1
|
O'Neill MJ, Bogaert L, Hicks CA, Bond A, Ward MA, Ebinger G, Ornstein PL, Michotte Y, Lodge D. LY377770, a novel iGlu5 kainate receptor antagonist with neuroprotective effects in global and focal cerebral ischaemia. Neuropharmacology 2000; 39:1575-88. [PMID: 10854902 DOI: 10.1016/s0028-3908(99)00250-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have evaluated the neuroprotective effects of the decahydroisoquinoline LY377770, a novel iGlu5 kainate receptor antagonist, in two models of cerebral ischaemia. Global ischaemia, induced in gerbils by bilateral carotid artery occlusion (BCAO) for 5 min, produced a large increase in locomotor activity at 96 hr post-occlusion and a severe loss of CA1 cells in the hippocampus histologically at 120 hr post-occlusion. LY377770 (80 mg/kg i.p. 30 min before or 30 min after BCAO followed by 40 mg/kg i.p. administered at 3 and 6 hr after the initial dose) attenuated the ischaemia-induced hyperactivity and provided (92%) and (29%) protection in the CA1 cells respectively. This protection was greater than that seen with maximally tolerated doses of other glutamate receptor antagonists (CGS19755, CPP, MK-801, ifenprodil, eliprodil, HA-966, ACEA1021, L701,324, NBQX, LY293558, GYKI52466 and LY300164). Focal ischaemia was induced by infusing 200 pmol of endothelin-1 (Et-1) adjacent to the middle cerebral artery and LY377770 was administered at 80 mg/kg i.p. immediately, 1 or 2 hr post-occlusion followed by 40 mg/kg i.p. 3 and 6 hr after the first dose. The infarct volume, measured 72 hr later, was reduced by LY377770 when given immediately (P<0.01), at 1 hr (P<0.05) but not significantly at 2 hr post-occlusion. Reference compounds, LY293558 (20 mg/kg i.p. and then 10 mg/kg as above) and MK-801 (2.5 mg/kg i.p. ), both administered immediately post-occlusion produced significant (P<0.05) but somewhat less neuroprotection. In parallel microdialysis studies, LY377770 (75 mg/kg i.p.) attenuated ischaemia-induced increases in extracellular levels of glutamate, but not of dopamine. In conclusion, these results indicated that iGlu5 kainate receptors play a central role in ischaemic brain damage following global and focal cerebral ischaemia. LY377770 is a novel, soluble, systemically active iGlu5 antagonist with efficacy in global and focal ischaemia, even when administered post-occlusion. LY377770 may therefore be useful as a neuroprotectant in man.
Collapse
Affiliation(s)
- M J O'Neill
- Eli Lilly & Co. Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, GU20 6PH, Surrey, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Araki H, Hino N, Karasawa Y, Kawasaki H, Gomita Y. Effect of calcium channel blockers on cerebral ischemia-induced hyperactivity in Mongolian gerbils. Physiol Behav 1999; 67:573-7. [PMID: 10549896 DOI: 10.1016/s0031-9384(99)00111-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When both common carotid arteries of Mongolian gerbils were occluded for 5 min to produce ischemic insult, locomotor activity was increased the following day. The effect of calcium channel blockers on this ischemia-induced hyperactivity was investigated. Nimodipine, at doses of 5, 10, and 20 mg/kg, dose dependently and significantly decreased ischemia-induced hyperactivity. Nicardipine significantly decreased ischemia-induced hyperactivity and doses of 10 and 20 mg/kg. Nifedipine and flunaridine also significantly decreased ischemia-induced hyperactivity at doses of 20 mg/kg. Verapamil had no effect on ischemia-induced hyperactivity at a dose of 20 mg/kg. These findings suggest that ischemia-induced hyperactivity is related to calcium channels. These relationship between calcium channels and dopaminergic function is discussed.
Collapse
Affiliation(s)
- H Araki
- Hospital Pharmacy Department, Okayama University Medical School, Japan.
| | | | | | | | | |
Collapse
|
3
|
Kimura M, Katayama K, Nishizawa Y. Role of glutamate receptors and voltage-dependent calcium channels in glutamate toxicity in energy-compromised cortical neurons. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 80:351-8. [PMID: 10496336 DOI: 10.1254/jjp.80.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have examined the effect of glutamate receptor antagonists and voltage-dependent calcium channel blockers on the neuronal injury induced by the combination of a low concentration of N-methyl-D-aspartate (NMDA) or kainate and energy compromise resulting from the use of glucose-free incubation buffer. Toxicity induced by NMDA or kainate was enhanced in the glucose-free buffer. NMDA-or non-NMDA-receptor antagonists added to the glucose-free buffer at the same time inhibited the neuronal cell death induced by each agonist. An NMDA-receptor antagonist, MK-801, but not non-NMDA-receptor antagonists, inhibited the toxicity when added to the culture medium after exposure of the cells to the agonists. P/Q-type calcium channel blockers, omega-agatoxin IVA and omega-agatoxin TK, and an N-type calcium channel blocker, omega-conotoxin GVIA, significantly attenuated the neuronal injury, although an L-type calcium channel blocker, nifedipine, showed little neuroprotective effect. A combination of calcium channel blockers of the three subtypes showed the most prominent neuroprotective effect. These observations suggest that the overactivation of NMDA and non-NMDA receptors and consequent activation of the voltage-dependent calcium channels lead to neuronal cell death in energy-compromised cortical neurons.
Collapse
Affiliation(s)
- M Kimura
- Eisai Tsukuba Research Laboratories, Ibaraki, Japan
| | | | | |
Collapse
|
4
|
Dobrev D, Milde AS, Andreas K, Ravens U. The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum. Br J Pharmacol 1999; 127:576-82. [PMID: 10385261 PMCID: PMC1566043 DOI: 10.1038/sj.bjp.0702574] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to omega-conotoxin GVIA (omega-CTx-GVIA), omega-agatoxin IVA (omega-Aga-IVA) and omega-conotoxin MVIIC (omega-CTx-MVIIC), respectively. 2. KCl (50 mM)-evoked [3H]-DA release was abolished in the absence of Ca2+, and was insensitive to dihydropyridines (up to 30 microM). It was significantly blocked by omega-CTx-GVIA (1 microM), omega-Aga-IVA (30 nM) and was confirmed to be abolished by omega-CTx-MVIIC (3 microM), indicating involvement of N-, P- and Q-type channel subtypes. 3. Verapamil and diltiazem inhibited K+-evoked [3H]-DA release in a concentration-dependent manner. The inhibitory effects of verapamil or diltiazem (each 30 microM) were fully additive to the effect of omega-CTx-GVIA (1 microM), whereas co-application with omega-Aga-IVA (30 nM) produced similar effects to those of omega-Aga-IVA alone. 4. As shown previously, veratridine-evoked [3H]-DA release in Ca2+ containing medium exclusively involves Q-type Ca2+ channels. Here, diltiazem (30 microM) did not inhibit veratridine-evoked [3H]-DA release, whereas verapamil (30 microM) partially inhibited it, indicating possible involvement of Q-type channels in verapamil-induced inhibition. However, verapamil (30 microM) inhibited this release even in the absence of extracellular Ca2+, suggesting that Na+ rather than Q-type Ca2+ channels are involved. 5. Taken together, our results suggest that verapamil can block P- and at higher concentrations possibly N- and Q-type Ca2+ channels linked to [3H]-DA release, whereas diltiazem appears to block P-type Ca2+ channels only.
Collapse
Affiliation(s)
- D Dobrev
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Technology, Dresden, Germany.
| | | | | | | |
Collapse
|
5
|
O'Neill MJ, Hicks CA, Ward MA, Cardwell GP, Reymann JM, Allain H, Bentué-Ferrer D. Dopamine D2 receptor agonists protect against ischaemia-induced hippocampal neurodegeneration in global cerebral ischaemia. Eur J Pharmacol 1998; 352:37-46. [PMID: 9718265 DOI: 10.1016/s0014-2999(98)00333-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To characterise the role played by dopamine receptors in ischaemic brain damage, we have evaluated the effects of pergolide, bromocriptine and lisuride (dopamine D2 receptor agonists), haloperidol (a dopamine D2 receptor antagonist), 2,3,4,5-tetrahydro-7,8,dihydroxy-1-phenyl-1H-3-benzazepine (SKF 38393; a dopamine D1 receptor agonist) and (R)-(+)-8-chloro 2,3,4,5-tetra-hydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol (SCH 23390; a dopamine D1 receptor antagonist) in the gerbil model of global cerebral ischaemia. Ischaemia was induced by 5 min of bilateral carotid artery occlusion under halothane anaesthesia. Sham operated animals were used as controls. Pergolide (0.5 or 1.0 mg/kg i.p), bromocriptine (0.5 or 1.0 mg/kg i.p.), lisuride (0.5 or 1.0 mg/kg i.p.), SCH 23390 (0.1 or 1.0 mg/kg i.p.), haloperidol (0.5, 1.0 or 2 mg/kg i.p.) and SKF 38393 (1.0 or 2 mg/kg i.p.) were administered 1 h before occlusion. Five-minute-occluded animals had extensive damage in the CA1 region of the hippocampus 5 days after surgery. Pergolide 0.5 and 1.0 mg/kg i.p. provided significant (P < 0.05 and P < 0.01, respectively) neuroprotection against the ischaemia-induced hippocampal damage. Bromocriptine and lisuride also provided significant (P < 0.05) neuroprotection, but only at the higher 1.0 mg/kg dose. In contrast, the dopamine D2 receptor antagonist (haloperidol), the dopamine D1 receptor agonist (SKF 38393) and the dopamine D1 receptor antagonist (SCH 23390) failed to provide any neuroprotection in the model. These results support studies indicating that dopamine is important in ischaemic situations. The results also indicate that dopamine D2 receptor agonists are neuroprotective against ischaemia-induced brain injury and may play a role in neurodegenerative disorders.
Collapse
Affiliation(s)
- M J O'Neill
- Eli Lilly, Lilly Research Centre, Windlesham, Surrey, UK.
| | | | | | | | | | | | | |
Collapse
|
6
|
Toner CC, Stamford JA. Involvement of N- and P/Q- but not L- or T-type voltage-gated calcium channels in ischaemia-induced striatal dopamine release in vitro. Brain Res 1997; 748:85-92. [PMID: 9067448 DOI: 10.1016/s0006-8993(96)01247-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium influx and transmitter efflux are central events in the neuropathological cascade that occurs during and following cerebral ischaemia. This study explored the role of voltage-gated calcium channels (VGCCs) in ischaemia-induced striatal dopamine (DA) release in vitro. Slices (350 microm thickness) of rat neostriatum were superfused (400 ml/h) with an artificial cerebrospinal fluid (aCSF) at 34 degrees C and subjected to episodes of 'ischaemia' by reduction of the glucose concentration from 4 to 2 mM and gassing with 95% N2/5% CO2. DA release was monitored with fast cyclic voltammetry at implanted carbon fibre microelectrodes. The time to onset, time to peak, rate and magnitude of DA release were measured. Non-selective blockade of VGCCs with a high concentration of Ni2+ (2.5 mM), markedly delayed (P < 0.01) and slowed (P < 0.05) DA release but preferential blockade of T-type VGCCs with a lower concentration (200 microM) had no effect. DA release was also unaffected by selective antagonism of L-type VGCCs with nimodipine and nicardipine (10 microM each). Selective blockade of N-type VGCCs with omega-conotoxin GVIA (100 nM) delayed DA release (P < 0.05) but did not affect its rate or magnitude. Blockade of P- and possibly Q-type VGCCs with omega-agatoxin IVA (up to 200 nM) both delayed (P < 0.05) and slowed (P < 0.05) DA release. Preferential blockade of P- type VGCCs with neomycin (500 microM) also delayed (P < 0.05) and slowed (P < 0.05) DA release. These findings suggest that N-, P- and possibly Q- but not L- or T-type VGCCs mediate ischaemia-induced DA release. Although it is not possible to say, on the basis of these results, that the effects are directly upon the dopamine terminals, these calcium channels nevertheless constitute promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- C C Toner
- Anaesthetics Unit (Neurotransmission Laboratory), St. Bartholomew's and the Royal London School of Medicine and Dentistry, Whitechapel, UK
| | | |
Collapse
|
7
|
|
8
|
Neuroprotective Strategies for Treatment of Acute Ischemic Stroke. Neurotherapeutics 1996. [DOI: 10.1007/978-1-59259-466-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Biton B, Granger P, Depoortere H, Scatton B, Avenet P. Block of P-type Ca2+ channels by the NMDA receptor antagonist eliprodil in acutely dissociated rat Purkinje cells. Eur J Pharmacol 1995; 294:91-100. [PMID: 8788420 DOI: 10.1016/0014-2999(95)00511-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of eliprodil on P-type Ca2+ channels was investigated in acutely dissociated rat Purkinje neurons, by using the whole-cell patch-clamp technique. Eliprodil inhibited in a reversible manner the omega-agatoxin-IVA-sensitive Ba2+ current elicited by step depolarizations from a -80 mV holding voltage (IC50 = 1.9 microM). The Ba2+ current showed steady-state inactivation (V1/2 = -61 mV) which was shifted toward more positive values when the intracellular Ca2+ buffering was increased. In these conditions, the potency of eliprodil was decreased (IC50 = 8.2 microM), suggesting a modulation by intracellular Ca2+ of the eliprodil blockade. The potency of eliprodil was not modified at more depolarized holding potentials and was not dependent on the frequency at which the step-depolarizations were applied (0-0.2 Hz) indicating a lack of voltage and use dependence of the eliprodil blockade. When eliprodil was applied in the patch-pipette at a concentration which causes full block when applied externally, the Ba2+ current amplitude was not affected and external application of eliprodil was still efficacious, indicating an extracellular location of the binding site. Analysis of the time course of recovery from Ca2+ channel blockade obtained by concomitant application of eliprodil with Cd2+, omega-agatoxin-IVA or fluspirilene, indicated that these later compounds did not interact with eliprodil, suggesting that eliprodil acts at a different site. These results demonstrate that eliprodil blocks P-type Ca2+ channels in cerebellar Purkinje neurons and suggest that this property may contribute to its neuroprotective activity.
Collapse
Affiliation(s)
- B Biton
- CNS Research Department, Synthélabo Recherche, Bagneux, France
| | | | | | | | | |
Collapse
|
10
|
Nakane H, Ooboshi H, Ibayashi S, Yao H, Sadoshima S, Fujishima M. Isradipine, a calcium channel blocker, attenuates the ischemia-induced release of dopamine but not glutamate in rats. Neurosci Lett 1995; 188:151-4. [PMID: 7609897 DOI: 10.1016/0304-3940(95)11417-u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study was designed to investigate the role of the L-type voltage sensitive calcium channel blocker, isradipine, in the ischemia-induced release of neurotransmitters. Male spontaneously hypertensive rats were subjected to cerebral ischemia for 60 min by bilateral carotid artery occlusion, and recirculated for 120 min. Isradipine (0.25 mg/kg n = 6) or vehicle (n = 6) was administered subcutaneously at 20 min before ischemia. In the striatum, cerebral blood flow was determined by the hydrogen clearance method and concentrations of extracellular dopamine and glutamate were measured by in vivo brain dialysis technique. Extracellular dopamine in the vehicle-treated group increased by 180-fold from the basal level, and glutamate by 24-fold during cerebral ischemia. Isradipine significantly attenuated the ischemic release of dopamine to 33-34% (P < 0.05) of the vehicle group, while it did not affect glutamate release. It is suggested that the release mechanism of dopamine and glutamate during cerebral ischemia may be different, especially in the dependence on the L-type calcium channels.
Collapse
Affiliation(s)
- H Nakane
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Longo R, Sagratella S, Scotti de Carolis A. Effects of calcium antagonists on hypoxic and NMDA injury in rat hippocampal slices. Life Sci 1994; 55:455-62. [PMID: 8035663 DOI: 10.1016/0024-3205(94)90057-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of various calcium antagonists, acting at the different neuronal calcium channels, were studied towards two models of in vitro neuronal injury in rat hippocampal slices. In particular, the influence of the drugs were tested on the electrical failure induced by treatment of hippocampal slices with hypoxia or high concentrations of the excitatory amino acid N-methyl-D-aspartate (NMDA). The L-type calcium antagonists, nifedipine (100 microM) and diltiazem (100 microM) or the T-type calcium antagonist amiloride (100 microM) failed to significantly affect the recovery from the CA1 electrical failure induced by both hypoxia or NMDA (50 microM). The N-type calcium antagonists, omega-conotoxin GVIA (0.5 microM) and neomycin (300 microM) significantly (P < 0.01) increased the probability of the recovery of the CA1 population spike after hypoxia but not after NMDA (50 microM). The glutamate antagonist dizocilipine (50 microM), tested for comparison, significantly (P < 0.01) increased the probability of the recovery of the CA1 population spike after hypoxia and NMDA (50 microM). The results suggest an involvement of calcium channels especially of N-type in the genesis of hypoxic but not NMDA neuronal injury.
Collapse
Affiliation(s)
- R Longo
- Pharmacology Department, Istituto Superiore di Sanità, Roma, Italy
| | | | | |
Collapse
|
12
|
Bentué-Ferrer D, Bellissant E, Decombe R, Allain H. Temporal profile of aminergic neurotransmitter release in striatal dialysates in rats with post-ischemic seizures. Exp Brain Res 1994; 97:437-43. [PMID: 7514544 DOI: 10.1007/bf00241537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The temporal profiles of aminergic neurotransmitter levels and of their acid metabolites after transient global cerebral ischemia in awake rats with and without subsequent seizures were compared using a microdialysis approach. In seizure animals, the post-ischemic levels of dopamine and serotonin were higher than the levels observed in the non-seizure controls. Inversely, the levels of the three neurotransmitter metabolites increased rapidly in the controls but not in seizure animals, where they remained at the low levels observed during and immediately after ischemia. This particular pattern is similar to that observed in rats submitted to prolonged ischemia or pretreated with monoamine oxidase inhibitors. In the seizure animals, neurotransmitter metabolites remained at low levels, as if the hypoxia had continued after the period of ischemia, inhibiting monoamine oxidase activity and, perhaps, neurotransmitter recapture.
Collapse
Affiliation(s)
- D Bentué-Ferrer
- Laboratoire de Pharmacologie expérimentale et clinique, Faculté de Médecine, Rennes, France
| | | | | | | |
Collapse
|