a Kalman filter that incorporates motor commands into a previously established model of optimal passive self-motion estimation. The simulated sensory error and feedback signals match experimentally measured neuronal responses during active and passive head and trunk rotations and translations. We conclude that a single sensory internal model can combine motor commands with vestibular and proprioceptive signals optimally. Thus, although neurons carrying sensory prediction error or feedback signals show attenuated modulation, the sensory cues and internal model are both engaged and critically important for accurate self-motion estimation during active head movements. When seated in a car, we can detect when the vehicle begins to move even with our eyes closed. Structures in the inner ear called the vestibular, or balance, organs enable us to sense our own movement. They do this by detecting head rotations, accelerations and gravity. They then pass this information on to specialized vestibular regions of the brain. Experiments using rotating chairs and moving platforms have shown that passive movements – such as car journeys and rollercoaster rides – activate the brain’s vestibular regions. But recent work has revealed that voluntary movements – in which individuals start the movement themselves – activate these regions far less than passive movements. Does this mean that the brain ignores signals from the inner ear during voluntary movements? Another possibility is that the brain predicts in advance how each movement will affect the vestibular organs in the inner ear. It then compares these predictions with the signals it receives during the movement. Only mismatches between the two activate the brain’s vestibular regions. To test this theory, Laurens and Angelaki created a mathematical model that compares predicted signals with actual signals in the way the theory proposes. The model accurately predicts the patterns of brain activity seen during both active and passive movement. This reconciles the results of previous experiments on active and passive motion. It also suggests that the brain uses similar processes to analyze vestibular signals during both types of movement. These findings can help drive further research into how the brain uses sensory signals to refine our everyday movements. They can also help us understand how people recover from damage to the vestibular system. Most patients with vestibular injuries learn to walk again, but have difficulty walking on uneven ground. They also become disoriented by passive movement. Using the model to study how the brain adapts to loss of vestibular input could lead to new strategies to aid recovery.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
17
|
Yakushin SB, Raphan T, Cohen B. Coding of Velocity Storage in the Vestibular Nuclei. Front Neurol 2017; 8:386. [PMID: 28861030 PMCID: PMC5561016 DOI: 10.3389/fneur.2017.00386] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/20/2017] [Indexed: 11/15/2022] Open
Abstract
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Theodore Raphan
- Department of Computer and Information Science, Brooklyn College (CUNY), Brooklyn, NY, United States
| | - Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
18
|
Abstract
In 1988, we introduced impulsive testing of semicircular canal (SCC) function measured with scleral search coils and showed that it could accurately and reliably detect impaired function even of a single lateral canal. Later we showed that it was also possible to test individual vertical canal function in peripheral and also in central vestibular disorders and proposed a physiological mechanism for why this might be so. For the next 20 years, between 1988 and 2008, impulsive testing of individual SCC function could only be accurately done by a few aficionados with the time and money to support scleral search-coil systems—an expensive, complicated and cumbersome, semi-invasive technique that never made the transition from the research lab to the dizzy clinic. Then, in 2009 and 2013, we introduced a video method of testing function of each of the six canals individually. Since 2009, the method has been taken up by most dizzy clinics around the world, with now close to 100 refereed articles in PubMed. In many dizzy clinics around the world, video Head Impulse Testing has supplanted caloric testing as the initial and in some cases the final test of choice in patients with suspected vestibular disorders. Here, we consider seven current, interesting, and controversial aspects of video Head Impulse Testing: (1) introduction to the test; (2) the progress from the head impulse protocol (HIMPs) to the new variant—suppression head impulse protocol (SHIMPs); (3) the physiological basis for head impulse testing; (4) practical aspects and potential pitfalls of video head impulse testing; (5) problems of vestibulo-ocular reflex gain calculations; (6) head impulse testing in central vestibular disorders; and (7) to stay right up-to-date—new clinical disease patterns emerging from video head impulse testing. With thanks and appreciation we dedicate this article to our friend, colleague, and mentor, Dr Bernard Cohen of Mount Sinai Medical School, New York, who since his first article 55 years ago on compensatory eye movements induced by vertical SCC stimulation has become one of the giants of the vestibular world.
Collapse
Affiliation(s)
- G M Halmagyi
- Neurology Department, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Luke Chen
- Neurology Department, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Hamish G MacDougall
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Konrad P Weber
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Leigh A McGarvie
- Neurology Department, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Dai M, Cohen B, Cho C, Shin S, Yakushin SB. Treatment of the Mal de Debarquement Syndrome: A 1-Year Follow-up. Front Neurol 2017; 8:175. [PMID: 28529496 PMCID: PMC5418223 DOI: 10.3389/fneur.2017.00175] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022] Open
Abstract
The mal de debarquement syndrome (MdDS) is a movement disorder, occurring predominantly in women, is most often induced by passive transport on water or in the air (classic MdDS), or can occur spontaneously. MdDS likely originates in the vestibular system and is unfamiliar to many physicians. The first successful treatment was devised by Dai et al. (1), and over 330 MdDS patients have now been treated. Here, we report the outcomes of 141 patients (122 females and 19 males) treated 1 year or more ago. We examine the patient’s rocking frequency, body drifting, and nystagmus. The patients are then treated according to these findings for 4–5 days. During treatment, patients’ heads were rolled while watching a rotating full-field visual surround (1). Their symptom severity after the initial treatment and at the follow-up was assessed using a subjective 10-point scale. Objective measures, taken before and at the end of the week of treatment, included static posturography. Significant improvement was a reduction in symptom severity by more than 50%. Objective measures were not possible during the follow-up because of the wide geographic distribution of the patients. The treatment group consisted of 120 classic and 21 spontaneous MdDS patients. The initial rate of significant improvement after a week of treatment was 78% in classic and 48% in spontaneous patients. One year later, significant improvement was maintained in 52% of classic and 48% of spontaneous subjects. There was complete remission of symptoms in 27% (32) of classic and 19% (4) of spontaneous patients. Although about half of them did not achieve a 50% improvement, most reported fewer and milder symptoms than before. The success of the treatment was generally inversely correlated with the duration of the MdDS symptoms and with the patients’ ages. Prolonged travel by air or car on the way home most likely contributed to the symptomatic reversion from the initial successful treatment. Our results indicate that early diagnosis and treatment can significantly improve results, and the prevention of symptomatic reversion will increase the long-term benefit in this disabling disorder.
Collapse
Affiliation(s)
- Mingjia Dai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine Cho
- Department of Neurology, NYU Langone Medical Center, New York, NY, USA.,Department of Otolaryngology, NYU Langone Medical Center, New York, NY, USA
| | - Susan Shin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
McCall AA, Miller DM, Yates BJ. Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes. Front Neurol 2017; 8:112. [PMID: 28396651 PMCID: PMC5366978 DOI: 10.3389/fneur.2017.00112] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
This review considers the integration of vestibular and other signals by the central nervous system pathways that participate in balance control and blood pressure regulation, with an emphasis on how this integration may modify posture-related responses in accordance with behavioral context. Two pathways convey vestibular signals to limb motoneurons: the lateral vestibulospinal tract and reticulospinal projections. Both pathways receive direct inputs from the cerebral cortex and cerebellum, and also integrate vestibular, spinal, and other inputs. Decerebration in animals or strokes that interrupt corticobulbar projections in humans alter the gain of vestibulospinal reflexes and the responses of vestibular nucleus neurons to particular stimuli. This evidence shows that supratentorial regions modify the activity of the vestibular system, but the functional importance of descending influences on vestibulospinal reflexes acting on the limbs is currently unknown. It is often overlooked that the vestibulospinal and reticulospinal systems mainly terminate on spinal interneurons, and not directly on motoneurons, yet little is known about the transformation of vestibular signals that occurs in the spinal cord. Unexpected changes in body position that elicit vestibulospinal reflexes can also produce vestibulosympathetic responses that serve to maintain stable blood pressure. Vestibulosympathetic reflexes are mediated, at least in part, through a specialized group of reticulospinal neurons in the rostral ventrolateral medulla that project to sympathetic preganglionic neurons in the spinal cord. However, other pathways may also contribute to these responses, including those that dually participate in motor control and regulation of sympathetic nervous system activity. Vestibulosympathetic reflexes differ in conscious and decerebrate animals, indicating that supratentorial regions alter these responses. However, as with vestibular reflexes acting on the limbs, little is known about the physiological significance of descending control of vestibulosympathetic pathways.
Collapse
Affiliation(s)
- Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Derek M Miller
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
21
|
Eron JN, Davidovics N, Della Santina CC. Contribution of vestibular efferent system alpha-9 nicotinic receptors to vestibulo-oculomotor interaction and short-term vestibular compensation after unilateral labyrinthectomy in mice. Neurosci Lett 2015; 602:156-61. [PMID: 26163461 DOI: 10.1016/j.neulet.2015.06.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/25/2015] [Accepted: 06/30/2015] [Indexed: 11/20/2022]
Abstract
Sudden unilateral loss of vestibular afferent input causes nystagmus, ocular misalignment, postural instability and vertigo, all of which improve significantly over the first few days after injury through a process called vestibular compensation (VC). Efferent neuronal signals to the labyrinth are thought to be required for VC. To better understand efferent contributions to VC, we compared the time course of VC in wild-type (WT) mice and α9 knockout (α9(-/-)) mice, the latter lacking the α9 subunit of nicotinic acetylcholine receptors (nAChRs), which is thought to represent one signaling arm activated by the efferent vestibular system (EVS). Specifically, we investigated the time course of changes in the fast/direct and slow/indirect components of the angular vestibulo-ocular reflex (VOR) before and after unilateral labyrinthectomy (UL). Eye movements were recorded using infrared video oculography in darkness with the animal stationary and during sinusoidal (50 and 100°/s, 0.5-5 Hz) and velocity step (150°/s for 7-10s, peak acceleration 3000°/s(2)) passive whole-body rotations about an Earth-vertical axis. Eye movements were measured before and 0.5, 2, 4, 6 and 9 days after UL. Before UL, we found frequency- and velocity-dependent differences between WT and α9(-/-) mice in generation of VOR quick phases. The VOR slow phase time constant (TC) during velocity steps, which quantifies contributions of the indirect component of the VOR, was longer in α9(-/-) mutants relative to WT mice. After UL, spontaneous nystagmus (SN) was suppressed significantly earlier in WT mice than in α9(-/-) mice, but mutants achieved greater recovery of TC symmetry and VOR quick phases. These data suggest (1) there are significant differences in vestibular and oculomotor functions between these two types of mice, and (2) efferent signals mediated by α9 nicotinic AChRs play a role during VC after UL.
Collapse
Affiliation(s)
- Julia N Eron
- Department Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia.
| | - Natan Davidovics
- Department Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Charles C Della Santina
- Department Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Shimizu N, Wood S, Kushiro K, Yanai S, Perachio A, Makishima T. Dynamic characteristics of otolith ocular response during counter rotation about dual yaw axes in mice. Neuroscience 2015; 285:204-14. [PMID: 25446357 DOI: 10.1016/j.neuroscience.2014.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 11/17/2022]
Abstract
The central vestibular system plays an important role in higher neural functions such as self-motion perception and spatial orientation. Its ability to store head angular velocity is called velocity storage mechanism (VSM), which has been thoroughly investigated across a wide range of species. However, little is known about the mouse VSM, because the mouse lacks typical ocular responses such as optokinetic after nystagmus or a dominant time constant of vestibulo-ocular reflex for which the VSM is critical. Experiments were conducted to examine the otolith-driven eye movements related to the VSM and verify its characteristics in mice. We used a novel approach to generate a similar rotating vector as a traditional off-vertical axis rotation (OVAR) but with a larger resultant gravito-inertial force (>1g) by using counter rotation centrifugation. Similar to results previously described in other animals during OVAR, two components of eye movements were induced, i.e. a sinusoidal modulatory eye movement (modulation component) on which a unidirectional nystagmus (bias component) was superimposed. Each response is considered to derive from different mechanisms; modulations arise predominantly through linear vestibulo-ocular reflex, whereas for the bias, the VSM is responsible. Data indicate that the mouse also has a well-developed vestibular system through otoliths inputs, showing its highly conserved nature across mammalian species. On the other hand, to reach a plateau state of bias, a higher frequency rotation or a larger gravito-inertial force was considered to be necessary than other larger animals. Compared with modulation, the bias had a more variable profile, suggesting an inherent complexity of higher-order neural processes in the brain. Our data provide the basis for further study of the central vestibular system in mice, however, the underlying individual variability should be taken into consideration.
Collapse
Affiliation(s)
- N Shimizu
- Department of Otolaryngology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| | - S Wood
- Department of Otolaryngology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA; Department of Psychology, Azusa Pacific University, Azusa, CA, USA
| | - K Kushiro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - S Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - A Perachio
- Department of Otolaryngology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - T Makishima
- Department of Otolaryngology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| |
Collapse
|
23
|
Kitama T, Komagata J, Ozawa K, Suzuki Y, Sato Y. Plane-specific Purkinje cell responses to vertical head rotations in the cat cerebellar nodulus and uvula. J Neurophysiol 2014; 112:644-59. [DOI: 10.1152/jn.00029.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded simple spike (SS) and complex spike (CS) firing of Purkinje cell in the cerebellar nodulus and uvula of awake, head-restrained cats during sinusoidal vertical rotation of the head in four stimulus planes (pitch, roll, and two vertical canal planes). Two SS response types (position- and velocity-types) with response phases close to those of head position and velocity, respectively, were recognized. Optimal response planes and directions for SS and CS of each cell were estimated from the response amplitudes in the four stimulus planes by fitting with a sinusoidal function. The principal findings are as follows: 1) two rostrocaudally oriented functional zones of Purkinje cells can be distinguished; 2) the medially located parasagittal band is active during rotation in the pitch plane; 3) the laterally located band is active during rotation in the roll plane. These two zones are the same as previously reported zones in the cerebellar flocculus active during head rotation in the canal planes in the point that both cerebellar sagittal zones are plane-specific functional zones, suggesting that the anatomical sagittal zones serve as functional plane-specific zones at least in the vestibulocerebellum.
Collapse
Affiliation(s)
- Toshihiro Kitama
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Junya Komagata
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Kenichi Ozawa
- Department of Occupational Therapy, Health Science University, Yamanashi, Japan
| | - Yutaka Suzuki
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Yu Sato
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan; and
| |
Collapse
|
24
|
Medrea I, Cullen KE. Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion. J Neurophysiol 2013; 110:2704-17. [PMID: 24089394 DOI: 10.1152/jn.01037.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mouse has become an important model system for studying the cellular basis of learning and coding of heading by the vestibular system. Here we recorded from single neurons in the vestibular nuclei to understand how vestibular pathways encode self-motion under natural conditions, during which proprioceptive and motor-related signals as well as vestibular inputs provide feedback about an animal's movement through the world. We recorded neuronal responses in alert behaving mice focusing on a group of neurons, termed vestibular-only cells, that are known to control posture and project to higher-order centers. We found that the majority (70%, n = 21/30) of neurons were bimodal, in that they responded robustly to passive stimulation of proprioceptors as well as passive stimulation of the vestibular system. Additionally, the linear summation of a given neuron's vestibular and neck sensitivities predicted well its responses when both stimuli were applied simultaneously. In contrast, neuronal responses were suppressed when the same motion was actively generated, with the one striking exception that the activity of bimodal neurons similarly and robustly encoded head on body position in all conditions. Our results show that proprioceptive and motor-related signals are combined with vestibular information at the first central stage of vestibular processing in mice. We suggest that these results have important implications for understanding the multisensory integration underlying accurate postural control and the neural representation of directional heading in the head direction cell network of mice.
Collapse
Affiliation(s)
- Ioana Medrea
- Aerospace Medical Research Unit, Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
25
|
Weerts AP, Vanspauwen R, Fransen E, Jorens PG, Van de Heyning PH, Wuyts FL. Baclofen affects the semicircular canals but not the otoliths in humans. Acta Otolaryngol 2013; 133:846-52. [PMID: 23628001 DOI: 10.3109/00016489.2013.782615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION This study showed that GABAB agonist baclofen (10 mg) affects the semicircular canals (SCCs), both centrally and peripherally, but does not influence the otolithic function. OBJECTIVES The aim of the study was to identify the effects of baclofen on the complete vestibular system, i.e. semicircular canals, saccules and utricles. METHODS The study had a double-blind, placebo-controlled, repeated measures design and was conducted on healthy male volunteers. With electronystagmography (ENG), the SCC function was evaluated, whereas utricular function was determined by means of unilateral centrifugation (UC). Cervical vestibular evoked myogenic potentials (cVEMPs) tested saccular integrity. RESULTS Baclofen caused a significant increase of the vestibulo-ocular reflex (VOR) phase and a significant decrease of the total caloric response (TCR), both measured during ENG. The drug also decreased the maximal contribution of the SCCs to ocular counter-rolling (OCR) evaluated during UC. No effects on saccules and utricules were observed.
Collapse
Affiliation(s)
- Aurelie P Weerts
- Antwerp University Research Center for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Yakushin SB, Dai M, Raphan T, Suzuki JI, Arai Y, Cohen B. Spatial orientation of the angular vestibulo-ocular reflex (aVOR) after semicircular canal plugging and canal nerve section. Exp Brain Res 2011; 210:583-94. [PMID: 21340443 DOI: 10.1007/s00221-011-2586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
We investigated spatial responses of the aVOR to small and large accelerations in six canal-plugged and lateral canal nerve-sectioned monkeys. The aim was to determine whether there was spatial adaptation after partial and complete loss of all inputs in a canal plane. Impulses of torques generated head thrusts of ≈ 3,000°/s². Smaller accelerations of ≈ 300°/s² initiated the steps of velocity (60°/s). Animals were rotated about a spatial vertical axis while upright (0°) or statically tilted fore-aft up to ± 90°. Temporal aVOR yaw and roll gains were computed at every head orientation and were fit with a sinusoid to obtain the spatial gains and phases. Spatial gains peaked at ≈ 0° for yaw and ≈ 90° for roll in normal animals. After bilateral lateral canal nerve section, the spatial yaw and roll gains peaked when animals were tilted back ≈ 50°, to bring the intact vertical canals in the plane of rotation. Yaw and roll gains were identical in the lateral canal nerve-sectioned monkeys tested with both low- and high-acceleration stimuli. The responses were close to normal for high-acceleration thrusts in canal-plugged animals, but were significantly reduced when these animals were given step stimuli. Thus, high accelerations adequately activated the plugged canals, whereas yaw and roll spatial aVOR gains were produced only by the intact vertical canals after total loss of lateral canal input. We conclude that there is no spatial adaptation of the aVOR even after complete loss of specific semicircular canal input.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Massot C, Chacron MJ, Cullen KE. Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding. J Neurophysiol 2011; 105:1798-814. [PMID: 21307329 DOI: 10.1152/jn.00910.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding how sensory neurons transmit information about relevant stimuli remains a major goal in neuroscience. Of particular relevance are the roles of neural variability and spike timing in neural coding. Peripheral vestibular afferents display differential variability that is correlated with the importance of spike timing; regular afferents display little variability and use a timing code to transmit information about sensory input. Irregular afferents, conversely, display greater variability and instead use a rate code. We studied how central neurons within the vestibular nuclei integrate information from both afferent classes by recording from a group of neurons termed vestibular only (VO) that are known to make contributions to vestibulospinal reflexes and project to higher-order centers. We found that, although individual central neurons had sensitivities that were greater than or equal to those of individual afferents, they transmitted less information. In addition, their velocity detection thresholds were significantly greater than those of individual afferents. This is because VO neurons display greater variability, which is detrimental to information transmission and signal detection. Combining activities from multiple VO neurons increased information transmission. However, the information rates were still much lower than those of equivalent afferent populations. Furthermore, combining responses from multiple VO neurons led to lower velocity detection threshold values approaching those measured from behavior (∼ 2.5 vs. 0.5-1°/s). Our results suggest that the detailed time course of vestibular stimuli encoded by afferents is not transmitted by VO neurons. Instead, they suggest that higher vestibular pathways must integrate information from central vestibular neuron populations to give rise to behaviorally observed detection thresholds.
Collapse
Affiliation(s)
- Corentin Massot
- Department of Physiology, Aerospace Medical Research Unit, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
28
|
Liu S, Dickman JD, Angelaki DE. Response dynamics and tilt versus translation discrimination in parietoinsular vestibular cortex. Cereb Cortex 2010; 21:563-73. [PMID: 20624839 DOI: 10.1093/cercor/bhq123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The parietoinsular vestibular cortex (PIVC) is a large area in the lateral sulcus with neurons that respond to vestibular stimulation. Here we compare the properties of PIVC cells with those of neurons in brain stem, cerebellum, and thalamus. Most PIVC cells modulated during both translational and rotational head motion. Translation acceleration gains showed a modest decrease as stimulus frequency increased, with a steeper slope than that reported previously for thalamic and cerebellar nuclei neurons. Response dynamics during yaw rotation were similar to those reported for vestibular neurons in brain stem and thalamus: velocity gains were relatively flat through the mid-frequency range, increased at high frequencies, and decreased at low frequencies. Tilt dynamics were more variable: PIVC neurons responsive only to rotation had gains that decreased with increased frequency, whereas neurons responsive during both translation and rotation (convergent neurons) actually increased their modulation magnitude at high frequencies. Using combinations of translation and tilt, most PIVC neurons were better correlated with translational motion; only 14% were better correlated with net acceleration. Thus, although yaw rotation responses in PIVC appear little processed compared with other central vestibular neurons, translation and tilt responses suggest a further processing of linear acceleration signals in thalamocortical circuits.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
29
|
Motion sickness induced by off-vertical axis rotation (OVAR). Exp Brain Res 2010; 204:207-22. [PMID: 20535456 DOI: 10.1007/s00221-010-2305-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/15/2010] [Indexed: 02/02/2023]
Abstract
We tested the hypothesis that motion sickness is produced by an integration of the disparity between eye velocity and the yaw-axis orientation vector of velocity storage. Disparity was defined as the magnitude of the cross product between these two vectors. OVAR, which is known to produce motion sickness, generates horizontal eye velocity with a bias level related to velocity storage, as well as cyclic modulations due to re-orientation of the head re gravity. On average, the orientation vector is close to the spatial vertical. Thus, disparity can be related to the bias and tilt angle. Motion sickness sensitivity was defined as a ratio of maximum motion sickness score to the number of revolutions, allowing disparity and motion sickness sensitivity to be correlated. Nine subjects were rotated around axes tilted 10 degrees-30 degrees from the spatial vertical at 30 degrees/s-120 degrees/s. Motion sickness sensitivity increased monotonically with increases in the disparity due to changes in rotational velocity and tilt angle. Maximal motion sickness sensitivity and bias (6.8 degrees/s) occurred when rotating at 60 degrees/s about an axis tilted 30 degrees. Modulations in eye velocity during OVAR were unrelated to motion sickness sensitivity. The data were predicted by a model incorporating an estimate of head velocity from otolith activation, which activated velocity storage, followed by an orientation disparity comparator that activated a motion sickness integrator. These results suggest that the sensory-motor conflict that produces motion sickness involves coding of the spatial vertical by the otolith organs and body tilt receptors and processing of eye velocity through velocity storage.
Collapse
|
30
|
Lai CH, Yiu CN, Lai SK, Ng KP, Yung KK, Shum DK, Chan YS. Maturation of canal-related brainstem neurons in the detection of horizontal angular acceleration in rats. J Comp Neurol 2010; 518:1742-63. [DOI: 10.1002/cne.22300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Green AM, Angelaki DE. Internal models and neural computation in the vestibular system. Exp Brain Res 2010; 200:197-222. [PMID: 19937232 PMCID: PMC2853943 DOI: 10.1007/s00221-009-2054-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem-cerebellar circuitry. These include the sensorimotor transformations for reflex generation, the neural computations for inertial motion estimation, the distinction between active and passive head movements, as well as the integration of vestibular and proprioceptive information for body motion estimation. A common theme in the solution to such computational problems is the concept of internal models and their neural implementation. Recent studies have shed new insights into important organizational principles that closely resemble those proposed for other sensorimotor systems, where their neural basis has often been more difficult to identify. As such, the vestibular system provides an excellent model to explore common neural processing strategies relevant both for reflexive and for goal-directed, voluntary movement as well as perception.
Collapse
Affiliation(s)
- Andrea M Green
- Dépt. de Physiologie, Université de Montréal, 2960 Chemin de la Tour, Rm. 4141, Montreal, QC H3T 1J4, Canada.
| | | |
Collapse
|
32
|
Parabrachial nucleus neuronal responses to off-vertical axis rotation in macaques. Exp Brain Res 2009; 202:271-90. [PMID: 20039027 DOI: 10.1007/s00221-009-2130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
The caudal aspect of the parabrachial nucleus (PBN) contains neurons responsive to whole body, periodic rotational stimulation in alert monkeys (Balaban et al. in J Neurophysiol 88:3175-3193, 2002). This study characterizes the angular and linear motion-sensitive response properties of PBN unit responses during off-vertical axis rotation (OVAR) and position trapezoid stimulation. The OVAR responses displayed a constant firing component which varied from the firing rate at rest. Nearly two-thirds of the units also modulated their discharges with respect to head orientation (re: gravity) during constant velocity OVAR stimulation. The modulated response magnitudes were equal during ipsilateral and contralateral OVARs, indicative of a one-dimensional accelerometer. These response orientations during OVAR divided the units into three spatially tuned populations, with peak modulation responses centered in the ipsilateral ear down, contralateral anterior semicircular canal down, and occiput down orientations. Because the orientation of the OVAR modulation response was opposite in polarity to the orientation of the static tilt component of responses to position trapezoids for the majority of units, the linear acceleration responses were divided into colinear dynamic linear and static tilt components. The orientations of these unit responses formed two distinct population response axes: (1) units with an interaural linear response axis and (2) units with an ipsilateral anterior semicircular canal-contralateral posterior semicircular canal plane linear response axis. The angular rotation sensitivity of these units is in a head-vertical plane that either contains the linear acceleration response axis or is perpendicular to the linear acceleration axis. Hence, these units behave like head-based ('strapdown') inertial guidance sensors. Because the PBN contributes to sensory and interoceptive processing, it is suggested that vestibulo-recipient caudal PBN units may detect potentially dangerous anomalies in control of postural stability during locomotion. In particular, these signals may contribute to the range of affective and emotional responses that include panic associated with falling, malaise associated with motion sickness and mal-de-debarquement, and comorbid balance and anxiety disorders.
Collapse
|
33
|
Eron JN, Cohen B, Raphan T, Yakushin SB. Adaptation of orientation of central otolith-only neurons. Ann N Y Acad Sci 2009; 1164:367-71. [PMID: 19645928 DOI: 10.1111/j.1749-6632.2009.03848.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Otolith-only neurons were recorded extracellularly in the vestibular nuclei before and after cynomolgus monkeys were held on-side for up to 3 hr. The aim was to determine whether the polarization vectors of these neurons reorient toward the spatial vertical as do canal-otolith convergent neurons. Otolith input was characterized by tilting the animal 30 degrees from the upright position while positioning the head in different directions in yaw. This determined the response vector orientation (RVO), that is, the projection of the otolith polarization vector onto the head horizontal plane. Changes in the RVO of otolith-only neurons ranged from 2 degrees -16 degrees , which was on average considerably less than the changes previously noted in canal-otolith convergent vestibulo-only (VO) and vestibular plus saccade (VPS) neurons, which ranged up to 109 degrees. Some of the otolith-only neurons had marked sensitivity changes. These findings suggest that otolith-only neurons tend to maintain a head-fixed orientation during prolonged head tilts relative to gravity. In contrast, canal-convergent VO and VPS neurons optimize their response vector orientation to gravity when the head is oriented for prolonged periods.
Collapse
Affiliation(s)
- Julia N Eron
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | |
Collapse
|
34
|
Frequency-selective coding of translation and tilt in macaque cerebellar nodulus and uvula. J Neurosci 2008; 28:9997-10009. [PMID: 18829957 DOI: 10.1523/jneurosci.2232-08.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spatial orientation depends critically on the brain's ability to segregate linear acceleration signals arising from otolith afferents into estimates of self-motion and orientation relative to gravity. In the absence of visual information, this ability is known to deteriorate at low frequencies. The cerebellar nodulus/uvula (NU) has been shown to participate in this computation, although its exact role remains unclear. Here, we show that NU simple spike (SS) responses also exhibit a frequency dependent selectivity to self-motion (translation) and spatial orientation (tilt). At 0.5 Hz, Purkinje cells encode three-dimensional translation and only weakly modulate during pitch and roll tilt (0.4 +/- 0.05 spikes/s/degrees/s). But this ability to selectively signal translation over tilt is compromised at lower frequencies, such that at 0.05 Hz tilt response gains average 2.0 +/- 0.3 spikes/s/degrees/s. We show that such frequency-dependent properties are attributable to an incomplete cancellation of otolith-driven SS responses during tilt by a canal-driven signal coding angular position with a sensitivity of 3.9 +/- 0.3 spikes/s/degrees. This incomplete cancellation is brought about because otolith-driven SS responses are also partially integrated, thus encoding combinations of linear velocity and acceleration. These results are consistent with the notion that NU SS modulation represents an internal neural representation of similar frequency dependencies seen in behavior.
Collapse
|
35
|
Tse YC, Lai CH, Lai SK, Liu JX, Yung KKL, Shum DKY, Chan YS. Developmental expression of NMDA and AMPA receptor subunits in vestibular nuclear neurons that encode gravity-related horizontal orientations. J Comp Neurol 2008; 508:343-64. [PMID: 18335497 DOI: 10.1002/cne.21688] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We examined the expression profile of subunits of ionotropic glutamate receptors [N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA)] during postnatal development of connectivity in the rat vestibular nucleus. Vestibular nuclear neurons were functionally activated by constant velocity off-vertical axis rotation, a strategy to stimulate otolith organs in the inner ear. These neurons indicated Fos expression as a result. By immunodetection for Fos, otolith-related neurons that expressed NMDA/AMPA receptor subunits were identified as early as P7, and these neurons were found to increase progressively up to adulthood. Although there was developmental invariance in the percentage of Fos-immunoreactive neurons expressing the NR1, NR2A, GluR1, or GluR2/3 subunits, those expressing the NR2B subunit decreased from P14 onward, and those expressing the GluR4 subunit decreased in adults. These double-immunohistochemical data were corroborated by combined immuno-/hybridization histochemical data obtained from Fos-immunoreactive neurons expressing NR2B mRNA or GluR4 mRNA. The staining of both NR2B and GluR4 in the cytoplasm of these neurons decreased upon maturation. The percentage of Fos-immunoreactive neurons expressing the other ionotropic glutamate receptor subunits (viz. NR1, NR2A, GluR1, and GluR2/3) remained relatively constant throughout postnatal maturation. Triple immunofluorescence further demonstrated coexpression of NR1 and NR2 subunits in Fos-immunoreactive neurons. Coexpression of NR1 subunit with each of the GluR subunits was also observed among the Fos-immunoreactive neurons. Taken together, the different expression profiles of ionotropic glutamate receptor subunits constitute the histological basis for glutamatergic neurotransmission in the maturation of central vestibular connectivity for the coding of gravity-related horizontal head movements.
Collapse
Affiliation(s)
- Yiu-Chung Tse
- Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Cuccurazzu B, Halberstadt AL. Projections from the vestibular nuclei and nucleus prepositus hypoglossi to dorsal raphe nucleus in rats. Neurosci Lett 2008; 439:70-4. [PMID: 18511198 DOI: 10.1016/j.neulet.2008.04.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/22/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
The serotonergic system regulates processing in components of the vestibular nuclear complex, including the medial vestibular nucleus (MVe) and nucleus prepositus hypoglossi (PH). Recent studies using anterograde and retrograde tracers have shown that vestibular nuclei are targeted by regionally selective projections from the serotonergic dorsal raphe nucleus. The objective of the present investigation was to determine whether the DRN is targeted by projections from the vestibular nuclear complex in rats, using the anterograde tracer biotinylated dextran amine (BDA). After injection of BDA into PH or the caudal parvicellular division of MVe, labeled fibers and terminals were observed in the ventromedial and lateral subdivisions of DRN. These findings indicate that projections from the vestibular nuclei and PH are organized to modulate processing within specific functional domains of the DRN.
Collapse
Affiliation(s)
- Bruna Cuccurazzu
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
37
|
Cohen B, Dai M, Yakushin SB, Raphan T. Baclofen, motion sickness susceptibility and the neural basis for velocity storage. PROGRESS IN BRAIN RESEARCH 2008; 171:543-53. [PMID: 18718351 DOI: 10.1016/s0079-6123(08)00677-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reduction of the dominant time constant (T(VOR)) of the angular vestibulo-ocular reflex (aVOR) by habituation is associated with a decrease in motion sickness susceptibility. Baclofen, a GABA(b) agonist, reduces the time constant of the velocity storage integrator in the aVOR in a dose-dependent manner. The high frequency aVOR gain is unaltered by baclofen. Here we demonstrate that the reduction in T(VOR) produced by oral administration of 20 mg of baclofen causes a significant reduction in motion sickness susceptibility, tested with roll while rotating (RWR). These data show that motion sickness susceptibility can be pharmacologically manipulated with a GABA(b) agonist and support our conclusion that motion sickness is generated through velocity storage. We also show how baclofen acts on velocity storage at the neural level. A vestibular-plus-saccade (VPS) neuron was recorded in the rostral medial vestibular nucleus (rMVN) of a cynomolgus monkey, an area where we postulate that velocity storage is generated. The cell had a time constant during steps of velocity that was close to that of the T(VOR). After parenteral administration of baclofen, there was a similar decrease in the time constants of the VPS neuron and the T(VOR). This is the first demonstration of the concurrence of unit and aVOR time constants before and after baclofen. The data support the hypothesis that the velocity storage integrator is generated through activity of vestibular-only (VO) and VPS neurons in rMVN and suggest that GABA(b) synapses on VO and VPS neurons are likely to be involved in the baclofen-induced reduction in motion sickness susceptibility.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
The central nervous system combines information from different stimulus modalities to generate appropriate behaviors. For instance, vestibular and visual information are combined during oculomotor behavior. We used squirrel monkeys to study this signal combination on vestibular neurons that carry the vertical component of vestibular and visual (slow visual pathway, or optokinetic) signals. We found that these neurons contain a neuronal correlate of asymmetries observed in oculomotor behaviors, and that there is a relationship between their response to vestibular and visual (optokinetic) stimulation. We argue that if this relationship is maintained after learning, changes in one information pathway (e.g. vestibular) will result in changes in the other (e.g. visual), explaining the cross-modality plasticity observed in these systems after vestibulo-ocular reflex motor learning.
Collapse
Affiliation(s)
- Pablo M Blazquez
- Department of Otolaryngology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | |
Collapse
|
39
|
Beraneck M, Cullen KE. Activity of Vestibular Nuclei Neurons During Vestibular and Optokinetic Stimulation in the Alert Mouse. J Neurophysiol 2007; 98:1549-65. [PMID: 17625061 DOI: 10.1152/jn.00590.2007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a result of the availability of genetic mutant strains and development of noninvasive eye movements recording techniques, the mouse stands as a very interesting model for bridging the gap among behavioral responses, neuronal response dynamics studied in vivo, and cellular mechanisms investigated in vitro. Here we characterized the responses of individual neurons in the mouse vestibular nuclei during vestibular (horizontal whole body rotations) and full field visual stimulation. The majority of neurons (∼2/3) were sensitive to vestibular stimulation but not to eye movements. During the vestibular-ocular reflex (VOR), these neurons discharged in a manner comparable to the “vestibular only” (VO) neurons that have been previously described in primates. The remaining neurons [eye-movement-sensitive (ES) neurons] encoded both head-velocity and eye-position information during the VOR. When vestibular and visual stimulation were applied so that there was sensory conflict, the behavioral gain of the VOR was reduced. In turn, the modulation of sensitivity of VO neurons remained unaffected, whereas that of ES neurons was reduced. ES neurons were also modulated in response to full field visual stimulation that evoked the optokinetic reflex (OKR). Mouse VO neurons, however, unlike their primate counterpart, were not modulated during OKR. Taken together, our results show that the integration of visual and vestibular information in the mouse vestibular nucleus is limited to a subpopulation of neurons which likely supports gaze stabilization for both VOR and OKR.
Collapse
Affiliation(s)
- M Beraneck
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
40
|
Dai M, Raphan T, Cohen B. Labyrinthine lesions and motion sickness susceptibility. Exp Brain Res 2007; 178:477-87. [PMID: 17256169 PMCID: PMC3181155 DOI: 10.1007/s00221-006-0759-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/07/2006] [Indexed: 02/04/2023]
Abstract
The angular vestibulo-ocular reflex (aVOR) has a fast pathway, which mediates compensatory eye movements, and a slow (velocity storage) pathway, which determines its low frequency characteristics and orients eye velocity toward gravity. We have proposed that motion sickness is generated through velocity storage, when its orientation vector, which lies close to the gravitational vertical, is misaligned with eye velocity during head motion. The duration of the misalignment, determined by the dominant time constant of velocity storage, causes the buildup of motion sickness. To test this hypothesis, we studied bilateral labyrinthine-defective subjects with short vestibular time constants but normal aVOR gains for their motion sickness susceptibility. Time constants and gains were taken from rotational responses. Motion sickness was generated by rolling the head while rotating, and susceptibility was assessed by the number of head movements made before reaching intolerable levels of nausea. More head movements signified lower motion sickness susceptibility. Labyrinthine-defective subjects made more head movements on their first exposure to roll while rotating than normals (39.8 +/- 7.2 vs 13.7 +/- 5.5; P < 0.0001). Normals were tested eight times, which habituated their time constants and reduced their motion sickness susceptibility. Combining data from all subjects, there was a strong inverse relationship between time constants and number of head movements (r = 0.94), but none between motion sickness susceptibility and aVOR gains. This provides further evidence that motion sickness is generated through velocity storage, not the direct pathway, and suggests that motion sickness susceptibility can be reduced by reducing the aVOR time constant.
Collapse
Affiliation(s)
- Mingjia Dai
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | | | |
Collapse
|
41
|
Dai M, Raphan T, Cohen B. Effects of baclofen on the angular vestibulo-ocular reflex. Exp Brain Res 2005; 171:262-71. [PMID: 16341527 DOI: 10.1007/s00221-005-0264-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 10/18/2005] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to determine the effect of baclofen, a GABA(B) agonist on the angular vestibulo-ocular reflex (aVOR). Model studies have shown that the aVOR comprises a "direct" pathway, which determines its high frequency gain g (1), and an indirect "velocity storage" pathway, which determines its low frequency characteristics. Velocity storage can be characterized by an integrator with a dominant time constant, T (VOR), and a gain g (0) that couples afferent information from the semicircular canals to the integrator. Baclofen preferentially shortens the velocity storage time constant in monkeys, but its effect on T (VOR), g (0), and g (1) in humans is unknown. Six subjects were tested after administration of a placebo or of 10, 20, or 30 mg of baclofen in a double-blind design. The aVOR was elicited in darkness with steps of rotation at 138 degrees /s, and g (1), g (0), and T (VOR) were determined from model fits of the slow phase velocity of the per- and post-rotatory nystagmus. Baclofen significantly reduced both T (VOR) and g (0) at dosages of 20 and 30 mg, but had no effect on g (1). Small reductions in g (0) were associated with large reductions in vestibular output. Thus, baclofen does not affect the direct aVOR pathway in humans, but controls the low frequency aVOR in two ways: it limits the input to velocity storage and modulates its time constant. We speculate that pre-synaptic GABA(B) terminals in the vestibular nuclei are responsible for the control of the afferent input to velocity storage through g (0), while the post-synaptic GABA(B) terminals are responsible for altering the duration of activity that reflects the time constant. The lack of effect of baclofen on the aVOR gain suggests that only GABA(A) receptors are utilized in the direct aVOR pathway.
Collapse
Affiliation(s)
- Mingjia Dai
- Department of Neurology, Mount Sinai School of Medicine, 1 East 100th Street, Box 1135, New York, NY 10029-6574, USA.
| | | | | |
Collapse
|
42
|
Abstract
We studied the spatial characteristics of 45 vestibular-only (VO) and 12 vestibular-plus-saccade (VPS) neurons in two cynomolgus monkeys using angular rotation and static tilt. The purpose was to determine the contribution of canal and otolith-related inputs to central vestibular neurons whose activity is associated with the central velocity storage integrator. Lateral canal-related neurons responded maximally during vertical axis rotation when the head was tilted 25 +/- 6 and 22 +/- 3 degrees forward relative to the axis of rotation in the two animals, and vertical canal-related neurons responded maximally with the head tilted back 63+/- 5 and 57 +/- 7 degrees . The origin of the vertical canal-related input was verified by rotation about a spatial horizontal axis. Thirty-one percent of cells received input in a single canal plane. Sixty-seven percent of canal-related cells received otolith input, 31% of vertical canal neurons had lateral canal input, and 43% of lateral canal neurons had vertical canal input. Twenty percent of neurons had convergent input from the lateral canals, the vertical canals, and the otolith organs. Some VO and VPS cells had spatial-temporal convergent (STC) properties; more of these cells had STC properties at lower frequencies of rotation. Thus VO and VPS neurons associated with velocity storage receive a broad range of convergent inputs from each portion of the vestibular labyrinth. This convergence could provide the basis for gravity-dependent eye velocity orientation induced through velocity storage.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Box 1135, Mount Sinai School of Medicine, 1 E. 100th St., New York, NY 10029, USA.
| | | | | |
Collapse
|
43
|
Yakushin SB, Raphan T, Büttner-Ennever JA, Suzuki JI, Cohen B. Spatial properties of central vestibular neurons of monkeys after bilateral lateral canal nerve section. J Neurophysiol 2005; 94:3860-71. [PMID: 15987758 DOI: 10.1152/jn.01102.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thirty-seven neurons were recorded in the superior vestibular nucleus (SVN) of two cynomolgus monkeys 1-2 yr after bilateral lateral canal nerve section to test whether the central neurons had spatially adapted for the loss of lateral canal input. The absence of lateral canal function was verified with eye movement recordings. The relation of unit activity to the vertical canals was determined by oscillating the animals about a horizontal axis with the head in various orientations relative to the axis of rotation. Animals were also oscillated about a vertical axis while upright or tilted in pitch. In the second test, the vertical canals are maximally activated when the animals are tilted back about -50 degrees from the spatial upright and the lateral canals when the animals are tilted forward about 30 degrees . We reasoned that if central compensation occurred, the head orientation at which the response of the vertical canal-related neurons was maximal should be shifted toward the plane of the lateral canals. No lateral canal-related units were found after nerve section, and vertical canal-related units were found only in SVN not in the rostral medial vestibular nucleus. SVN canal-related units were maximally activated when the head was tilted back at -47 +/- 17 and -50 +/- 12 degrees (means +/- SD) in the two animals, close to the predicted orientation of the vertical canals. This indicated that spatial adaptation of vertical canal-related vestibular neurons had not occurred. There were substantial neck and/or otolith-related inputs activating the vertical canal-related neurons in the nerve-sectioned animals, which could have contributed to oculomotor compensation after nerve section.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
44
|
Yakushin SB, Xiang Y, Raphan T, Cohen B. Spatial distribution of gravity-dependent gain changes in the vestibuloocular reflex. J Neurophysiol 2005; 93:3693-8. [PMID: 15689386 DOI: 10.1152/jn.01269.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study determined whether dependence of angular vestibuloocular reflex (aVOR) gain adaptation on gravity is a fundamental property in three dimensions. Horizontal aVOR gains were adaptively increased or decreased in two cynomolgus monkeys in upright, side down, prone, and supine positions, and aVOR gains were tested in darkness by yaw rotation with the head in a wide variety of orientations. Horizontal aVOR gain changes peaked at the head position in which the adaptation took place and gradually decreased as the head moved away from this position in any direction. The gain changes were plotted as a function of head tilt and fit with a sinusoid plus a bias to obtain the gravity-dependent (amplitude) and gravity-independent (bias) components. Peak-to-peak gravity-dependent gain changes in planes containing the position of adaptation and the magnitude of the gravity-independent components were both approximately 25%. We assumed that gain changes over three-dimensional space could be described by a sinusoid the amplitude of which also varied sinusoidally. Using gain changes obtained from the head position in which the gains were adapted, a three-dimensional surface was generated that was qualitatively similar to a surface obtained from the experimental data. This extends previous findings on vertical aVOR gain adaptation in one plane and introduces a conceptual framework for understanding plasticity in three dimensions: aVOR gain changes are composed of two components, one of which depends on head position relative to gravity. It is likely that this gravitational dependence optimizes the stability of retinal images during movement in three-dimensional space.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Dept. of Neurology, Box 1135, Mount Sinai School of Medicine, 1 E. 100th St., New York, NY 10029, USA.
| | | | | | | |
Collapse
|
45
|
Green AM, Angelaki DE. An Integrative Neural Network for Detecting Inertial Motion and Head Orientation. J Neurophysiol 2004; 92:905-25. [PMID: 15056677 DOI: 10.1152/jn.01234.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to navigate in the world and execute appropriate behavioral responses depends critically on the contribution of the vestibular system to the detection of motion and spatial orientation. A complicating factor is that otolith afferents equivalently encode inertial and gravitational accelerations. Recent studies have demonstrated that the brain can resolve this sensory ambiguity by combining signals from both the otoliths and semicircular canal sensors, although it remains unknown how the brain integrates these sensory contributions to perform the nonlinear vector computations required to accurately detect head movement in space. Here, we illustrate how a physiologically relevant, nonlinear integrative neural network could be used to perform the required computations for inertial motion detection along the interaural head axis. The proposed model not only can simulate recent behavioral observations, including a translational vestibuloocular reflex driven by the semicircular canals, but also accounts for several previously unexplained characteristics of central neural responses such as complex otolith–canal convergence patterns and the prevalence of dynamically processed otolith signals. A key model prediction, implied by the required computations for tilt–translation discrimination, is a coordinate transformation of canal signals from a head-fixed to a spatial reference frame. As a result, cell responses may reflect canal signal contributions that cannot be easily detected or distinguished from otolith signals. New experimental protocols are proposed to characterize these cells and identify their contributions to spatial motion estimation. The proposed theoretical framework makes an essential first link between the computations for inertial acceleration detection derived from the physical laws of motion and the neural response properties predicted in a physiologically realistic network implementation.
Collapse
Affiliation(s)
- Andrea M Green
- Dept. of Anatomy and Neurobiology, Box 8108, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
46
|
Xiang Y, Büttner-Ennever J, Cohen B, Raphan T. Texture-based approaches for identifying neuro-anatomical structures and electrode tracks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2004; 74:221-233. [PMID: 15135573 DOI: 10.1016/j.cmpb.2003.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2002] [Revised: 07/01/2003] [Accepted: 08/07/2003] [Indexed: 05/24/2023]
Abstract
An automated approach to identifying electrode tracks and neuro-anatomical structures (nuclei) was developed using texture attributes of their neuro-anatomical stains. The properties that make up the texture features of the nuclei include size, shape and distribution of elemental structures. The electrode tracks are characterized by elongated darkened formations due to gliosis. Based on a Gabor wavelet transform, a texture feature vector was constructed, consisting of localized texture energies along different orientations at different scales. Stained images of brainstem sections in the vestibular nuclei were segmented using partitional clustering in feature space. A metric that computes the location of the tracks relative to the nuclei centers was then implemented. This methodology should be useful for quantifying and automating the procedure by which tracks are localized in anatomical structures.
Collapse
Affiliation(s)
- Yongqing Xiang
- Department of Computer and Information Science, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | | | | | | |
Collapse
|
47
|
Lai CH, Tse YC, Shum DKY, Yung KKL, Chan YS. Fos expression in otolith-related brainstem neurons of postnatal rats following off-vertical axis rotation. J Comp Neurol 2004; 470:282-96. [PMID: 14755517 DOI: 10.1002/cne.11048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To determine the critical time of responsiveness of developing otolith organ-related brainstem neurons and their distribution, Fos protein expression in response to off-vertical axis rotations (OVAR) was mapped in conscious Sprague Dawley rats from P5 to adulthood. OVAR was used to activate sequentially all utricular hair cells per 360 degrees revolution. We detected the coding of horizontal head positions in otolith organ-related neurons within the vestibular nucleus as early as P7. In the vestibular nuclear complex and its subgroups, the density of Fos-immunoreactive (Fos-ir) neurons increased steadily with age and reached the adult level by P21. In both labyrinthectomized rats subjected to OVAR and normal rats kept stationary, labeled neurons were found sporadically in the aforementioned brain regions in each age group, confirming that Fos labeling observed in neurons of normal experimental rats subjected to OVAR was due to otolith organ stimulation. Whereas OVAR-induced Fos-ir neurons were also first observed in vestibular-related brain areas, such as the prepositus hypoglossal nucleus, gigantocellular reticular nucleus, and locus coeruleus, of normal experimental rats at P7, those in the inferior olive were observed only from P14 onward. This indicates the unique maturation time of inferior olivary neurons in gravity-related spatial coding. In general, age-dependent increase in OVAR-induced Fos-ir neurons was observed in brain areas that received otolith inputs. The locus coeruleus was exceptional in that prominent OVAR-induced Fos-ir neuronal number did not change with maturation, and this was well above the low but significant number of Fos-ir neurons in control preparations. Taken together, our results suggest that neuronal subpopulations within the developing network of the horizontal otolith system provide an anatomical basis for the postnatal development of otolith organ-related sensorimotor functions. J. Comp. Neurol. 470:282-296, 2004.
Collapse
Affiliation(s)
- Chun-Hong Lai
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
48
|
Brettler SC, Baker JF. Timing of low frequency responses of anterior and posterior canal vestibulo-ocular neurons in alert cats. Exp Brain Res 2003; 149:167-73. [PMID: 12610684 DOI: 10.1007/s00221-002-1348-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Accepted: 11/12/2002] [Indexed: 12/01/2022]
Abstract
The pitch vertical vestibulo-ocular reflex (VOR) is accurate and symmetrical when tested in the normal upright posture, where otolith organ and central velocity storage signals supplement the basic VOR mediated by the semicircular canals. However, when the animal and rotation axis are together repositioned by rolling 90 degrees to one side, head forward pitch rotations that excite the anterior semicircular canals elicit a more accurately timed VOR than do oppositely directed rotations that excite the posterior canals. This suggests that velocity storage of posterior canal signals is lost when the head is placed on its side. We recorded from 47 VOR relay neurons, second-order vestibulo-ocular neurons, of alert cats to test whether asymmetries are evident in the responses of neurons in the medial and superior vestibular nuclei during earth-horizontal axis rotations in the normal upright posture. Neurons were identified by antidromic responses to oculomotor nucleus stimulation and orthodromic responses to labyrinth stimulation, and were classified as having primarily anterior, posterior, or horizontal canal input based on response directionality. Neuronal response gains and phases were recorded during 0.5 Hz and 0.05 Hz sinusoidal oscillations in darkness. During 0.5 Hz rotations, anterior canal second-order vestibulo-ocular neurons responded approximately in phase with head velocity (mean phase re head position, +/- SE, 80 degrees +/- 3 degrees, n=18), as did posterior canal second-order vestibulo-ocular neurons (mean phase 81 degrees +/- 1 degree, n=25). Lowering the rotation frequency to 0.05 Hz resulted in only slight advances in response phases of individual anterior canal second-order vestibulo-ocular neurons (mean phase 86 degrees +/- 6 degrees, mean advance 7 degrees +/- 5 degrees, n=12). In contrast, posterior canal second-order vestibulo-ocular neurons behaved more like semicircular canal afferents, with responses markedly phase-advanced (mean advance 28 degrees +/- 5 degrees, n=14) by lowering rotation frequency to 0.05 Hz (mean phase 111 degrees +/- 5 degrees, n=14). In summary, low frequency responses of anterior and posterior canal second-order vestibulo-ocular neurons recorded during horizontal axis pitch correspond to the VOR they excite during vertical axis pitch. These results show that velocity storage is evident at anterior but not posterior canal second-order vestibulo-ocular neurons. We conclude that responses of posterior canal second-order vestibulo-ocular neurons are insufficient to explain the accurate low frequency VOR phase observed during backward head pitch in the upright posture, and that velocity storage or otolith signals required for VOR accuracy are carried by other neurons.
Collapse
Affiliation(s)
- Sandra C Brettler
- Department of Physiology and Biophysics and Regional Primate Research Center, University of Washington, Box 357290, Seattle, WA 98195, USA
| | | |
Collapse
|
49
|
Ferraresi A, Manni E, Troiani D. Eye instability in the rabbit induced by vestibular stimulation in the vertical plane. Acta Otolaryngol 2003; 123:129-32. [PMID: 12701726 DOI: 10.1080/00016480310000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Sinusoidal vestibular stimulation in the horizontal plane induces periodic eye instability in the intact rabbit and the hypothesis of an intrinsically unstable velocity storage mechanism has been conceived. The present research examined the stability of the vestibulo-ocular reflex (VOR) in the vertical plane, considering that the time constant values of vertical and horizontal VORs differ and that separate regions of the vestibulo-cerebellum affect the horizontal and vertical slow VOR components differently. MATERIAL AND METHODS Normal pigmented rabbits were sinusoidally oscillated in the dark about their vertical and longitudinal axes to evoke horizontal and vertical eye responses. RESULTS Frequency and peak-to-peak amplitude stimulation parameters ranged from 0.1 to 0.8 Hz and from 5 degrees to 20 degrees, respectively. During horizontal VOR, periodic alternating drift (PAD) was superimposed on the ocular response, and both peak velocity and period were directly correlated with stimulation amplitude. Vestibular stimulation in the vertical plane induced PAD: the period of vertical PAD was shorter and the amplitude smaller than the corresponding horizontal PAD values. A further difference in vertical PAD occurred in the lack of modulation of period and peak velocity by the stimulus amplitude. CONCLUSION These results support the hypothesis of different instabilities of the velocity storage mechanism in the vertical and horizontal planes, possibly due to separate sensory-motor systems sub-serving the vertical and horizontal VORs.
Collapse
Affiliation(s)
- Aldo Ferraresi
- Institute of Human Physiology, Catholic University of Rome, Rome, Italy
| | | | | |
Collapse
|
50
|
Cohen B, John P, Yakushin SB, Buettner-Ennever J, Raphan T. The nodulus and uvula: source of cerebellar control of spatial orientation of the angular vestibulo-ocular reflex. Ann N Y Acad Sci 2002; 978:28-45. [PMID: 12582039 DOI: 10.1111/j.1749-6632.2002.tb07553.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The nodulus and rostral-ventral uvula of the vestibulo-cerebellum play a critical role in orienting eye velocity of the slow component of the angular vestibulo-ocular reflex (aVOR) to gravito-inertial acceleration (GIA). This is done by altering the time constants of "velocity storage" in the vestibular system and by generating "cross-coupled" eye velocities that shift the eye velocity vector from along the body yaw axis to the yaw axis in a spatial frame. In this report, we show that eye velocity generated through the aVOR by constant velocity centrifugation in the monkey orients to the GIA in space, regardless of the position of the head with respect to the axis of rotation. We also show that, after removal of the nodulus and rostral-ventral uvula, the spatial orientation of eye velocity to the GIA is lost and that eye velocity is then purely driven by the semicircular canals in a body frame of reference. These findings are further confirmation that these regions of the vestibulo-cerebellum control spatial orientation of the aVOR.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|