1
|
Fortino TA, Randelman ML, Hall AA, Singh J, Bloom DC, Engel E, Hoh DJ, Hou S, Zholudeva LV, Lane MA. Transneuronal tracing to map connectivity in injured and transplanted spinal networks. Exp Neurol 2022; 351:113990. [DOI: 10.1016/j.expneurol.2022.113990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
|
2
|
Nguyen KH, Scheurich TE, Gu T, Berkowitz A. Spinal Interneurons With Dual Axon Projections to Knee-Extensor and Hip-Extensor Motor Pools. Front Neural Circuits 2020; 14:7. [PMID: 32226362 PMCID: PMC7080864 DOI: 10.3389/fncir.2020.00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) may simplify control of limb movements by activating certain combinations of muscles together, i.e., muscle synergies. Little is known, however, about the spinal cord interneurons that activate muscle synergies by exciting sets of motoneurons for different muscles. The turtle spinal cord, even without brain inputs and movement-related sensory feedback, can generate the patterns of motoneuron activity underlying forward swimming, three forms of scratching, and limb withdrawal. Spinal interneurons activated during scratching are typically activated during all three forms of scratching, to different degrees, even though each form of scratching has its own knee-hip synergy. Such spinal interneurons are also typically activated rhythmically during scratching motor patterns, with hip-related timing. We proposed a hypothesis that such interneurons that are most active during rostral scratch stimulation project their axons to both knee-extensor and hip-flexor motoneurons, thus generating the rostral scratch knee-hip synergy, while those interneurons most active during pocket scratch stimulation project their axons to both knee-extensor and hip-extensor motoneurons, thus generating the pocket scratch knee-hip synergy. The activity of the entire population would then generate the appropriate synergy, depending on the location of sensory stimulation. Mathematical modeling has demonstrated that this hypothesis is feasible. Here, we provide one test of this hypothesis by injecting two fluorescent retrograde tracers into the regions of knee-extensor motoneurons (more rostrally) and hip-extensor motoneurons (more caudally). We found that there were double-labeled interneurons, which projected their axons to both locations. The dual-projecting interneurons were widely distributed rostrocaudally, dorsoventrally, and mediolaterally within the hindlimb enlargement and pre-enlargement spinal segments examined. The existence of such dual-projecting interneurons is consistent with the hypothesis that they contribute to generating the knee-hip synergy for pocket scratching. The dual-projecting interneurons, however, were only about 1% of the total interneurons projecting to each location, which suggests that they might be one of several contributors to the appropriate knee-hip synergy. Indirect projections to both motor pools and/or knee extensor-dedicated interneurons might also contribute. There is evidence for dual-projecting spinal interneurons in frogs and mice as well, suggesting that they may contribute to limb motor control in a variety of vertebrates.
Collapse
Affiliation(s)
- Khuong H Nguyen
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Thomas E Scheurich
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tingting Gu
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Ari Berkowitz
- Department of Biology, University of Oklahoma, Norman, OK, United States.,Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
3
|
Abstract
Hand dexterity has uniquely developed in higher primates and is thought to rely on the direct corticomotoneuronal (CM) pathway. Recent studies have shown that rodents and carnivores lack the direct CM pathway but can control certain levels of dexterous hand movements through various indirect CM pathways. Some homologous pathways also exist in higher primates, and among them, propriospinal (PrS) neurons in the mid-cervical segments (C3-C4) are significantly involved in hand dexterity. When the direct CM pathway was lesioned caudal to the PrS and transmission of cortical commands to hand motoneurons via the PrS neurons remained intact, dexterous hand movements could be significantly recovered. This recovery model was intensively studied, and it was found that, in addition to the compensation by the PrS neurons, a large-scale reorganization in the bilateral cortical motor-related areas and mesolimbic structures contributed to recovery. Future therapeutic strategies should target these multihierarchical areas.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience and Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
4
|
Côté MP, Murray LM, Knikou M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions. Front Physiol 2018; 9:784. [PMID: 29988534 PMCID: PMC6026662 DOI: 10.3389/fphys.2018.00784] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Systematic research on the physiological and anatomical characteristics of spinal cord interneurons along with their functional output has evolved for more than one century. Despite significant progress in our understanding of these networks and their role in generating and modulating movement, it has remained a challenge to elucidate the properties of the locomotor rhythm across species. Neurophysiological experimental evidence indicates similarities in the function of interneurons mediating afferent information regarding muscle stretch and loading, being affected by motor axon collaterals and those mediating presynaptic inhibition in animals and humans when their function is assessed at rest. However, significantly different muscle activation profiles are observed during locomotion across species. This difference may potentially be driven by a modified distribution of muscle afferents at multiple segmental levels in humans, resulting in an altered interaction between different classes of spinal interneurons. Further, different classes of spinal interneurons are likely activated or silent to some extent simultaneously in all species. Regardless of these limitations, continuous efforts on the function of spinal interneuronal circuits during mammalian locomotion will assist in delineating the neural mechanisms underlying locomotor control, and help develop novel targeted rehabilitation strategies in cases of impaired bipedal gait in humans. These rehabilitation strategies will include activity-based therapies and targeted neuromodulation of spinal interneuronal circuits via repetitive stimulation delivered to the brain and/or spinal cord.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- CÔTÉ Lab, Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lynda M. Murray
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| | - Maria Knikou
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| |
Collapse
|
5
|
Mitchell EJ, McCallum S, Dewar D, Maxwell DJ. Corticospinal and Reticulospinal Contacts on Cervical Commissural and Long Descending Propriospinal Neurons in the Adult Rat Spinal Cord; Evidence for Powerful Reticulospinal Connections. PLoS One 2016; 11:e0152094. [PMID: 26999665 PMCID: PMC4801400 DOI: 10.1371/journal.pone.0152094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/08/2016] [Indexed: 01/05/2023] Open
Abstract
Descending systems have a crucial role in the selection of motor output patterns by influencing the activity of interneuronal networks in the spinal cord. Commissural interneurons that project to the contralateral grey matter are key components of such networks as they coordinate left-right motor activity of fore and hind-limbs. The aim of this study was to determine if corticospinal (CST) and reticulospinal (RST) neurons make significant numbers of axonal contacts with cervical commissural interneurons. Two classes of commissural neurons were analysed: 1) local commissural interneurons (LCINs) in segments C4-5; 2) long descending propriospinal neurons (LDPNs) projecting from C4 to the rostral lumbar cord. Commissural interneurons were labelled with Fluorogold and CST and RST axons were labelled by injecting the b subunit of cholera toxin in the forelimb area of the primary somatosensory cortex or the medial longitudinal fasciculus respectively. The results show that LCINs and LDPNs receive few contacts from CST terminals but large numbers of contacts are formed by RST terminals. Use of vesicular glutamate and vesicular GABA transporters revealed that both types of cell received about 80% excitatory and 20% inhibitory RST contacts. Therefore the CST appears to have a minimal influence on LCINs and LDPNs but the RST has a powerful influence. This suggests that left-right activity in the rat spinal cord is not influenced directly via CST systems but is strongly controlled by the RST pathway. Many RST neurons have monosynaptic input from corticobulbar pathways therefore this pathway may provide an indirect route from the cortex to commissural systems. The cortico-reticulospinal-commissural system may also contribute to functional recovery following damage to the CST as it has the capacity to deliver information from the cortex to the spinal cord in the absence of direct CST input.
Collapse
Affiliation(s)
- Emma J. Mitchell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Sarah McCallum
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Deborah Dewar
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - David J. Maxwell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Alstermark B, Ekerot CF. The lateral reticular nucleus; integration of descending and ascending systems regulating voluntary forelimb movements. Front Comput Neurosci 2015; 9:102. [PMID: 26300768 PMCID: PMC4525057 DOI: 10.3389/fncom.2015.00102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/17/2015] [Indexed: 11/15/2022] Open
Abstract
Cerebellar control of movements is dependent on mossy fiber input conveying information about sensory and premotor activity in the spinal cord. While much is known about spino-cerebellar systems, which provide the cerebellum with detailed sensory information, much less is known about systems conveying motor information. Individual motoneurones do not have projections to spino-cerebellar neurons. Instead, the fastest route is from last order spinal interneurons. In order to identify the networks that convey ascending premotor information from last order interneurons, we have focused on the lateral reticular nucleus (LRN), which provides the major mossy fiber input to cerebellum from spinal interneuronal systems. Three spinal ascending systems to the LRN have been investigated: the C3-C4 propriospinal neurones (PNs), the ipsilateral forelimb tract (iFT) and the bilateral ventral flexor reflex tract (bVFRT). Voluntary forelimb movements involve reaching and grasping together with necessary postural adjustments and each of these three interneuronal systems likely contribute to specific aspects of forelimb motor control. It has been demonstrated that the command for reaching can be mediated via C3-C4 PNs, while the command for grasping is conveyed via segmental interneurons in the forelimb segments. Our results reveal convergence of ascending projections from all three interneuronal systems in the LRN, producing distinct combinations of excitation and inhibition. We have also identified a separate descending control of LRN neurons exerted via a subgroup of cortico-reticular neurones. The LRN projections to the deep cerebellar nuclei exert a direct excitatory effect on descending motor pathways via the reticulospinal, vestibulospinal, and other supraspinal tracts, and might play a key role in cerebellar motor control. Our results support the hypothesis that the LRN provides the cerebellum with highly integrated information, enabling cerebellar control of complex forelimb movements.
Collapse
Affiliation(s)
- Bror Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University Umeå, Sweden
| | | |
Collapse
|
7
|
EphA4-mediated ipsilateral corticospinal tract misprojections are necessary for bilateral voluntary movements but not bilateral stereotypic locomotion. J Neurosci 2014; 34:5211-21. [PMID: 24719100 DOI: 10.1523/jneurosci.4848-13.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this study, we took advantage of the reported role of EphA4 in determining the contralateral spinal projection of the corticospinal tract (CST) to investigate the effects of ipsilateral misprojections on voluntary movements and stereotypic locomotion. Null EphA4 mutations produce robust ipsilateral CST misprojections, resulting in bilateral corticospinal tracts. We hypothesize that a unilateral voluntary limb movement, not a stereotypic locomotor movement, will become a bilateral movement in EphA4 knock-out mice with a bilateral CST. However, in EphA4 full knock-outs, spinal interneurons also develop bilateral misprojections. Aberrant bilateral spinal circuits could thus transform unilateral corticospinal control signals into bilateral movements. We therefore studied mice with conditional forebrain deletion of the EphA4 gene under control by Emx1, a gene expressed in the forebrain that affects the developing CST but spares brainstem motor pathways and spinal motor circuits. We examined two conditional knock-outs targeting forebrain EphA4 during performance of stereotypic locomotion and voluntary movement: adaptive locomotion over obstacles and exploratory reaching. We found that the conditional knock-outs used alternate stepping, not hopping, during overground locomotion, suggesting normal central pattern generator function and supporting our hypothesis of minimal CST involvement in the moment-to-moment control of stereotypic locomotion. In contrast, the conditional knock-outs showed bilateral voluntary movements under conditions when single limb movements are normally produced and, as a basis for this aberrant control, developed a bilateral motor map in motor cortex that is driven by the aberrant ipsilateral CST misprojections. Therefore, a specific change in CST connectivity is associated with and explains a change in voluntary movement.
Collapse
|
8
|
Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature 2014; 508:357-63. [PMID: 24487617 PMCID: PMC4230338 DOI: 10.1038/nature13021] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/13/2014] [Indexed: 11/16/2022]
Abstract
The precision of skilled forelimb movement has long been presumed to rely on rapid feedback corrections triggered by internally-directed copies of outgoing motor commands – but the functional relevance of inferred internal copy circuits has remained unclear. One class of spinal interneurons implicated in the control of mammalian forelimb movement, cervical propriospinal neurons (PNs), has the potential to convey an internal copy of pre-motor signals through dual innervation of forelimb-innervating motor neurons and pre-cerebellar neurons of the lateral reticular nucleus. We have examined whether the PN internal copy pathway functions in the control of goal-directed reaching. In mice, PNs include a genetically-accessible subpopulation of cervical V2a interneurons, and their targeted ablation perturbs reaching while leaving intact other elements of forelimb movement. Moreover, optogenetic activation of the PN internal copy branch recruits a rapid cerebellar feedback loop that modulates forelimb motor neuron activity and severely disrupts reaching kinematics. Our findings implicate V2a PNs as the focus of an internal copy pathway assigned to the rapid updating of motor output during reaching behavior.
Collapse
|
9
|
The representation of egocentric space in the posterior parietal cortex. Behav Brain Sci 2013; 15 Spec No 4:691-700. [PMID: 23842408 DOI: 10.1017/s0140525x00072605] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The posterior parietal cortex (PPC) is the most likely site where egocentric spatial relationships are represented in the brain. PPC cells receive visual, auditory, somaesthetic, and vestibular sensory inputs; oculomotor, head, limb, and body motor signals; and strong motivational projections from the limbic system. Their discharge increases not only when an animal moves towards a sensory target, but also when it directs its attention to it. PPC lesions have the opposite effect: sensory inattention and neglect. The PPC does not seem to contain a "map" of the location of objects in space but a distributed neural network for transforming one set of sensory vectors into other sensory reference frames or into various motor coordinate systems. Which set of transformation rules is used probably depends on attention, which selectively enhances the synapses needed for making a particular sensory comparison or aiming a particular movement.
Collapse
|
10
|
Abstract
From an evolutionary perspective, it is clear that basic motor functions such as locomotion and posture are largely controlled by neural circuitries residing in the spinal cord and brain-stem. The control of voluntary movements such as skillful reaching and grasping is generally considered to be governed by neural circuitries in the motor cortex that connect directly to motoneurons via the corticomotoneuronal (CM) pathway. The CM pathway may act together with several brain-stem systems that also act directly with motoneurons. This simple view was challenged by work in the cat, which lacks the direct CM system, showing that the motor commands for reaching and grasping could be mediated via spinal interneurons with input from the motor-cortex and brain-stem systems. It was further demonstrated that the spinal interneurons mediating the descending commands for reaching and grasping constitute separate and distinct populations from those involved in locomotion and posture. The aim of this review is to describe populations of spinal interneurons that are involved in the control of skilled reaching and grasping in the cat, monkey, and human.
Collapse
Affiliation(s)
- Bror Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University, S-901 87 Umeå, Sweden.
| | | |
Collapse
|
11
|
|
12
|
Abstract
Abstract
This target article draws together two groups of experimental studies on the control of human movement through peripheral feedback and centrally generated signals of motor commands. First, during natural movement, feedback from muscle, joint, and cutaneous afferents changes; in human subjects these changes have reflex and kinesthetic consequences. Recent psychophysical and microneurographic evidence suggests that joint and even cutaneous afferents may have a proprioceptive role. Second, the role of centrally generated motor commands in the control of normal movements and movements following acute and chronic deafferentation is reviewed. There is increasing evidence that subjects can perceive their motor commands under various conditions, but that this is inadequate for normal movement; deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of pathology. During natural movement, the CNS appears to have access to functionally useful input from a range of peripheral receptors as well as from internally generated command signals. The unanswered questions that remain suggest a number of avenues for further research.
Collapse
|
13
|
Equilibrium-point hypothesis, minimum effort control strategy and the triphasic muscle activation pattern. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00073209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
|
15
|
Successive approximation in targeted movement: An alternative hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00072848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Abstract
AbstractEngineers use neural networks to control systems too complex for conventional engineering solutions. To examine the behavior of individual hidden units would defeat the purpose of this approach because it would be largely uninterpretable. Yet neurophysiologists spend their careers doing just that! Hidden units contain bits and scraps of signals that yield only arcane hints about network function and no information about how its individual units process signals. Most literature on single-unit recordings attests to this grim fact. On the other hand, knowing a system's function and describing it with elegant mathematics tell one very little about what to expect of interneuronal behavior. Examples of simple networks based on neurophysiology are taken from the oculomotor literature to suggest how single-unit interpretability might decrease with increasing task complexity. It is argued that trying to explain how any real neural network works on a cell-by-cell, reductionist basis is futile and we may have to be content with trying to understand the brain at higher levels of organization.
Collapse
|
17
|
Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 2011; 15:603-13. [PMID: 23302290 DOI: 10.1017/s0140525x00072538] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
|
19
|
Alstermark B, Pettersson LG, Nishimura Y, Yoshino-Saito K, Tsuboi F, Takahashi M, Isa T. Motor command for precision grip in the macaque monkey can be mediated by spinal interneurons. J Neurophysiol 2011; 106:122-6. [PMID: 21511706 DOI: 10.1152/jn.00089.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In motor control, the general view is still that spinal interneurons mainly contribute to reflexes and automatic movements. The question raised here is whether spinal interneurons can mediate the cortical command for independent finger movements, like a precision grip between the thumb and index finger in the macaque monkey, or if this function depends exclusively on a direct corticomotoneuronal pathway. This study is a followup of a previous report (Sasaki et al. J Neurophysiol 92: 3142-3147, 2004) in which we trained macaque monkeys to pick a small piece of sweet potato from a cylinder by a precision grip between the index finger and thumb. We have now isolated one spinal interneuronal system, the C3-C4 propriospinal interneurons with projection to hand and arm motoneurons. In the previous study, the lateral corticospinal tract (CST) was interrupted in C4/C5 (input intact to the C3-C4 propriospinal interneurons), and in this study, the CST was interrupted in C2 (input abolished). The precision grip could be performed within the first 15 days after a CST lesion in C4/C5 but not in C2. We conclude that C3-C4 propriospinal interneurons also can carry the command for precision grip.
Collapse
Affiliation(s)
- B Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University, Umeå, Sweden.
| | | | | | | | | | | | | |
Collapse
|
20
|
Flynn JR, Graham BA, Galea MP, Callister RJ. The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 2011; 60:809-22. [PMID: 21251920 DOI: 10.1016/j.neuropharm.2011.01.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/23/2010] [Accepted: 01/10/2011] [Indexed: 11/29/2022]
Abstract
Over one hundred years ago, Sir Charles Sherrington described a population of spinal cord interneurons (INs) that connect multiple spinal cord segments and participate in complex or 'long' motor reflexes. These neurons were subsequently termed propriospinal neurons (PNs) and are known to play a crucial role in motor control and sensory processing. Recent work has shown that PNs may also be an important substrate for recovery from spinal cord injury (SCI) as they contribute to plastic reorganisation of spinal circuits. The location, inter-segmental projection pattern and sheer number of PNs mean that after SCI, a significant number of them are capable of 'bridging' an incomplete spinal cord lesion. When these properties are combined with the capacity of PNs to activate and coordinate locomotor central pattern generators (CPGs), it is clear they are ideally placed to assist locomotor recovery. Here we summarise the anatomy, organisation and function of PNs in the uninjured spinal cord, briefly outline the pathophysiology of SCI, describe how PNs contribute to recovery of motor function, and finally, we discuss the mechanisms that underlie PN plasticity. We propose there are two major challenges for PN research. The first is to learn more about ways we can promote PN plasticity and manipulate the 'hostile' micro-environment that limits regeneration in the damaged spinal cord. The second is to study the cellular/intrinsic properties of PNs to better understand their function in both the normal and injured spinal cord. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Jamie R Flynn
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | |
Collapse
|
21
|
Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits. J Neurosci 2010; 30:2277-88. [PMID: 20147554 DOI: 10.1523/jneurosci.5286-09.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of skilled movements and the corticospinal tract (CST) begin prenatally and continue postnatally. Because the CST is required for skilled movements in maturity, it is accepted that motor skills cannot occur until the CST develops a mature organization. We recently showed that the CST plays an essential role in postnatal development of interneurons comprising the spinal circuits it engages. We proposed that CST signals are more effectively transmitted to ventral motor circuits after interneuron maturation, thereby enabling expression of CST motor functions, suggesting development of a segmental switch promoting transmission. We tested this by recording CST-evoked focal synaptic potentials, extracellularly, in the cervical enlargement of cats before and after interneuron maturation [postnatal week 5 (PW5) to PW7]. We compared monosynaptic CST amplitude input to segmental circuits with oligosynaptic ventral horn responses, as a measure of CST-evoked segmental response transmission from input to output. The M1 primary motor cortex was unilaterally inactivated between PW5 and PW7 to determine activity dependence. CST interneuron contacts were identified using confocal microscopy. CST terminals contact diverse interneuron classes. CST stimulation strongly activated ventral motor circuits at the ages when both interneurons and CST spinal terminations have developed a mature phenotype, supporting development of segmental transmission of CST signals. CST activity blockade impeded development of effective segmental transmission by the inactivated CST and created a novel path for transmission from the ipsilateral, unaffected, CST. Our findings show that development of segmental CST signal transmission regulates nascent CST motor control functions and provide insight into systems-level mechanisms for protracted motor skill development.
Collapse
|
22
|
Chakrabarty S, Friel KM, Martin JH. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity. J Neurophysiol 2008; 101:1283-93. [PMID: 19091920 DOI: 10.1152/jn.91026.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor cortex (M1) activity between postnatal weeks 5 and 7 is essential for normal development of the corticospinal tract (CST) and visually guided movements. Unilateral reversible inactivation of M1, by intracortical muscimol infusion, during this period permanently impairs development of the normal dorsoventral distribution of CST terminations and visually guided motor skills. These impairments are abrogated if this M1 inactivation is followed by inactivation of the contralateral, initially active M1, from weeks 7 to 11 (termed alternate inactivation). This later period is when the M1 motor representation normally develops. The purpose of this study was to determine the effects of alternate inactivation on the motor representation of the initially inactivated M1. We used intracortical microstimulation to map the left M1 1 to 2 mo after the end of left M1 muscimol infusion. We compared representations in the unilateral inactivation and alternate inactivation groups. Alternate inactivation converted the sparse proximal M1 motor representation produced by unilateral inactivation to a complete and high-resolution proximal-distal representation. The motor map was restored by week 11, the same age that our present and prior studies demonstrated that alternate inactivation restored CST spinal connectivity. Thus M1 motor map developmental plasticity closely parallels plasticity of CST spinal terminations. After alternate inactivation reestablished CST connections and the motor map, an additional 3 wk was required for motor skill recovery. Since motor map recovery preceded behavioral recovery, our findings suggest that the representation is necessary for recovering motor skills, but additional time, or experience, is needed to learn to take advantage of the restored CST connections and motor map.
Collapse
Affiliation(s)
- S Chakrabarty
- Department of Neuroscience, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
23
|
Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. J Neurosci 2008; 28:7426-34. [PMID: 18632946 DOI: 10.1523/jneurosci.1078-08.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study, we tested the competition hypothesis by determining whether activating CST axons, after previous silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5 and 7. Next, we electrically stimulated CST axons in the medullary pyramid 2.5 h daily, between weeks 7 and 10. In controls (n = 3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After previous inactivation (n = 3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n = 6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury.
Collapse
|
24
|
Isa T, Ohki Y, Alstermark B, Pettersson LG, Sasaki S. Direct and indirect cortico-motoneuronal pathways and control of hand/arm movements. Physiology (Bethesda) 2007; 22:145-52. [PMID: 17420305 DOI: 10.1152/physiol.00045.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies from our group have demonstrated the existence of a disynaptic excitatory cortico-motoneuronal (CM) pathway in macaque monkeys via propriospinal neurons in the midcervical segments. Results from behavioral studies with lesion of the direct pathway suggest that the indirect CM pathway can mediate the command for dexterous finger movements.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | | | | | |
Collapse
|
25
|
Alstermark B, Isa T, Pettersson LG, Sasaki S. The C3-C4 propriospinal system in the cat and monkey: a spinal pre-motoneuronal centre for voluntary motor control. Acta Physiol (Oxf) 2007; 189:123-40. [PMID: 17250564 DOI: 10.1111/j.1748-1716.2006.01655.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review deals with a spinal interneuronal system, denoted the C3-C4 propriospinal system, which is unique in the sense that it so far represents the only spinal interneuronal system for which it has been possible to demonstrate a command mediating role for voluntary movements. The C3-C4 propriospinal neurones govern target reaching and can update the descending cortical command when a fast correction is required of the movement trajectory and also integrate signals generated from the forelimb to control deceleration and termination of reaching.
Collapse
Affiliation(s)
- B Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
26
|
Isa T, Ohki Y, Seki K, Alstermark B. Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey. J Neurophysiol 2006; 95:3674-85. [PMID: 16495365 DOI: 10.1152/jn.00103.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Candidate propriospinal neurons (PNs) that mediate disynaptic pyramidal excitation to forelimb motoneurons were studied in the C3-C4 segments in anesthetized macaque monkeys (n = 10). A total of 177 neurons were recorded (145 extracellularly, 48 intracellularly, and 16 both) in laminae VI-VII. Among these, 86 neurons (73 extracellularly, 14 intracellularly and 1 both) were antidromically activated from the forelimb motor nucleus or from the ventrolateral funiculus just lateral to the motor nucleus in the C6/C7 segments and thus are identified as PNs. Among the 73 extracellularly recorded PNs, 60 cells were fired by a train of four stimuli to the contralateral pyramid with segmental latencies of 0.8-2.2 ms, with most of them (n = 52) in a monosynaptic range (<1.4 ms including one synaptic delay and time to firing). The firing probability was only 21% from the third pyramidal volley but increased to 83% after intravenous injection of strychnine. In most of the intracellularly recorded PNs, stimulation of the contralateral pyramid evoked monosynaptic excitatory postsynaptic potentials (EPSPs, 12/14) and disynaptic inhibitory postsynaptic potentials (14/14), which were found to be glycinergic. In contrast, cells that did not project to the C6-Th1 segments where forelimb motoneurons are located were classified as segmental interneurons. These were fired from the third pyramidal volley with a probability of 71% before injection of strychnine. It is proposed that some of these interneurons mediate feed-forward inhibition to the PNs. These results suggest that the C3-C4 PNs receive feed-forward inhibition from the pyramid in addition to monosynaptic excitation and that this inhibition is stronger in the macaque monkey than in the cat. Another difference with the cat was that only 26 of the 86 PNs (30%, as compared with 84% in the cat) with projection to the forelimb motor nuclei send ascending collaterals terminating in the lateral reticular nucleus (LRN) on the ipsilateral side of the medulla. Thus we identified C3-C4 PNs that could mediate disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey. The present findings explain why it was difficult in previous studies of the macaque monkey to evoke disynaptic pyramidal excitation via C3-C4 PNs in forelimb motoneurons and why-as compared with the cat-the monosynaptic EPSPs evoked from the LRN via C3-C4 PNs were smaller in amplitude.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | |
Collapse
|
27
|
Sugiuchi Y, Izawa Y, Takahashi M, Na J, Shinoda Y. Physiological Characterization of Synaptic Inputs to Inhibitory Burst Neurons From the Rostral and Caudal Superior Colliculus. J Neurophysiol 2005; 93:697-712. [PMID: 15653784 DOI: 10.1152/jn.00502.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The caudal superior colliculus (SC) contains movement neurons that fire during saccades and the rostral SC contains fixation neurons that fire during visual fixation, suggesting potentially different functions for these 2 regions. To study whether these areas might have different projections, we characterized synaptic inputs from the rostral and caudal SC to inhibitory burst neurons (IBNs) in anesthetized cats. We recorded intracellular potentials from neurons in the IBN region and identified them as IBNs based on their antidromic activation from the contralateral abducens nucleus and short-latency excitation from the contralateral caudal SC and/or single-cell morphology. IBNs received disynaptic inhibition from the ipsilateral caudal SC and disynaptic inhibition from the rostral SC on both sides. Stimulation of the contralateral IBN region evoked monosynaptic inhibition in IBNs, which was enhanced by preconditioning stimulation of the ipsilateral caudal SC. A midline section between the IBN regions eliminated inhibition from the ipsilateral caudal SC, but inhibition from the rostral SC remained unaffected, indicating that the latter inhibition was mediated by inhibitory interneurons other than IBNs. A transverse section of the brain stem rostral to the pause neuron (PN) region eliminated inhibition from the rostral SC, suggesting that this inhibition is mediated by PNs. These results indicate that the most rostral SC inhibits bilateral IBNs, most likely via PNs, and the more caudal SC exerts monosynaptic excitation on contralateral IBNs and antagonistic inhibition on ipsilateral IBNs via contralateral IBNs. The most rostral SC may play roles in maintaining fixation by inhibition of burst neurons and facilitating saccadic initiation by releasing their inhibition.
Collapse
Affiliation(s)
- Y Sugiuchi
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
28
|
Lemon RN, Griffiths J. Comparing the function of the corticospinal system in different species: Organizational differences for motor specialization? Muscle Nerve 2005; 32:261-79. [PMID: 15806550 DOI: 10.1002/mus.20333] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An appreciation of the comparative functions of the corticospinal tract is of direct relevance to the understanding of how results from animal models can advance knowledge of the human motor system and its disorders. Two critical functions of the corticospinal tract are discussed: first, the role of descending projections to the dorsal horn in the control of sensory afferent input, and second, the capacity of direct cortico-motoneuronal projections to support voluntary execution of skilled hand and finger movements. We stress that there are some important differences in corticospinal projections from different cortical regions within a particular species and that these projections support different functions. Therefore, any differences in the organization of corticospinal projections across species may well reflect differences in their functional roles. Such differences most likely reflect features of the sensorimotor behavior that are characteristic of that species. Insights into corticospinal function in different animal models are of direct relevance to understanding the human motor system, providing they are interpreted in relation to the functions they underpin in a given model. Studies in non-human primates will continue to be needed for understanding special features of the human motor system, including feed-forward control of skilled hand movements. These movements are often particularly vulnerable to neurological disease, including stroke, cerebral palsy, movement disorders, spinal injury, and motor neuron disease.
Collapse
Affiliation(s)
- Roger N Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK.
| | | |
Collapse
|
29
|
Berkowitz A. Propriospinal projections to the ventral horn of the rostral and caudal hindlimb enlargement in turtles. Brain Res 2004; 1014:164-76. [PMID: 15213001 DOI: 10.1016/j.brainres.2004.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2004] [Indexed: 10/26/2022]
Abstract
In limbed vertebrates, the capacity to generate rhythmic motor patterns for locomotion and scratching is distributed over spinal cord segments of the limb enlargement (e.g., lumbosacral segments), but within this region, rostral segments are more rhythmogenic than caudal segments. The underlying reasons for this rostrocaudal asymmetry are not clear. One possibility is that rostral and caudal segments receive distinct sets of propriospinal projections. To test this hypothesis, I injected horseradish peroxidase (HRP) into the ventral horn unilaterally in a rostral or caudal segment of the turtle hindlimb enlargement. I quantitatively assessed the distributions of retrogradely labeled neurons in six hindlimb enlargement and pre-enlargement segments. The cross-sectional distribution did not depend on which segment was injected. Ipsilateral labeling occurred predominantly in the deep dorsal horn, the lateral part of the intermediate zone, and the dorsal two-thirds of the ventral horn, while contralateral labeling occurred mainly in the medial part of the ventral horn and the lateral part of the intermediate zone. This cross-sectional distribution is similar to what has been seen in mammals. The rostrocaudal distribution of labeled cells, however, depended on which segment was injected. Rostral injections gave rise to rostrally skewed distributions, dominated by descending propriospinal neurons. Caudal injections gave rise to caudally skewed distributions, dominated by ascending propriospinal neurons. Thus, rostral segments of the hindlimb enlargement received more propriospinal inputs from immediately rostral than immediately caudal segments, while the reverse was true for inputs to caudal segments. This anatomical asymmetry may contribute to known functional asymmetries within the enlargement.
Collapse
Affiliation(s)
- Ari Berkowitz
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
30
|
Lemon RN, Kirkwood PA, Maier MA, Nakajima K, Nathan P. Direct and indirect pathways for corticospinal control of upper limb motoneurons in the primate. PROGRESS IN BRAIN RESEARCH 2004; 143:263-79. [PMID: 14653171 DOI: 10.1016/s0079-6123(03)43026-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In the macaque monkey and in humans, the monosynaptic cortico-motoneuronal system is well developed. It allows the cortical motor areas to make an important direct contribution to the pattern of muscle activity during upper limb movements. There is, in addition, good anatomical evidence for descending corticospinal inputs being able to influence the premotoneuronal networks of the cervical spinal cord, and especially those operating at the segmental level of upper limb motoneurons. While oligosynaptic inhibition has been easy to demonstrate in the macaque, and may be a very important component of descending corticospinal control, it has proved much more difficult to detect signs of oligosynaptic excitation. In contrast, in the squirrel monkey, in which the cortico-motoneuronal system is far less developed, oligosynaptic excitation is prominent. There are important changes in the interplay between direct and indirect pathways in different primates, which may provide important clues on the nature of the corticospinal control of upper limb function.
Collapse
Affiliation(s)
- Roger N Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | |
Collapse
|
31
|
Alstermark B, Isa T. Premotoneuronal and direct corticomotoneuronal control in the cat and macaque monkey. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 508:281-97. [PMID: 12171123 DOI: 10.1007/978-1-4615-0713-0_34] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The literature on premotoneuronal and direct corticomotoneuronal (CM) control in the cat and macaque monkey is reviewed. The available experimental findings are not in accordance with a recently proposed hypothesis that direct CM connections have "replaced" the premotoneuronal pathways. Instead, we propose that premotoneuronal CM control plays an important role in motor control also in primates and that the direct CM connection has been added during phylogeny.
Collapse
Affiliation(s)
- Bror Alstermark
- Dept of Integrative Medical Biology, University of Umeå, Sweden.
| | | |
Collapse
|
32
|
Prut Y, Perlmutter SI, Fetz EE. Distributed processing in the motor system: spinal cord perspective. PROGRESS IN BRAIN RESEARCH 2001; 130:267-78. [PMID: 11480280 DOI: 10.1016/s0079-6123(01)30018-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Recordings of spinal INs during a flexion/extension wrist task with an instructed delay period have shown directly that many spinal neurons modulate their rate during the preparatory period soon after a visual cue. The onset time and the relation between the delay period activity of spinal INs and the ensuing movement response suggest that this type of activity is not simply related to the forthcoming motor action, but rather reflects a correct match between the visual cue and the motor response. The existence of such activity further supports the notion that the motor system operates in a parallel mode of processing, so that even during early stages of motor processing multiple centers are activated regardless of their anatomical distance from muscles. The firing properties of spinal INs during the performance of the task seem to differ from the comparable properties of motor cortical cells. Spinal INs fire in a highly regular manner--their CV is substantially lower than the observed CV of cortical cells. Also, although neighboring cells tend to have similar response properties, the frequency of significant correlation is lower than for cortical cells and the anatomical extent of the correlation seems to be narrower. The similarity and differences between cortical and spinal cells in terms of response and firing properties suggests that while both type of cells are active in parallel throughout the behavioral phases of the motor task, each may operate in a different mode of information processing.
Collapse
Affiliation(s)
- Y Prut
- University of Washington, Department of Physiology and Biophysics and the Regional Primate Research Center, Seattle, WA 98195, USA
| | | | | |
Collapse
|
33
|
Kinoshita M, Yamaguchi T. Stimulus time-locked responses of motoneurons during forelimb fictive locomotion evoked by repetitive stimulation of the lateral funiculus. Brain Res 2001; 904:31-42. [PMID: 11516409 DOI: 10.1016/s0006-8993(01)02431-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In cat forelimb fictive locomotion evoked by repetitive stimulation of the upper cervical lateral funiculus, locomotor discharges consisted of activities time-locked to each stimulus, which were rhythmically modulated. The stimulus time-locked activities were investigated by intracellular recording from motoneurons. In both elbow flexor and extensor motoneurons, there observed stimulus time-locked disynaptic EPSPs, trisynaptic IPSPs and polysynaptic EPSPs, all of which were rhythmically modulated with specific patterns. The disynaptic EPSPs of flexor motoneurons were facilitated in the flexor phase of locomotion, whereas those of extensor motoneurons were facilitated from the flexor phase to the flexor-to-extensor transition phase. Modulation depth was larger in flexor motoneurons. Trisynaptic IPSPs changed in amplitude in parallel with the disynaptic EPSPs of the antagonistic motoneurons. Late, polysynaptic EPSPs of both flexor and extensor motoneurons increased in amplitude along with corresponding nerve discharges. After lesions of the lateral funiculus at C6/C7, both the disynaptic EPSPs and trisynaptic IPSPs were abolished in the motoneurons located caudally to the lesions. However, only trisynaptic IPSPs were lost in the rostrally located motoneurons. Furthermore, the lesions disclosed that extensor motoneurons received another kind of stimulus time-locked EPSPs, trisynaptic EPSPs, which were transmitted through the ventral part of the spinal cord, and rhythmically facilitated in the extensor phase. Stimulus time-locked PSPs observed in this study may at least in part be evoked by last-order interneurons of the central pattern generator, which may be reciprocally organized.
Collapse
Affiliation(s)
- M Kinoshita
- Institute of Basic Medical Sciences, Tsukuba University, Ibaraki 305-0004, Tsukuba, Japan
| | | |
Collapse
|
34
|
Alstermark B, Ohlson S. Origin of corticospinal neurones evoking monosynaptic excitation in C3--C4 propriospinal neurones in the cat. Neurosci Res 2000; 38:249-56. [PMID: 11070191 DOI: 10.1016/s0168-0102(00)00160-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular recording was made from propriospinal neurones (PNs) in the C3-C4 spinal cord segments in the cat (alpha-chloralose anaesthesia). The effect of electrical stimulation of corticospinal neurones (CSNs) in the cortex was investigated. Short C3-C4 PNs were identified by antidromic activation of their axons in the ventral horn in C6/C7 and in the lateral reticular nucleus. Long PNs were antidromically identified from Th12-13. In short PNs, monosynaptic excitory postsynoptic potentials (EPSPs) were elicited from the rostral part of the lateral sigmoid gyrus, the lateral part of the anterior sigmoid gyrus in area 4 gamma and in the adjacent area 6. Two subtypes of short PNs were identified. PNs of type I received monosynaptic EPSPs from the rostral part of the lateral sigmoid gyrus, the lateral part of the anterior sigmoid gyrus in area 4 gamma, which is from the same region as disynaptic cortical EPSPs were evoked in forelimb motoneurones. PNs of type II received monosynaptic EPSPs from regions slightly more rostrally in the anterior sigmoid gyrus in area 4 gamma and in the adjacent area 6, which is outside the region from which disynaptic EPSPs could be evoked in forelimb motoneurones. Long PNs received monosynaptic EPSPs, like the short PNs, by stimulation in the rostral part of the lateral sigmoid gyrus, the lateral part of the anterior sigmoid gyrus in area 4 gamma and in the adjacent area 6. In contrast, the long PNs also received monosynaptic EPSPs from area 3b near the border of area 1. The present results show segregation of the cortical control to functionally different premotoneuronal systems and suggest that this control could in part be separated for subtypes of short C3-C4 PNs.
Collapse
Affiliation(s)
- B Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University, S-901 87 Umeå, Sweden.
| | | |
Collapse
|
35
|
Herzog J, Kümmel H. Fixation of transsynaptically transported WGA-HRP and fluorescent dyes used in combination. J Neurosci Methods 2000; 101:149-56. [PMID: 10996375 DOI: 10.1016/s0165-0270(00)00261-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transsynaptic transport of WGA-HRP is a powerful tool for the identification of last order interneurones in the spinal cord, but differentiation of primarily labelled motoneurones from transsynaptically labelled interneurones can be difficult. We therefore combined the transsynaptic labelling of interneurones with WGA-HRP and the labelling of motoneurones with fluorescent dyes (fluorogold, red beads, fast blue, DAPI) by injecting a mixture of the tracers into the nervi mediani of rats. The influence of different fixatives on the simultaneous preservation of WGA-HRP and fluorescence is evaluated. It is shown that, of several perfusion protocols, only perfusion with paraformaldehyde in addition to 1.4% lysine and 0.23% periodate allowed simultaneous visualisation of transsynaptic WGA-HRP and fluorescent dyes.
Collapse
Affiliation(s)
- J Herzog
- Department of Physiology, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany
| | | |
Collapse
|
36
|
Alstermark B, Ohlson S. Origin of corticospinal neurones evoking disynaptic excitation in forelimb motoneurones mediated via C3-C4 propriospinal neurones in the cat. Neurosci Res 2000; 37:91-100. [PMID: 10867172 DOI: 10.1016/s0168-0102(00)00105-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular recording was made from forelimb motoneurones in the cat (alpha-chloralose anaesthesia) during electrical stimulation of corticospinal neurones (CSNs) and their afferents in the contralateral cortex. Axons of the CSNs were stimulated in the contralateral pyramid. The corticospinal tract was transected at the C5/C6 segmental border in order to restrict transmission through the C3-C4 propriospinal neurones (C3-C4 PNs). Di- and trisynaptic cortical EPSPs could be evoked after transection of the corticospinal fibres in C5/C6 but not after a corresponding transection in C2/C3. Pyramidal stimulation elicited disynaptic EPSPs that were abolished after a C2/C3 transection. Disynaptic pyramidal EPSPs, mediated via C3-C4 propriospinal neurones could be facilitated by a single cortical stimulation. It is concluded that di- and trisynaptic cortical EPSPs and disynaptic pyramidal EPSPs are mediated via the same C3-C4 PNs. Cortical surface stimulation showed that di- and trisynaptic cortical EPSPs could be evoked from distinct spots in the lateral part of the anterior sigmoid gyrus (Sig. a) and/or in the rostral part of the lateral sigmoid gyrus (Sig. l). No cortical EPSPs or facilitation of pyramidal disynaptic EPSPs was evoked from the posterior part of the Sig. l, posterior sigmoid gyrus, coronal gyrus, lateral gyrus, suprasylvian gyrus and ectosylvian gyrus. It is concluded that the CSNs, which issue the command for visually guided target reaching with the forelimb via the C3-C4 PNs, originate in the lateral part of the Sig. a and in the rostral part of the Sig. l. A dual representation of the forelimb in the primary motor cortex of the cat has previously been proposed. The present results show that with respect to one identified interneuronal system like the C3-C4 propriospinal system, the CSNs may have their origin restricted to one region of the primary motor cortex.
Collapse
Affiliation(s)
- B Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University, S-901 87, Umeå, Sweden.
| | | |
Collapse
|
37
|
Glover JC. Development of specific connectivity between premotor neurons and motoneurons in the brain stem and spinal cord. Physiol Rev 2000; 80:615-47. [PMID: 10747203 DOI: 10.1152/physrev.2000.80.2.615] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Astounding progress has been made during the past decade in understanding the general principles governing the development of the nervous system. An area of prime physiological interest that is being elucidated is how the neural circuitry that governs movement is established. The concerted application of molecular biological, anatomical, and electrophysiological techniques to this problem is yielding gratifying insight into how motoneuron, interneuron, and sensory neuron identities are determined, how these different neuron types establish specific axonal projections, and how they recognize and synapse upon each other in patterns that enable the nervous system to exercise precise control over skeletal musculature. This review is an attempt to convey to the physiologist some of the exciting discoveries that have been made, within a context that is intended to link molecular mechanism to behavioral realization. The focus is restricted to the development of monosynaptic connections onto skeletal motoneurons. Principal topics include the inductive mechanisms that pattern the placement and differentiation of motoneurons, Ia sensory afferents, and premotor interneurons; the molecular guidance mechanisms that pattern the projection of premotor axons in the brain stem and spinal cord; and the precision with which initial synaptic connections onto motoneurons are established, with emphasis on the relative roles played by cellular recognition versus electrical activity. It is hoped that this review will provide a guide to understanding both the existing literature and the advances that await this rapidly developing topic.
Collapse
Affiliation(s)
- J C Glover
- Department of Anatomy, University of Oslo, Oslo, Norway.
| |
Collapse
|
38
|
Antal M, Puskár Z, Birinyi A, Storm-Mathisen J. Development, neurochemical properties, and axonal projections of a population of last-order premotor interneurons in the white matter of the chick lumbosacral spinal cord. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 286:157-72. [PMID: 10617858 DOI: 10.1002/(sici)1097-010x(20000201)286:2<157::aid-jez8>3.0.co;2-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is general agreement that last-order premotor interneurons-a set of neurons that integrate activities generated by the spinal motor apparatus, sensory information and volleys arising from higher motor centres, and transmit the integrated signals to motoneurons through monosynaptic contacts-play crucial roles in the initiation and maintenance of spinal motor activities. Here, we demonstrate the development, neurochemical properties, and axonal projections of a unique group of last-order premotor interneurons within the ventrolateral aspect of the lateral funiculus of the chick lumbosacral spinal cord. Neurons expressing immunoreactivity for neuron-specific enolase were first detected in the ventrolateral white matter at embryonic day 9 (E9). The numbers of immunoreactive neurons were significantly increased at E10-E12, while most of them were gradually concentrated in small segmentally arranged nuclei (referred to as major nuclei of Hofmann) protruding from the white matter in a necklace like fashion dorsal to the ventral roots. The major nuclei of Hofmann became more prominent at E12-E16, but substantial numbers of cells were still located within the ventrolateral white matter (referred to as minor nucleus of Hofmann). The distribution of immunoreactive neurons achieved by E16 was maintained during later developmental stages and was also characteristic of adult animals. After injection of Phaseolus vulgaris-leucoagglutinin unilaterally into the minor nucleus of Hofmann, labeled fibres were detected in the ventrolateral white matter ipsilateral to the injection site. Ascending and descending fibres were revealed throughout the entire rostro-caudal length of the lumbosacral spinal cord. Axon terminals were predominantly found within the lateral motor column and the ventral regions of lamina VII ipsilateral to the injection site. Several axon varicosities made close appositions with somata and dendrites of motoneurons, which were identified as synaptic contacts in a consecutive electron microscopic study. With the postembedding immunogold method, 21 of 97 labeled terminals investigated were immunoreactive for glycine and 2 of them showed immunoreactivity for gamma-aminobutyric acid (GABA). The axon trajectories of neurons within the minor nucleus of Hofmann suggest that some of these cells might represent a population of last-order premotor interneurons. J. Exp. Zool. 286:157-172, 2000.
Collapse
Affiliation(s)
- M Antal
- Department of Anatomy, University Medical School of Debrecen, H-4012 Debrecen, Hungary.
| | | | | | | |
Collapse
|
39
|
Alstermark B, Isa T, Ohki Y, Saito Y. Disynaptic pyramidal excitation in forelimb motoneurons mediated via C(3)-C(4) propriospinal neurons in the Macaca fuscata. J Neurophysiol 1999; 82:3580-5. [PMID: 10601484 DOI: 10.1152/jn.1999.82.6.3580] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In contrast to findings in the cat, it recently has been shown that disynaptic pyramidal EPSPs only rarely are observed in forelimb motoneurons of the macaque monkey in the intact spinal cord or after a corticospinal transection in C(5). This finding has been taken to indicate that the disynaptic pyramidal excitatory pathway via C(3)-C(4) propriospinal neurons (PNs) is weakened through phylogeny when the monosynaptic cortico-motoneuronal connection has been strengthened. We reinvestigate this issue with special focus on the possibility that the inhibitory control of the C(3)-C(4) PNs may be stronger in the macaque monkey than in the cat. The effect in forelimb motoneurons of electrical stimulation in the contralateral pyramid was investigated in anesthetized macaque monkeys (Macaca fuscata). We confirmed the low frequency of disynaptic pyramidal EPSPs in forelimb motoneurons. However, after intravenous injection of strychnine, disynaptic EPSPs could be evoked in 39 of 41 forelimb motoneurons recorded after lesion of the corticospinal fibers in C5. After a corresponding lesion in C(2), disynaptic pyramidal EPSPs were observed in 2 of 25 motoneurons. In contrast to previous reports, we conclude that C(3)-C(4) PNs can mediate disynaptic pyramidal excitation in high frequency of occurrence to forelimb motoneurons in the C(6)-C(8) segments and that this transmission is under a stronger inhibitory control than in the cat. Thus, the hypothesis that the disynaptic excitatory cortico-motoneuronal pathway via the C(3)-C(4) PNs is weakened in parallel with the strengthened monosynaptic connection through phylogeny is not supported by the present findings.
Collapse
Affiliation(s)
- B Alstermark
- Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
40
|
Abstract
There is strong evidence that neural circuits underlying certain rhythmic motor behaviors are located in the spinal cord. Such local central pattern generators are thought to coordinate the activity of motoneurons through specific sets of last-order premotor interneurons that establish monosynaptic contacts with motoneurons. After injections of biotinylated dextran amine into the lateral and medial motor columns as well as the ventrolateral white matter at the level of the upper and lower segments of the lumbar spinal cord, we intended to identify and localize retrogradely labelled spinal interneurons that can likely be regarded as last-order premotor interneurons in rats. Regardless of the location of the injection site, labelled interneurons were revealed in laminae V-VIII along a three- or four-segment-long section of the spinal gray matter. Although most of the stained cells were confined to laminae V-VIII in all cases, the distribution of neurons within the confines of this area varied according to the site of injection. After injections into the lateral motor column at the level of the L4-L5 segments, the labelled neurons were located almost exclusively in laminae V-VII ipsilateral to the injection site, and the perikarya were distributed throughout the entire mediolateral extent of this area. Interneurons projecting to the lateral motor column at the level of the L1-L2 segments were also located in laminae V-VII, but most of them were concentrated in the middle one-third or in the lateral half of this area. Following injections into the medial motor column at the level of the L1-L2 segments, the majority of labelled neurons were confined to the medial aspect of laminae V-VII and lamina VIII, and the proportion of neurons that were found contralateral to the injection site was strikingly higher than in the other experimental groups. The results suggest that the organization of last-order premotor interneurons projecting to motoneurons, which are located at different areas of the lateral and medial motor columns and innervate different muscle groups, may present distinct features in the rat spinal cord.
Collapse
Affiliation(s)
- Z Puskár
- Department of Anatomy, Histology, and Embryology, University Medical School of Debrecen, Hungary
| | | |
Collapse
|
41
|
Pettersson LG, Lundberg A, Alstermark B, Isa T, Tantisira B. Effect of spinal cord lesions on forelimb target-reaching and on visually guided switching of target-reaching in the cat. Neurosci Res 1997; 29:241-56. [PMID: 9436650 DOI: 10.1016/s0168-0102(97)00093-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cats were trained to reach to an illuminated tube placed horizontally at shoulder level and retrieve food with the forepaw. The trajectory of an infrared light emitting diode, taped to the wrist dorsum, was recorded with a SELSPOT-like recording system. Movement paths and velocity profiles were compared before and after lesions: (1) in dorsal C5, transecting cortico- and rubrospinal pathways to the forelimb segments so that the cats could only use the C3-C4 propriospinal neurones (PNs) to command reaching, (2) in the ventral part of the lateral funicle in C5, transecting the axons of C3-C4 PNs so that the cats had to use circuitry in the forelimb segments to command reaching. Comparison of trajectories and velocity profiles before and after lesion 1 did not reveal any major qualitative change. After lesion 2, the last third of the movement was fragmented with separate lifting and protraction. Switching of target-reaching occurred when illumination was shifted to another tube during the ongoing movement. The switching latency measured from the time of illumination shift to the earliest change in movement trajectory had a minimal value of 50-60 ms. Short latencies were present after lesion 1 as well as lesion 2 which suggest that fast switching mediated by the C3-C4 PNs and the interneuronal system in the forelimb segments is controlled in parallel by the brain. In order to test a hypothesis that fast switching depends on the tectospinal and tecto-reticulospinal pathways (the tecto-reticulo-spinal system) a ventral lesion was made in C2 aiming at interrupting these pathways. Large ventral C2 lesions tended to block conduction in the more dorsally located rubrospinal (less in corticospinal) axons probably due to compression during surgery. When conduction in the rubrospinal tract was completely interrupted by a ventral C2 lesion which also completely transected the axons of the tecto-reticulo-spinal system, then there was a prolongation of the switching latency with 10-20 ms. After a similar large ventral lesion with remaining conduction in the rubrospinal tract the switching latencies were unchanged. It is postulated that fast visually governed switching does not depend on the tecto-reticulo-spinal system alone but on more dorsally located pathways, presumably the rubrospinal tract, either acting alone or together with the tecto-reticulo-spinal system. It is further postulated that the delayed switching after interruption of conduction both in the rubrospinal tract and the tecto-reticulo-spinal system depends on the corticospinal tract. Visual control of rubrospinal and of corticospinal neurones is considered. It is postulated that target-reaching normally depends on signals in the cortico- and rubrospinal tracts and mechanisms for co-ordination of activity in them as required during switching is discussed in view of the findings now reported.
Collapse
Affiliation(s)
- L G Pettersson
- Institute of Physiology and Pharmacology, Department of Physiology, Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
42
|
Tantisira B, Alstermark B, Isa T, Kümmel H, Pinter M. Motoneuronal projection pattern of single C3C4 propriospinal neurones. Can J Physiol Pharmacol 1996. [DOI: 10.1139/y96-037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Cabot JB. Some principles of the spinal organization of the sympathetic preganglionic outflow. PROGRESS IN BRAIN RESEARCH 1996; 107:29-42. [PMID: 8782512 DOI: 10.1016/s0079-6123(08)61857-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J B Cabot
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, NY 11794-5230, USA
| |
Collapse
|
44
|
Peshori KR, Erichsen JT, Collins WF. Differences in the connectivity of rat pudendal motor nuclei as revealed by retrograde transneuronal transport of wheat germ agglutinin. J Comp Neurol 1995; 353:119-28. [PMID: 7714243 DOI: 10.1002/cne.903530111] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bilateral coordinated activation of pudendal motoneurons is an essential component of penile reflexes in male rats. However, little is known about the intraspinal organization of these reflexes. In the present study, retrograde transneuronal transport of wheat germ agglutinin (WGA) was used to examine the organization of spinal motoneurons and putative interneurons mediating penile reflexes in adult male rats. Injection of WGA into the ventral bulbospongiosus muscle resulted in direct retrograde labeling of motoneurons in the ipsilateral dorsomedial (DM) nucleus and transneuronal labeling of ipsilateral and contralateral DM motoneurons. Motoneurons in the ipsilateral and contralateral dorsolateral (DL) nuclei were not labeled. WGA-labeled putative interneurons were observed bilaterally, primarily in the ventromedial spinal gray matter extending dorsally to the central canal and the dorsal gray commissure. The number of transneuronally labeled putative interneurons increased with longer survival times. Injection of WGA into the ischiocavernosus muscle resulted in direct retrograde labeling of motoneurons in the medial subdivision of the ipsilateral DL nucleus. However, no WGA labeling was detected in motoneurons in the lateral subdivision of the ipsilateral DL nucleus, the contralateral DL nucleus, or the DM nuclei at any of the survival times studied (1-7 days). Only a small number of transneuronally labeled putative interneurons was observed in the ventrolateral gray matter at longer survival times (3-7 days). Thus, marked differences were observed between the DM and DL nuclei with respect to the transneuronal transport of WGA. These results are discussed with respect to the organization of the spinal circuits that mediate pudendal motor reflexes.
Collapse
Affiliation(s)
- K R Peshori
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794-5230, USA
| | | | | |
Collapse
|
45
|
Cabot JB, Alessi V, Carroll J, Ligorio M. Spinal cord lamina V and lamina VII interneuronal projections to sympathetic preganglionic neurons. J Comp Neurol 1994; 347:515-30. [PMID: 7814672 DOI: 10.1002/cne.903470404] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This light and electron microscopic study sought to localize spinal cord interneurons that contribute to the normal and abnormal physiological regulation of spinal sympathetic preganglionic function. Sympathetic preganglionic neurons in caudal C8 through T4 of rat spinal cord were retrogradely labeled with wheat germ agglutinin (WGA) and/or cholera beta subunit (CT beta) following injections into the superior cervical ganglion (SCG). With two exceptions, the observed locations of retrogradely WGA- and CT beta-labeled sympathetic preganglionic neurons were as expected from previous studies. The exceptions were restricted populations of cells in caudal C8 and rostral T1 spinal segments. These neurons were classified as ventrolateral (vlSPN) and ventromedial (vmSPN) sympathetic preganglionic neurons; their somata and dendrites encircled dorsolateral lamina IX motoneurons. Only WGA was transported transneuronally following the retrograde labeling of sympathetic preganglionic neurons. Transneuronally WGA-labeled spinal interneurons were located principally in the reticulated division of lamina V and dorsolateral lamina VII. A strict segmental organization was observed. All transneuronally labeled interneurons were ipsilateral to, and coextensive with, retrogradely WGA-labeled sympathetic preganglionic neurons. Electron microscopic observations suggested that retrograde transsynaptic passage of WGA occurred within the sympathetic preganglionic neuropil and showed further that similar classes of organelles were WGA immunoreactive in retrogradely labeled sympathetic preganglionic neurons and in transneuronally labeled lamina V and lamina VII neurons: 1) cisternae and vesicles at the trans face of the Golgi apparatus, 2) large endosomes/dense bodies, and 3) multivesicular bodies. The data are consistent with two hypotheses: 1) Somatic and visceral primary afferent inputs to thoracic spinal cord modify segmental sympathetic preganglionic function through activation of a disynaptic pathway involving lamina V and/or lamina VII interneurons, and 2) long-loop propriospinal pathways access sympathetic preganglionic neurons through symmetrical, segmental interneuronal circuitry.
Collapse
Affiliation(s)
- J B Cabot
- Department of Neurobiology and Behavior, State University of New York at Stony Brook 11794
| | | | | | | |
Collapse
|
46
|
Hörner M, Kümmel H. Topographical representation of shoulder motor nuclei in the cat spinal cord as revealed by retrograde fluorochrome tracers. J Comp Neurol 1993; 335:309-19. [PMID: 8227521 DOI: 10.1002/cne.903350302] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present investigation demonstrates the morphological relationships among the main shoulder motor nuclei within the spinal cord of the cat. The intraspinal position of these nuclei has been revealed by retrograde labelling of spinal motor neurones via their peripheral nerves supplying anatomically identified shoulder muscles. Multiple pressure injection of up to four fluorescent tracers (Bisbenzimide, Fast Blue, Fluoro-Gold, Rhodamine-b-isothiocyanate) in one experiment was used to show the longitudinal distribution and topographical relations of motor neurones projecting to muscles acting on the scapulo-humerus joint. Tracer-positive cells have been found from middle C5 to rostral Th2 in the cervical cord, forming coherent longitudinal cell clusters separated in medial and lateral projection fields in the ventral horn. The present data suggest that the anatomical organization of spinal shoulder motor neurones corresponds to the embryonic origin of their later target muscles. All medial motor nuclei project to muscles deriving from ventral embryonic origins, while those motor nuclei lying in lateral positions innervate muscles originating from dorsal muscle primordia. Therefore, the spinal topography of shoulder motor nuclei seems to be independent of both the position and the function of a given muscle in the adult animal.
Collapse
Affiliation(s)
- M Hörner
- I. Zoologisches Institut, Universität Göttingen, Abt. f. Zellbiologie, Germany
| | | |
Collapse
|
47
|
Ugolini G. Transneuronal transfer of herpes simplex virus type 1 (HSV 1) from mixed limb nerves to the CNS. I. Sequence of transfer from sensory, motor, and sympathetic nerve fibres to the spinal cord. J Comp Neurol 1992; 326:527-48. [PMID: 1336502 DOI: 10.1002/cne.903260404] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The time course of transneuronal transfer of Herpes simplex virus type 1 (HSV 1) from sensory, motor, and sympathetic nerve fibres to connected spinal neurones was examined. After injection of a constant number of infectious units into distal forelimb or hindlimb nerves of inbred rats of the same age, the extent of viral transfer was strictly dependent on the survival time postinoculation (p.i.). Retrograde transport to somatic motoneurones occurred at 28-29 hours p.i. (stage 1), in synchrony with anterograde transneuronal transfer via small cutaneous afferents (to laminae I-II). At 36-43 hours p.i. (stage 2), retrograde transneuronal transfer from sympathetic nerve fibres first labelled sympathetic preganglionic neurones. At 48-51 hours p.i. (stage 3), transfer via sensory and sympathetic axons became more extensive, labelling laminae III-IV and other preganglionic neurones. Transneuronal transfer from large muscle afferents and motoneurones (to Clarke's columns and the spinal intermediate zone) occurred only at 66-78 hours p.i. (stage 4). Further increases in distribution (stages 5-6) obtained between 78 and 97 hours p.i. may reflect both specific labelling of second and third order neurones and a gradual local loss of specificity. These results indicate that transfer of HSV 1 occurs through all main classes of peripheral axons, but that both anterograde and retrograde transneuronal transfer from small (unmyelinated and fine myelinated) cutaneous and sympathetic axons precedes transfer from large (myelinated) cutaneous and muscle afferents and motor axons. Analysis of viral transfer at sequential intervals is required to distinguish serially connected neurones, determine the route of labelling, and ensure its specificity.
Collapse
Affiliation(s)
- G Ugolini
- Department of Anatomy, University of Cambridge, United Kingdom
| |
Collapse
|
48
|
Alstermark B, Pinter MJ, Sasaki S. Descending pathways mediating disynaptic excitation of dorsal neck motoneurones in the cat: facilitatory interactions. Neurosci Res 1992; 15:32-41. [PMID: 1336583 DOI: 10.1016/0168-0102(92)90015-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Facilitatory interactions between disynaptic EPSPs evoked from the contralateral tectum, ipsilateral tegmentum and contra- and/or ipsilateral pyramid have been investigated in dorsal neck motoneurones of the cat. Monosynaptic convergence on common intercalated neurones was found from ipsi- and contralateral pyramidal, contralateral tectal and ipsilateral tegmental fibres. In addition, disynaptic facilitation was observed from ipsilateral pyramidal fibres on disynaptic contralateral pyramidal EPSPs. Transection of cortico-fugal fibres in the pyramid showed that the location of the interactions occurred in the lower brain stem, suggesting that reticulospinal neurones are mediating the effects.
Collapse
Affiliation(s)
- B Alstermark
- Department of Physiology, University of Göteborg, Sweden
| | | | | |
Collapse
|
49
|
Affiliation(s)
- E Jankowska
- Department of Physiology, University of Göteborg, Sweden
| |
Collapse
|
50
|
Abstract
Because reaching movements have a clear objective--to bring the hand to the spatial location of an object--they are well suited to study how the central nervous system plans a purposeful act from sensory input to motor output. Most models of movement planning propose a serial hierarchy of analytic steps. However, the central nervous system is organized into densely interconnected populations of neurons. This paradox between the apparent serial order of central nervous system function and its complex internal organization is strikingly demonstrated by recent behavioral, modeling, and neurophysiological studies of reaching movements.
Collapse
Affiliation(s)
- J F Kalaska
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | |
Collapse
|