1
|
Bolzoni F, Esposti R, Jankowska E, Hammar I. Interactions Between Baclofen and DC-induced Plasticity of Afferent Fibers within the Spinal Cord. Neuroscience 2019; 404:119-129. [PMID: 30710669 DOI: 10.1016/j.neuroscience.2019.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/21/2022]
Abstract
The aims of the study were to compare effects of baclofen, a GABAB receptor agonist commonly used as an antispastic drug, on direct current (DC) evoked long-lasting changes in the excitability of afferent fibers traversing the dorsal columns and their terminal branches in the spinal cord, and to examine whether baclofen interferes with the development and expression of these changes. The experiments were performed on deeply anesthetized rats by analyzing the effects of DC before, during and following baclofen administration. Muscle and skin afferent fibers within the dorsal columns were stimulated epidurally and changes in their excitability were investigated following epidural polarization by 1.0-1.1 μA subsequent to i.v. administration of baclofen. Epidural polarization increased the excitability of these fibers during post-polarization periods of at least 1 h. The facilitation was as potent as in preparations that were not pretreated with baclofen, indicating that the advantages of combining epidural polarization with epidural stimulation would not be endangered by pharmacological antispastic treatment with baclofen. In contrast, baclofen-reduced effects of intraspinal stimulation combined with intraspinal polarization (0.3 μA) of terminal axonal branches of the afferents within the dorsal horn or in motor nuclei, whether administered ionophoretically or intravenously. Effects of DC on monosynaptically evoked synaptic actions of these fibers (extracellular field potentials) were likewise reduced by baclofen. The study thus provides further evidence for differential effects of DC on afferent fibers in the dorsal columns and the preterminal branches of these fibers and their involvement in spinal plasticity.
Collapse
Affiliation(s)
- Francesco Bolzoni
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Human Physiology Section of the DEPT, Università degli Studi di Milano, Milano I-20133, Italy
| | - Roberto Esposti
- Human Physiology Section of the DEPT, Università degli Studi di Milano, Milano I-20133, Italy
| | - Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
2
|
Molecular mechanisms of the antispasticity effects of baclofen on spinal ventral horn neurons. Neuroreport 2019; 30:19-25. [DOI: 10.1097/wnr.0000000000001155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Salio C, Merighi A, Bardoni R. GABA B receptors-mediated tonic inhibition of glutamate release from Aβ fibers in rat laminae III/IV of the spinal cord dorsal horn. Mol Pain 2018; 13:1744806917710041. [PMID: 28565998 PMCID: PMC5456036 DOI: 10.1177/1744806917710041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Presynaptic GABAB receptors (GABABRs) are highly expressed in dorsal root ganglion neurons and spinal cord dorsal horn. GABABRs located in superficial dorsal horn play an important antinociceptive role, by acting at both pre- and postsynaptic sites. GABABRs expressed in deep dorsal horn could be involved in the processing of touch sensation and possibly in the generation of tactile allodynia in chronic pain. The objective of this study was to characterize the morphological and functional properties of GABABRs expressed on Aβ fibers projecting to lamina III/IV and to understand their role in modulating excitatory synaptic transmission. We performed high-resolution electron microscopic analysis, showing that GABAB2 subunit is expressed on 71.9% of terminals in rat lamina III-IV. These terminals were engaged in axodendritic synapses and, for the 46%, also expressed glutamate immunoreactivity. Monosynaptic excitatory postsynaptic currents, evoked by Aβ fiber stimulation and recorded from lamina III/IV neurons in spinal cord slices, were strongly depressed by application of baclofen (0.1-2.5 µM), acting as a presynaptic modulator. Application of the GABABR antagonist CGP 55845 caused, in a subpopulation of neurons, the potentiation of the first of two excitatory postsynaptic currents recorded with the paired-pulse protocol, showing that GABABRs are endogenously activated. A decrease in the paired-pulse ratio accompanied the effect of CGP 55845, implying the involvement of presynaptic GABABRs. CGP 55845 facilitated only the first excitatory postsynaptic current also during a train of four consecutive stimuli applied to Aβ fibers. These results suggest that GABABRs tonically inhibit glutamate release from Aβ fibers at a subset of synapses in deep dorsal horn. This modulation specifically affects only the early phase of synaptic excitation in lamina III-IV neurons.
Collapse
Affiliation(s)
- Chiara Salio
- 1 Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- 1 Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Rita Bardoni
- 2 Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Dias QM, Prado WA. The lesion of dorsolateral funiculus changes the antiallodynic effect of the intrathecal muscimol and baclofen in distinct phases of neuropathic pain induced by spinal nerve ligation in rats. Brain Res Bull 2016; 124:103-15. [DOI: 10.1016/j.brainresbull.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022]
|
5
|
Tahayori B, Tahayori B, Koceja D. Characteristics of preceding Ia activity on postactivation depression in health and disease. J Neurophysiol 2015; 113:3751-8. [PMID: 25904707 DOI: 10.1152/jn.00132.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/17/2015] [Indexed: 11/22/2022] Open
Abstract
Previous activation of the soleus Ia afferents causes a depression in the amplitude of the H-reflex. This mechanism is referred to as postactivation depression (PAD) and is suggested to be presynaptically mediated. With the use of a paired reflex depression paradigm (eliciting two H-reflexes with conditioning-test intervals from 80 ms to 300 ms), PAD was examined in a group of healthy individuals and a group of hemiplegic patients. Healthy individuals showed substantial depression of the test H-reflex at all intervals. Although the patient group showed substantially less depression at all intervals, increasing the interval between the two reflexes sharply reduced the depression. In a separate experiment, we varied the size of the conditioning H-reflex against a constant test H-reflex. In healthy individuals, by increasing the size of the conditioning H-reflex, the amplitude of the test H-reflex exponentially decreased. In the patient group, however, this pattern was dependent on the conditioning-test interval; increasing the size of the conditioning H-reflex caused an exponential decrease in the size of the test reflex at intervals shorter than 150 ms. This pattern was similar to that of healthy individuals. However, conducting the same protocol at a longer interval (300 ms) in these patients resulted in an abnormal pattern (instead of an exponential decrease in the size of the test reflex, exaggerated responses were observed). Fisher discriminant analysis suggested that these two patterns (which differed only in the timing between the two stimuli) were substantially different from each other. Therefore, it is suggested that the abnormal pattern of PAD in hemiplegic stroke patients could be a contributing factor for the pathophysiology of spasticity.
Collapse
Affiliation(s)
- Behdad Tahayori
- Department of Kinesiology and Program in Neurosciences, Indiana University, Bloomington, Indiana; Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Neurorehabilitation Program, The Crossing Rehabilitation Center, Indiana University Health, La Porte, Indiana;
| | - Bahman Tahayori
- Neuroengineering Research Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Australia
| | - David Koceja
- Department of Kinesiology and Program in Neurosciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
6
|
Selective effects of baclofen on use-dependent modulation of GABAB inhibition after tetraplegia. J Neurosci 2013; 33:12898-907. [PMID: 23904624 DOI: 10.1523/jneurosci.1552-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Baclofen is a GABAB receptor agonist commonly used to relief spasticity related to motor disorders. The effects of baclofen on voluntary motor output are limited and not yet understood. Using noninvasive transcranial magnetic and electrical stimulation techniques, we examined electrophysiological measures probably involving GABAB (long-interval intracortical inhibition and the cortical silent period) and GABAA (short-interval intracortical inhibition) receptors, which are inhibitory effects mediated by subcortical and cortical mechanisms. We demonstrate increased active long-interval intracortical inhibition and prolonged cortical silent period during voluntary activity of an intrinsic finger muscle in humans with chronic incomplete cervical spinal cord injury (SCI) compared with age-matched controls, whereas resting long-interval intracortical inhibition was unchanged. However, long-term (~6 years) use of baclofen decreased active long-interval intracortical inhibition to similar levels as controls but did not affect the duration of the cortical silent period. We found a correlation between signs of spasticity and long-interval intracortical inhibition in patients with SCI. Short-interval intracortical inhibition was decreased during voluntary contraction compared with rest but there was no effect of SCI or baclofen use. Together, these results demonstrate that baclofen selectively maintains use-dependent modulation of largely subcortical but not cortical GABAB neuronal pathways after human SCI. Thus, cortical GABA(B) circuits may be less sensitive to baclofen than spinal GABAB circuits. This may contribute to the limited effects of baclofen on voluntary motor output in subjects with motor disorders affected by spasticity.
Collapse
|
7
|
Bose P, Hou J, Nelson R, Nissim N, Parmer R, Keener J, Wacnik PW, Thompson FJ. Effects of Acute Intrathecal Baclofen in an Animal Model of TBI-Induced Spasticity, Cognitive, and Balance Disabilities. J Neurotrauma 2013; 30:1177-91. [DOI: 10.1089/neu.2012.2740] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Prodip Bose
- Brain Rehabilitation Research Center (151), North Florida/South Georgia VA Health System, Gainesville, Florida
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Jiamei Hou
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Rachel Nelson
- Brain Rehabilitation Research Center (151), North Florida/South Georgia VA Health System, Gainesville, Florida
| | - Nicole Nissim
- Brain Rehabilitation Research Center (151), North Florida/South Georgia VA Health System, Gainesville, Florida
| | - Ron Parmer
- Brain Rehabilitation Research Center (151), North Florida/South Georgia VA Health System, Gainesville, Florida
| | - Jonathon Keener
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Paul W. Wacnik
- Neuromodulation Targeted Drug Delivery, Medtronic Inc., Minneapolis, Minnesota
| | - Floyd J. Thompson
- Brain Rehabilitation Research Center (151), North Florida/South Georgia VA Health System, Gainesville, Florida
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
D'Amico JM, Li Y, Bennett DJ, Gorassini MA. Reduction of spinal sensory transmission by facilitation of 5-HT1B/D receptors in noninjured and spinal cord-injured humans. J Neurophysiol 2012; 109:1485-93. [PMID: 23221401 DOI: 10.1152/jn.00822.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activation of receptors by serotonin (5-HT1) and norepinephrine (α2) on primary afferent terminals and excitatory interneurons reduces transmission in spinal sensory pathways. Loss or reduction of descending sources of serotonin and norepinephrine after spinal cord injury (SCI) and the subsequent reduction of 5-HT1/α2 receptor activity contributes, in part, to the emergence of excessive motoneuron activation from sensory afferent pathways and the uncontrolled triggering of persistent inward currents that depolarize motoneurons during muscle spasms. We tested in a double-blind, placebo-controlled study whether facilitating 5-HT1B/D receptors with the agonist zolmitriptan reduces the sensory activation of motoneurons during an H-reflex in both noninjured control and spinal cord-injured participants. In both groups zolmitriptan, but not placebo, reduced the size of the maximum soleus H-reflex with a peak decrease to 59% (noninjured) and 62% (SCI) of predrug values. In SCI participants we also examined the effects of zolmitriptan on the cutaneomuscular reflex evoked in tibialis anterior from stimulation to the medial arch of the foot. Zolmitriptan, but not placebo, reduced the long-latency, polysynaptic component of the cutaneomuscular reflex (first 200 ms of reflex) by ∼50%. This ultimately reduced the triggering of the long-lasting component of the reflex (500 ms poststimulation to end of reflex) known to be mediated by persistent inward currents in the motoneuron. These results demonstrate that facilitation of 5-HT1B/D receptors reduces sensory transmission in both monosynaptic and polysynaptic reflex pathways to ultimately reduce long-lasting reflexes (spasms) after SCI.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Centre for Neuroscience, Univ. of Alberta, 5-005 Katz Group - Rexall Centre, Edmonton, AB, Canada T6G 2E1
| | | | | | | |
Collapse
|
9
|
Kakinohana O, Hefferan MP, Miyanohara A, Nejime T, Marsala S, Juhas S, Juhasova J, Motlik J, Kucharova K, Strnadel J, Platoshyn O, Lazar P, Galik J, Vinay L, Marsala M. Combinational spinal GAD65 gene delivery and systemic GABA-mimetic treatment for modulation of spasticity. PLoS One 2012; 7:e30561. [PMID: 22291989 PMCID: PMC3264568 DOI: 10.1371/journal.pone.0030561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/19/2011] [Indexed: 01/08/2023] Open
Abstract
Background Loss of GABA-mediated pre-synaptic inhibition after spinal injury plays a key role in the progressive increase in spinal reflexes and the appearance of spasticity. Clinical studies show that the use of baclofen (GABAB receptor agonist), while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase) gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor) will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments. Methods/Principal Findings Adult Sprague-Dawley (SD) rats were exposed to transient spinal ischemia (10 min) to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs) targeting ventral α-motoneuronal pools. At 2–3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle) and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only) had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene. Conclusions/Significance These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can represent a novel and highly effective anti-spasticity treatment which is associated with minimal side effects and is restricted to GAD65-gene over-expressing spinal segments.
Collapse
Affiliation(s)
- Osamu Kakinohana
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Michael P. Hefferan
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Atsushi Miyanohara
- Gene Therapy Program and Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Tetsuya Nejime
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - Karolina Kucharova
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jan Strnadel
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - Oleksandr Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Peter Lazar
- Department of Breeding and Diseases of Game and Fish, University of Veterinary Medicine and Pharmacy, Komenskeho, Košice, Slovakia
| | - Jan Galik
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovakia
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University, Košice, Slovakia
| | - Laurent Vinay
- Laboratoire Plasticité et Physio-Pathologie de la Motricité (UMR6196), Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université, Marseille, France
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovakia
- * E-mail:
| |
Collapse
|
10
|
Miles GB, Sillar KT. Neuromodulation of Vertebrate Locomotor Control Networks. Physiology (Bethesda) 2011; 26:393-411. [DOI: 10.1152/physiol.00013.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate locomotion must be adaptable in light of changing environmental, organismal, and developmental demands. Much of the underlying flexibility in the output of central pattern generating (CPG) networks of the spinal cord and brain stem is endowed by neuromodulation. This review provides a synthesis of current knowledge on the way that various neuromodulators modify the properties of and connections between CPG neurons to sculpt CPG network output during locomotion.
Collapse
Affiliation(s)
- Gareth B. Miles
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Keith T. Sillar
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| |
Collapse
|
11
|
Chen SL, Huang YH, Kao YL, Chen GD, Cheng CL, Peng HY, Liao JM, Huang PC, Tsai SJ, Lin TB. Acute anal stretch inhibits NMDA-dependent pelvic-urethra reflex potentiation via spinal GABAergic inhibition in anesthetized rats. Am J Physiol Renal Physiol 2008; 295:F923-31. [DOI: 10.1152/ajprenal.90254.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The impact of acute anal stretch on the pelvic-urethra reflex potentiation was examined in urethane-anesthetized rats by recording the external urethra sphincter electromyogram activity evoked by the pelvic afferent stimulation. Test stimulation (1 stimulation/30 s) evoked a baseline reflex activity with a single action potential that was abolished by gallamine (5 mg/kg iv). On the other hand, the repetitive stimulation (1 stimulation/1 s) induced spinal reflex potentiation (SRP) that was attenuated by intrathecal 6-cyano-7-nitroquinoxaline-2,4-dione (a glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionat receptor antagonist, 100 μM, 10 μl) and d-2-amino-5-phosphonovalerate [a glutamatergic N-methyl-d-aspartate (NMDA) antagonist, 100 μM, 10 μl]. Acute anal stretch using a mosquito clamp with a distance of 4 mm exhibited no effect, whereas distances of 8 mm attenuated and 12 mm abolished the repetitive stimulation-induced SRP. Intrathecal NMDA (100 μM, 10 μl) reversed the abolition on SRP caused by anal stretch. On the other hand, pretreated bicuculline [γ-aminobutyric acid (GABA) A receptor antagonist, 100 μM, 10 μl] but not hydroxysaclofen (GABAB receptor antagonist) counteracted the abolition on the repetitive stimulation-induced SRP caused by the anal stretch. All of the results suggested that anal stretch may be used as an adjunct to assist voiding dysfunction in patients with overactive urethra sphincter and that GABAergic neurotransmission is important in the neural mechanisms underlying external urethra sphincter activity inhibited by anal stretch.
Collapse
|
12
|
Castro A, Aguilar J, Elias D, Felix R, Delgado-Lezama R. G-protein-coupled GABAB receptors inhibit Ca2+ channels and modulate transmitter release in descending turtle spinal cord terminal synapsing motoneurons. J Comp Neurol 2007; 503:642-54. [PMID: 17559099 DOI: 10.1002/cne.21421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Presynaptic gamma-aminobutyric acid type B receptors (GABA(B)Rs) regulate transmitter release at many central synapses by inhibiting Ca(2+) channels. However, the mechanisms by which GABA(B)Rs modulate neurotransmission at descending terminals synapsing on motoneurons in the spinal cord remain unexplored. To address this issue, we characterized the effects of baclofen, an agonist of GABA(B)Rs, on the monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in motoneurons by stimulation of the dorsolateral funiculus (DLF) terminals in a slice preparation from the turtle spinal cord. We found that baclofen depressed neurotransmission in a dose-dependent manner (IC(50) of approximately 2 microM). The membrane time constant of the motoneurons did not change, whereas the amplitude ratio of the evoked EPSPs in response to a paired pulse was altered in the presence of the drug, suggesting a presynaptic mechanism. Likewise, the use of N- and P/Q-type Ca(2+) channel antagonists (omega-conotoxin GVIA and omega-agatoxin IVA, respectively) also depressed EPSPs significantly. Therefore, these channels are likely involved in the Ca(2+) influx that triggers transmitter release from DLF terminals. To determine whether the N and P/Q channels were regulated by GABA(B)R activation, we analyzed the action of the toxins in the presence of baclofen. Interestingly, baclofen occluded omega-conotoxin GVIA action by approximately 50% without affecting omega-agatoxin IVA inhibition, indicating that the N-type channels are the target of GABA(B)Rs. Lastly, the mechanism underlying this effect was further assessed by inhibiting G-proteins with N-ethylmaleimide (NEM). Our data show that EPSP depression caused by baclofen was prevented by NEM, suggesting that GABA(B)Rs inhibit N-type channels via G-protein activation.
Collapse
Affiliation(s)
- Alberto Castro
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, CP 07300, Mexico
| | | | | | | | | |
Collapse
|
13
|
Jackson A, Baker SN, Fetz EE. Tests for presynaptic modulation of corticospinal terminals from peripheral afferents and pyramidal tract in the macaque. J Physiol 2006; 573:107-20. [PMID: 16556658 PMCID: PMC1779692 DOI: 10.1113/jphysiol.2005.100537] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 03/20/2006] [Indexed: 11/08/2022] Open
Abstract
The efficacy of sensory input to the spinal cord can be modulated presynaptically during voluntary movement by mechanisms that depolarize afferent terminals and reduce transmitter release. It remains unclear whether similar influences are exerted on the terminals of descending fibres in the corticospinal pathway of Old World primates and man. We investigated two signatures of presynaptic inhibition of the macaque corticospinal pathway following stimulation of the peripheral nerves of the arm (median, radial and ulnar) and the pyramidal tract: (1) increased excitability of corticospinal axon terminals as revealed by changes in antidromically evoked cortical potentials, and (2) changes in the size of the corticospinal monosynaptic field potential in the spinal cord. Conditioning stimulation of the pyramidal tract increased both the terminal excitability and monosynaptic fields with similar time courses. Excitability was maximal between 7.5 and 10 ms following stimulation and returned to baseline within 40 ms. Conditioning stimulation of peripheral nerves produced no statistically significant effect in either measure. We conclude that peripheral afferents do not exert a presynaptic influence on the corticospinal pathway, and that descending volleys may produce autogenic terminal depolarization that is correlated with enhanced transmitter release. Presynaptic inhibition of afferent terminals by descending pathways and the absence of a reciprocal influence of peripheral input on corticospinal efficacy would help to preserve the fidelity of motor commands during centrally initiated movement.
Collapse
Affiliation(s)
- A Jackson
- Department of Physiology and Biophysics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-7290, USA
| | | | | |
Collapse
|
14
|
Ovsepian SV, Vesselkin NP. Dual effect of GABA on descending monosynaptic excitatory postsynaptic potential in frog lumbar motoneurons. Neuroscience 2005; 129:639-46. [PMID: 15541885 DOI: 10.1016/j.neuroscience.2004.07.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2004] [Indexed: 11/28/2022]
Abstract
Monosynaptic excitatory postsynaptic potentials (EPSPs) evoked by stimulating ipsilateral ventrolateral column (VLC) in the thoracic section were recorded in lumbar motoneurons within the isolated spinal cord of the frog Rana ridibunda. Bath application of the selective GABAB receptor agonist (-)-baclofen (0.05 mM) caused a reduction in the peak amplitude of VLC EPSP. Baclofen did not cause any consistent change in the membrane potential or in the EPSP waveform within frog motoneurones. The selective GABA(B) receptor antagonist saclofen (0.1 mM) completely blocked the effect of (-)-baclofen on VLC EPSP. A decrease in VLC EPSP peak amplitude was also observed during GABA (0.5 mM) application. Unlike (-)-baclofen, inhibition of VLC EPSP induced by GABA was accompanied by a shortening of the EPSP time course and a reduction in membrane input resistance within lumbar motoneurons. The decrease in VLC EPSP peak amplitude induced by (-)-baclofen and GABA was accompanied by an increase in the paired-pulse facilitation. These data provide evidence for a dual pre- and postsynaptic GABAergic inhibition of the VLC monosynaptic EPSP in lumbar motoneurons within the frog spinal cord.
Collapse
Affiliation(s)
- S V Ovsepian
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
15
|
Li Y, Li X, Harvey PJ, Bennett DJ. Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity. J Neurophysiol 2005; 92:2694-703. [PMID: 15486423 DOI: 10.1152/jn.00164.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the months after spinal cord injury, motoneurons develop large voltage-dependent persistent inward currents (PICs) that cause sustained reflexes and associated muscle spasms. These muscle spasms are triggered by any excitatory postsynaptic potential (EPSP) that is long enough to activate the PICs, which take > 100 ms to activate. The PICs are composed of a persistent sodium current (Na PIC) and a persistent calcium current (Ca PIC). Considering that Ca PICs have been shown in other neurons to be inhibited by baclofen, we tested whether part of the antispastic action of baclofen was to reduce the motoneuron PICs as opposed to EPSPs. The whole sacrocaudal spinal cord from acute spinal rats and spastic chronic spinal rats (with sacral spinal transection 2 mo previously) was studied in vitro. Ventral root reflexes were recorded in response to dorsal root stimulation. Intracellular recordings were made from motoneurons, and slow voltage ramps were used to measure PICs. Chronic spinal rats exhibited large monosynaptic and long-lasting polysynaptic ventral root reflexes, and motoneurons had associated large EPSPs and PICs. Baclofen inhibited these reflexes at very low doses with a 50% inhibition (EC50) of the mono- and polysynaptic reflexes at 0.26 +/- 0.07 and 0.25 +/- 0.09 (SD) microM, respectively. Baclofen inhibited the monosynaptic reflex in acute spinal rats at even lower doses (EC50 = 0.18 +/- 0.02 microM). In chronic (and acute) spinal rats, all reflexes and EPSPs were eliminated with 1 microM baclofen with little change in motoneuron properties (PICs, input resistance, etc), suggesting that baclofen's antispastic action is presynaptic to the motoneuron. Unexpectedly, in chronic spinal rats higher doses of baclofen (20-30 microM) significantly increased the total motoneuron PIC by 31.6 +/- 12.4%. However, the Ca PIC component (measured in TTX to block the Na PIC) was significantly reduced by baclofen. Thus baclofen increased the Na PIC and decreased the Ca PIC with a net increase in total PIC. By contrast, when a PIC was induced by 5-HT (10-30 microM) in motoneurons of acute spinal rats, baclofen (20-30 microM) significantly decreased the PIC by 38.8 +/- 25.8%, primarily due to a reduction in the Ca PIC (measured in TTX), which dominated the total PIC in these acute spinal neurons. In summary, baclofen does not exert its antispastic action postsynaptically at clinically achievable doses (< 1 microM), and at higher doses (10-30 microM), baclofen unexpectedly increases motoneuron excitability (Na PIC) in chronic spinal rats.
Collapse
Affiliation(s)
- Y Li
- Centre for Neuroscience, 513 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
16
|
|
17
|
Hornby TG, Heckman CJ, Harvey RL, Rymer WZ. Changes in voluntary torque and electromyographic activity following oral baclofen. Muscle Nerve 2004; 30:784-95. [PMID: 15490486 DOI: 10.1002/mus.20176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The consequences of baclofen intake on voluntary motor behaviors remain unclear. We studied the effects of single oral doses of baclofen on voluntary, isometric knee extension torques and surface and single motor unit (MU) electromyographic (EMG) activity from the vastus lateralis in 11 individuals without neurological injury. Examination of submaximal to maximal contractions of varying duration performed pre- and post-baclofen ingestion revealed significant decreases in maximal knee torques and EMG magnitude, accompanied by an increase in slope of the torque-EMG relation. A decreased slope of the torque-MU firing rate relation was also demonstrated post-baclofen, but without changes in minimal firing rates or recruitment forces. During sustained contractions at < or =25% of maximal voluntary torque elicited after baclofen ingestion, increased EMG activity was observed without significant differences in MU firing rates. Our results demonstrate a clear reduction in the maximal torque-generating ability following baclofen. Specific changes in MU firing patterns indicate that weakness may be due partly to reduced motoneuronal excitability, although use of MU discharge patterns to assess these effects is limited in its sensitivity.
Collapse
Affiliation(s)
- T George Hornby
- Department of Physical Therapy, University of Illinois, 1919 West Taylor Street, Fourth Floor, M/C 898, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
18
|
Delgado-Lezama R, Aguilar J, Cueva-Rolón R. Synaptic strength between motoneurons and terminals of the dorsolateral funiculus is regulated by GABA receptors in the turtle spinal cord. J Neurophysiol 2003; 91:40-7. [PMID: 14523075 DOI: 10.1152/jn.00569.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of GABAA and GABAB receptors in modulation of excitatory synaptic transmission between motoneurons and terminals from dorsolateral funiculus (DLF) was studied in in vitro spinal cord slices of adult turtles. Muscimol--a GABAA receptor agonist--depressed the monosynaptic excitatory postsynaptic potential (EPSP) induced by stimulation of the DLF and shortened its duration. The input resistance and the membrane time constant also were strongly reduced. The input membrane resistance, the amplitude, and the half-width of the EPSP were reduced at the same rate in the presence of muscimol. Bicuculline--a GABAA receptor antagonist--increased the EPSPs amplitude and the input membrane resistance. The EPSP amplitude ratio elicited by a paired-pulse protocol did not change significantly. Our results suggest that muscimol acts mainly by activation of postsynaptic GABAA receptors located on the motoneuron and the synaptic strength on motoneurons may be modulated by tonic activation of postsynaptic GABAA receptors. Baclofen--a GABAB receptor agonist--also depressed DLF-motoneuron synaptic transmission. However, it did not affect the falling phase of the EPSPs or the motoneuron membrane time constant but induced a small decrement in input resistance. In the presence of baclofen, the amplitude ratio produced by a paired-pulse protocol increased significantly. This suggests that baclofen decreased the synaptic strength by inhibition of neurotransmitter release from the DLF terminals via activation of presynaptic GABAB receptors.
Collapse
Affiliation(s)
- Rodolfo Delgado-Lezama
- Departamento de Fisiología, Biofísica y Neurociencias, del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07000-México D. F., México.
| | | | | |
Collapse
|
19
|
Enríquez-Denton M, Morita H, Christensen LOD, Petersen N, Sinkjaer T, Nielsen JB. Interaction between peripheral afferent activity and presynaptic inhibition of ia afferents in the cat. J Neurophysiol 2002; 88:1664-74. [PMID: 12364496 DOI: 10.1152/jn.2002.88.4.1664] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been demonstrated in man that the H-reflex is more depressed by presynaptic inhibition than the stretch reflex. Here we investigated this finding further in the alpha-chloralose-anesthetized cat. Soleus monosynaptic reflexes were evoked by electrical stimulation of the tibial nerve or by stretch of the triceps surae muscle. Conditioning stimulation of the posterior biceps and semitendinosus nerve (PBSt) produced a significantly stronger depression of the electrically than the mechanically evoked reflexes. The depression of the reflexes has been shown to be caused by presynaptic inhibition of triceps surae Ia afferents. We investigated the hypothesis that repetitive activation of peripheral afferents may reduce their sensitivity to presynaptic inhibition. In triceps surae motoneurones, we measured the effect of presynaptic inhibition on excitatory postsynaptic potentials (EPSPs) produced by repetitive activation of the peripheral afferents or by fast and slow muscle stretch. EPSPs evoked by single electrical stimulation of the tibial nerve or by fast muscle stretch were significantly depressed by PBSt stimulation. However, the last EPSP in a series of EPSPs evoked by a train of electrical stimuli (5-6 shocks, 150-200 Hz) was significantly less depressed by the conditioning stimulation than the first EPSP. In addition, the last part of the long-lasting EPSPs evoked by a slow muscle stretch was also less depressed than the first part. A single EPSP evoked by stimulation of the medial gastrocnemius nerve was less depressed when preceded by a train of stimuli applied to the same nerve than when the same train of stimuli was applied to a synergistic nerve. The decreased sensitivity of the test EPSP to presynaptic inhibition was maximal when it was evoked within 20 ms after the train of EPSPs. It was not observed at intervals longer than 30 ms. These findings suggest that afferent activity may decrease the efficiency of presynaptic inhibition. We propose that the described interaction between afferent nerve activity and presynaptic inhibition may partly explain why electrically and mechanically evoked reflexes are differently sensitive to presynaptic inhibition.
Collapse
Affiliation(s)
- M Enríquez-Denton
- Division of Neurophysiology, Department of Medical Physiology, The Panum Institute. University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
20
|
Wang DC, Bose P, Parmer R, Thompson FJ. Chronic intrathecal baclofen treatment and withdrawal: I. Changes in ankle torque and hind limb posture in normal rats. J Neurotrauma 2002; 19:875-86. [PMID: 12184857 DOI: 10.1089/08977150260190465] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study evaluated reflex excitability and locomotor changes during chronic intrathecal infusion of the GABAb agonist baclofen (ITB) and its withdrawal, in the rat. We observed sustained velocity dependent decreases in ankle torque during four weeks of ITB treatment. These changes were correlated with a significant reduction of the EMG burst magnitude time locked to the dynamic phase of ankle dorsiflexion during the first ITB treatment week. However, a considerable recovery of EMG magnitude was observed during the third and fourth weeks of treatment. During baclofen withdrawal, significantly increased velocity dependent ankle torque was observed for 4 weeks. These increases in ankle torque were correlated with increased magnitudes of EMG time locked to the dynamic phase of ankle rotation. Measures of hind limb axis and base of support were obtained using analysis of footprints on a treadmill during ITB treatment and withdrawal periods. During ITB treatment and for up to 7 weeks of withdrawal, hindlimb axis and base of support were significantly altered compared with vehicle controls. These studies were performed to provide a foundation for evaluation of treatment and withdrawal in the setting of experimental chronic contusion spinal cord injury.
Collapse
Affiliation(s)
- David C Wang
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA
| | | | | | | |
Collapse
|
21
|
Orsnes G, Crone C, Krarup C, Petersen N, Nielsen J. The effect of baclofen on the transmission in spinal pathways in spastic multiple sclerosis patients. Clin Neurophysiol 2000; 111:1372-9. [PMID: 10904217 DOI: 10.1016/s1388-2457(00)00352-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To measure the effect of baclofen on the transmission in different spinal pathways to soleus motoneurones in spastic multiple sclerosis patients. METHODS Baclofen was administered orally in 14 and intrathecally in 8 patients. H(max)/M(max), presynaptic inhibition by biceps femoris tendon tap of femoral nerve stimulation, depression of the soleus H-reflex following previous activation of the Ia afferents from the soleus muscle (i.e. postactivation depression), disynaptic reciprocal Ia inhibition of the soleus H-reflex and the number of backpropagating action potentials in primary afferents, which may be a sign of presynaptic inhibition, were examined. RESULTS Baclofen depressed the soleus H(max)/M(max) ratio significantly following oral and intrathecal baclofen. None of the two tests of presynaptic inhibition, or the postactivation depression or the disynaptic reciprocal Ia inhibition of the soleus H-reflex were affected by baclofen administration. Also the action potentials of the primary afferents were unchanged during baclofen administration. CONCLUSIONS The antispastic effect of baclofen is not caused by an effect on the transmitter release from Ia afferents or on disynaptic reciprocal Ia inhibition. One possible explanation of the depression of the H-reflex by baclofen is suggested to be a direct depression of motoneuronal excitability.
Collapse
Affiliation(s)
- G Orsnes
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen O., Denmark.
| | | | | | | | | |
Collapse
|
22
|
Gosgnach S, Quevedo J, Fedirchuk B, McCrea DA. Depression of group Ia monosynaptic EPSPs in cat hindlimb motoneurones during fictive locomotion. J Physiol 2000; 526 Pt 3:639-52. [PMID: 10922014 PMCID: PMC2270044 DOI: 10.1111/j.1469-7793.2000.00639.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The effects of fictive locomotion on monosynaptic EPSPs recorded in motoneurones and extracellular field potentials recorded in the ventral horn were examined during brainstem-evoked fictive locomotion in decerebrate cats. Composite homonymous and heteronymous EPSPs and field potentials were evoked by group I intensity (<= 2T) stimulation of ipsilateral hindlimb muscle nerves. Ninety-one of the 98 monosynaptic EPSPs were reduced in amplitude during locomotion (mean depression of the 91 was to 66 % of control values); seven increased in amplitude (to a mean of 121 % of control). Twenty-one of the 22 field potentials were depressed during locomotion (mean depression to 72 % of control). All but 14 Ia EPSPs were smaller during both the flexion and extension phases of locomotion than during control. In 35 % of the cases there was < 5 % difference between the amplitudes of the EPSPs evoked during the flexion and extension phases. In 27 % of the cases EPSPs evoked during flexion were larger than those evoked during extension. The remaining 38 % of EPSPs were larger during extension. There was no relation between either the magnitude of EPSP depression or the locomotor phase in which maximum EPSP depression occurred and whether an EPSP was recorded in a flexor or extensor motoneurone. The mean recovery time of both EPSP and field potential amplitudes following the end of a bout of locomotion was approximately 2 min (range, < 10 to > 300 s). Motoneurone membrane resistance decreased during fictive locomotion (to a mean of 61 % of control, n = 22). Because these decreases were only weakly correlated to EPSP depression (r 2 = 0.31) they are unlikely to fully account for this depression. The depression of monosynaptic EPSPs and group I field potentials during locomotion is consistent with the hypothesis that during fictive locomotion there is a tonic presynaptic regulation of synaptic transmission from group Ia afferents to motoneurones and interneurones. Such a reduction in neurotransmitter release would decrease group Ia monosynaptic reflex excitation during locomotion. This reduction may contribute to the tonic depression of stretch reflexes occurring in the decerebrate cat during locomotion.
Collapse
Affiliation(s)
- S Gosgnach
- Department of Physiology, University of Manitoba, 730 William Avenue, Winnipeg, Canada R3E 3J7
| | | | | | | |
Collapse
|
23
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
24
|
Bertrand S, Cazalets JR. Presynaptic GABAergic control of the locomotor drive in the isolated spinal cord of neonatal rats. Eur J Neurosci 1999; 11:583-92. [PMID: 10051758 DOI: 10.1046/j.1460-9568.1999.00473.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The in vitro newborn rat isolated brain stem/spinal cord preparation was used to study the involvement of presynaptic inhibition in the control of the synaptic locomotor drive. The recording chamber was partitioned with Vaseline walls to separate the L1-L2 locomotor network from the motoneurons in the lower segments. When locomotor like activity was induced by bath applying a mixture of N-methyl-D-L-aspartate and serotonin to the L1-L2 segments, intracellular recordings of L3-L5 motoneurons show an alternating pattern of monosynaptic excitatory glutamatergic and inhibitory glycinergic inputs known as the locomotor drive. Gamma-aminobutyric acid (GABA), baclofen and muscimol (respectively GABA(B) and GABA(A) agonists) superfused on the L3-L5 segments depressed the synaptic locomotor drive of motoneurons during the ongoing activity. On the contrary, the GABA(B) receptor antagonist CGP35348 enhanced the locomotor drive, which suggests that an endogenous release of GABA occurs during locomotor-like activity. Baclofen, unlike muscimol and GABA, did not affect the passive membrane properties and the firing discharge of synaptically isolated motoneurons. Baclofen and muscimol acted on the two phases (inhibitory and excitatory) of the synaptic drive. The effects of GABAergic agonists on the whole locomotor activity were tested. When superfused on the L3-L5 part of the cord, they affected only the L5 burst amplitude. When bath-applied to the L1-L2 network, GABA and muscimol decreased the amplitude of the L2 and L5 bursts and increased the locomotor period while baclofen had significant effects only on the period. It was concluded that GABA modulates the information conveyed by the L1-L2 network to its target motoneurons presynaptically via GABA(B) and possibly GABA(A) receptors and postsynaptically, via GABA(A) receptors.
Collapse
Affiliation(s)
- S Bertrand
- CNRS Laboratoire de Neurobiologie et Mouvements, Marseille, France.
| | | |
Collapse
|
25
|
|
26
|
Vinay L, Clarac F. CGP 35348 and CGP 55845A block the baclofen-induced depression of dorsal root evoked potentials in lumbar motoneurons of the neonatal rat. Neurosci Lett 1996; 214:103-6. [PMID: 8878094 DOI: 10.1016/0304-3940(96)12904-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vitro brainstem-spinal cord preparations isolated from neonatal (0-5 days old) rats were used to investigate the GABAB receptor-mediated modulation of the dorsal root evoked potentials in lumbar motoneurons recorded intracellularly. The GABAB receptor agonist, baclofen, at low concentrations (1-10 microM), caused a reduction of the amplitude of the monosynaptic excitatory postsynaptic potential (EPSP), in a concentration-dependent manner. The depression of EPSPs was likely exerted at a presynaptic level since it occurred without any significant change of the passive membrane properties of the motoneurons. The two GABAB receptor antagonists, CGP 35348 and CGP 55845A blocked the effects of baclofen. These two compounds may be useful tools to study the evolution of GABAB receptor-mediated presynaptic inhibition during ontogenesis.
Collapse
Affiliation(s)
- L Vinay
- CNRS, UPR Neurobiologie et Mouvements, Marseille, France.
| | | |
Collapse
|
27
|
Misgeld U, Bijak M, Jarolimek W. A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 1995; 46:423-62. [PMID: 8532848 DOI: 10.1016/0301-0082(95)00012-k] [Citation(s) in RCA: 358] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The inhibitory neurotransmitter GABA acts in the mammalian brain through two different receptor classes: GABAA and GABAB receptors. GABAB receptors differ fundamentally from GABAA receptors in that they require a G-protein. GABAB receptors are located pre- and/or post-synaptically, and are coupled to various K+ and Ca2+ channels presumably through both a membrane delimited pathway and a pathway involving second messengers. Baclofen, a selective GABAB receptor agonist, as well as GABA itself have pre- and post-synaptic effects. Pre-synaptic effects comprise the reduction of the release of excitatory and inhibitory transmitters. GABAergic receptors on GABAergic terminals may regulate GABA release, however, in most instances spontaneous inhibitory synaptic activity is not modulated by endogenous GABA. Post-synaptic GABAB receptor-mediated inhibition is likely to occur through a membrane delimited pathway activating K+ channels, while baclofen, in some neurons, may activate K+ channels through a second messenger pathway involving arachidonic acid. Some, but not all GABAB receptor-gated K+ channels have the typical properties of those G-protein-activated K+ channels which are also gated by other endogenous ligands of the brain. New, high affinity GABAB antagonists are now available, and some pharmacological evidence points to a receptor heterogeneity. The pharmacological distinction of receptor subtypes, however, has to await final support from a characterization of the molecular structure. The function importance of post-synaptic GABAB receptors is highlighted by a segregation of GABAA and GABAB synapses in the mammalian brain.
Collapse
Affiliation(s)
- U Misgeld
- Institute of Physiology I, University of Heidelberg, Germany
| | | | | |
Collapse
|
28
|
Abstract
Baclofen is a gamma-aminobutyric acid (GABA) agonist approved for the treatment of spasticity and commonly used in the management of many types of neuropathic pain. Controlled studies have demonstrated the efficacy of this drug in trigeminal neuralgia. Although its precise mechanism of analgesic action is unknown, it is likely that a drug-induced increase in inhibitory activity is sufficient to interrupt the cascade of neural events that culminates in aberrant activity of wide dynamic range neurons, or more rostral neurons in nociceptive pathways, that is the substrate for some types of neuropathic pain. The optimal use of baclofen as an adjuvant analgesic requires an understanding of its pharmacology, side effect spectrum, and dosing guidelines that have proven useful in clinical practice. Failure of baclofen therapy following a prolonged trial requires dose tapering prior to discontinuation due to the potential for a withdrawal syndrome.
Collapse
Affiliation(s)
- G H Fromm
- Department of Neurology, School of Medicine, University of Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Rudomin P. Segmental and descending control of the synaptic effectiveness of muscle afferents. PROGRESS IN BRAIN RESEARCH 1994; 100:97-104. [PMID: 7938540 DOI: 10.1016/s0079-6123(08)60774-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- P Rudomin
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados, México D.F
| |
Collapse
|
30
|
Curtis JC, Appenteng K. The electrical geometry, electrical properties and synaptic connections onto rat V motoneurones in vitro. J Physiol 1993; 465:85-119. [PMID: 8229862 PMCID: PMC1175421 DOI: 10.1113/jphysiol.1993.sp019668] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. We have developed a tissue slice preparation which allows the study of the actions of single presynaptic neurones onto single trigeminal motoneurones in the immature rat. Our aim in this first stage of the work has been to assess the validity of this preparation as a model for responses obtained in vivo from trigeminal motoneurones in adult rats. We have quantified the integrative properties of the motoneurones and also the variability in transmission at synapses of single presynaptic neurones onto the motoneurones. This data has then been compared to similar published data obtained from adult (rat) trigeminal motoneurones in vivo. 2. Quantitative reconstructions were made of the morphology of three motoneurones which had been labelled with biocytin by intracellular injection. The neurones gave off six to nine dendrites, of mean length 522 microns (S.D. = 160; n = 22), which branched on average 10.5 times to produce 11.45 end-terminations per dendrite (S.D. = 8.57; n = 22). The mean surface area of the dendrites was 0.92 x 10(4) microns2 (S.D. = 0.67; n = 22), and, for individual cells, the ratio of the combined dendritic surface area to the total neuronal surface area ranged from 98.3 to 99.2% (n = 3). At dendritic branch points the ratio of the summed diameters of the daughter dendrites to the 3/2 power against the parent dendrite to the 3/2 power was 1.09 (S.D. = 0.21; n = 217), allowing branch points to be collapsed into a single cylinder. The equivalent cylinder diameter of the combined dendritic tree remained approximately constant over the proximal 25-40% of the equivalent electrical length of the dendritic tree and then showed tapering. The tapering could be ascribed to termination of dendrites at different electrical distances from the soma. 3. Electrical properties were determined for a total of eighty-seven motoneurones, all with membrane potentials more negative than 60 mV (mean = 66.0 mV; S.D. = 5.2) and spikes which overshot zero (mean spike amplitude = 77 mV; S.D. = 10.5; n = 87). The spikes were followed by after-hyperpolarizations (AHPs) of mean amplitude 2.2 mV (S.D. = 1.7; n = 47), and mean duration 54.1 ms (S.D. = 9.5; n = 47). The mean input resistance of the neurones was 7.5 M omega (S.D. = 2.5; n = 69), the mean membrane time constant was 3.5 ms (S.D. = 2.2; n = 35), and the mean rheobase was 1.6 nA (S.D. = 1.1; n = 56).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J C Curtis
- Department of Physiology, University of Leeds
| | | |
Collapse
|
31
|
|
32
|
Clarac F, el Manira A, Cattaert D. Presynaptic control as a mechanism of sensory-motor integration. Curr Opin Neurobiol 1992; 2:764-9. [PMID: 1335811 DOI: 10.1016/0959-4388(92)90131-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In studies of central nervous system networks, it is synaptic transmission to the postsynaptic soma-dendritic membrane that has received the most attention, in particular in relation to the analysis of sensory-motor integration. Sensory transmission is gated during ongoing movements in both invertebrates and vertebrates, such that it may be depressed in one phase of a cyclic movement and facilitated in another, in order to optimize the execution of the ongoing motor task. This presynaptic modulation is not limited to sensory afferents, but also occurs in synapses of both excitatory and inhibitory premotor interneurons. The modulation can be mediated by the release of different transmitters at axo-axonal synapses, which activate different types of receptors. In addition, presynaptic sensory axons can be coupled via gap junctions, which under certain conditions may mediate a presynaptic facilitation.
Collapse
|
33
|
Jordan LM, Brownstone RM, Noga BR. Control of functional systems in the brainstem and spinal cord. Curr Opin Neurobiol 1992; 2:794-801. [PMID: 1362109 DOI: 10.1016/0959-4388(92)90136-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Progress has been made in the identification of cells, circuits, and networks involved in certain important subcortical functional systems, including swallowing, chewing, posture and locomotion, and in the shared mechanisms for selecting the network for specific motor tasks, including a role for excitatory amino acids for network activation, the shaping of the network by inhibitory control, and the selection of inputs and modulation of outputs by monoamines and other agents.
Collapse
Affiliation(s)
- L M Jordan
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
34
|
Quevedo J, Eguibar JR, Jiménez I, Rudomin P. Differential action of (-)-baclofen on the primary afferent depolarization produced by segmental and descending inputs. Exp Brain Res 1992; 91:29-45. [PMID: 1338717 DOI: 10.1007/bf00230011] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of the present series of experiments was to analyze, in anesthetized and paralyzed cats, the effects of (-)-baclofen and picrotoxin on the primary afferent depolarization (PAD) generated in single Ib afferent fibers by either intraspinal microstimulation or stimulation of the segmental and descending pathways. PAD was estimated by recording dorsal root potentials and by measuring the changes in the intraspinal activation threshold of single Ib muscle afferent fibers. The PAD elicited by stimulation of group I muscle or cutaneous afferents was readily depressed and often abolished 20-40 min after the intravenous injection of 1-2 mg/kg (-)-baclofen. In contrast, the same amounts of (-)-baclofen produced a relatively small depression of the PAD elicited by stimulation of the brainstem reticular formation (RF). The monosynaptic PAD produced in single Ib fibers by intraspinal microstimulation within the intermediate nucleus was depressed and sometimes abolished following the i.v. injections of 1-2 mg/kg (-)-baclofen. Twenty to forty minutes after the i.v. injection of picrotoxin (0.5-1 mg/kg), there was a strong depression of the PAD elicited by stimulation of muscle and cutaneous afferents as well as of the PAD produced by stimulation of the RF and the PAD produced by intraspinal microstimulation. The results obtained suggest that, in addition to its action on primary afferents, (-)-baclofen may depress impulse activity and/or transmitter release in a population of last-order GABAergic interneurons that mediate the PAD of Ib fibers. The existence of GABAb autoreceptors in last-order interneurons mediating the PAD may function as a self-limiting mechanism controlling the synaptic efficacy of these interneurons.
Collapse
Affiliation(s)
- J Quevedo
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del IPN, México D.F
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- E Jankowska
- Department of Physiology, University of Göteborg, Sweden
| |
Collapse
|
36
|
Rudomin P, Jiménez I, Enriquez M. Effects of stimulation of group I afferents from flexor muscles on heterosynaptic facilitation of monosynaptic reflexes produced by Ia and descending inputs: a test for presynaptic inhibition. Exp Brain Res 1991; 85:93-102. [PMID: 1884766 DOI: 10.1007/bf00229990] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. In the chloralose anesthetized cat, conditioning stimulation of group I flexor afferents depresses the monosynaptic potentials generated by Ia afferents in single spinal motoneurons or in populations of motoneurons without affecting the monosynaptic potentials produced by stimulation of descending fibers in the ipsilateral ventromedial fasciculus (VMF). 2. Heterosynaptic facilitation of monosynaptic reflexes was used to test changes in the presynaptic effectiveness of excitatory inputs with direct connections with motoneurons. We found that the heterosynaptic facilitation of Ia origin was reduced by conditioning stimulation of group I afferents from flexors, without affecting the heterosynaptic facilitation produced by stimulation of the VMF. 3. These results confirm and expand previous observations showing that the synaptic effectiveness of descending fibers synapsing with motoneurons is not subjected to a presynaptic control mechanism of the type acting on Ia fiber terminals, and provide further basis for the use of changes in heterosynaptic facilitation of monosynaptic reflexes of Ia origin as an estimate of changes in presynaptic inhibition of Ia fibers (Hultborn et al. 1987a).
Collapse
Affiliation(s)
- P Rudomin
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados, México
| | | | | |
Collapse
|