1
|
Contini D, Holstein GR, Art JJ. Simultaneous Dual Recordings From Vestibular Hair Cells and Their Calyx Afferents Demonstrate Multiple Modes of Transmission at These Specialized Endings. Front Neurol 2022; 13:891536. [PMID: 35899268 PMCID: PMC9310783 DOI: 10.3389/fneur.2022.891536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022] Open
Abstract
In the vestibular periphery, transmission via conventional synaptic boutons is supplemented by post-synaptic calyceal endings surrounding Type I hair cells. This review focusses on the multiple modes of communication between these receptors and their enveloping calyces as revealed by simultaneous dual-electrode recordings. Classic orthodromic transmission is accompanied by two forms of bidirectional communication enabled by the extensive cleft between the Type I hair cell and its calyx. The slowest cellular communication low-pass filters the transduction current with a time constant of 10–100 ms: potassium ions accumulate in the synaptic cleft, depolarizing both the hair cell and afferent to potentials greater than necessary for rapid vesicle fusion in the receptor and potentially triggering action potentials in the afferent. On the millisecond timescale, conventional glutamatergic quantal transmission occurs when hair cells are depolarized to potentials sufficient for calcium influx and vesicle fusion. Depolarization also permits a third form of transmission that occurs over tens of microseconds, resulting from the large voltage- and ion-sensitive cleft-facing conductances in both the hair cell and the calyx that are open at their resting potentials. Current flowing out of either the hair cell or the afferent divides into the fraction flowing across the cleft into its cellular partner, and the remainder flowing out of the cleft and into the surrounding fluid compartment. These findings suggest multiple biophysical bases for the extensive repertoire of response dynamics seen in the population of primary vestibular afferent fibers. The results further suggest that evolutionary pressures drive selection for the calyx afferent.
Collapse
Affiliation(s)
- Donatella Contini
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, Chicago, IL, United States
| | - Gay R. Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan J. Art
- Department of Anatomy & Cell Biology, University of Illinois College of Medicine, Chicago, IL, United States
- *Correspondence: Jonathan J. Art
| |
Collapse
|
2
|
Kim G, Lee S, Kim KS. Dominant parameter of galvanic vestibular stimulation for the non-associative learning processes. Med Biol Eng Comput 2020; 58:701-708. [PMID: 31953797 DOI: 10.1007/s11517-019-02117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/28/2019] [Indexed: 12/22/2022]
Abstract
Electrical stimulus is one of the common stimulating methods, and Galvanic vestibular stimulation (GVS) is the oldest form as an electrical stimulation. Nevertheless, GVS is still considered as a secondary stimulating tool for the medical purposes. Even though some unarguable findings have made using GVS, its use has been limited because of its ambiguity as an input source. For better understanding, many previous studies mainly focused on its functional effects, like the ocular reflexes. However, its fundamental effects on the neural activities are still elusive, such as the dominant influences by different parameters of GVS. Here we compared the effects on the neuronal responses by applying two different parameters, strength and rate, of GVS. To assess the dominance on the neuronal responses to these parameters, we designed three independent stimuli. Those stimuli were multiply applied to obtain the responding slopes based on the mechanism of non-associative learning processes, and the effects on the neurons were calculated as an inner angle between two responding slopes. Out of 23 neurons, 15 (65.2%) units were affected more by the strength with a statistical significance (p = 0.047). The ranges of the inner angles also implied the strength (- 3.354°~2.063°) mainly modulated by the neuronal responses comparing with those by the rate (- 2.001°~1.975°). The dominance of the parameters was closely related with the neuronal sensitivity to stimulation (SE) (p = 0.018), while there were few relations with the neuronal regularity, directional preference (DP), and the physiological response (PR) (p > 0.059). Thus, the neural information related with the dominance was delivered by the irregular neurons, and these types of neurons should be the targets for the stimulation. Graphical abstract.
Collapse
Affiliation(s)
- Gyutae Kim
- Research Institute for Aerospace Medicine, Inha University, High-Tech center #303, 100 Inharo, Namgu, InCheon, 402-751, South Korea.
- Institute for Information and Electronics Research, Inha University, High-Tech center #716, 100 Inharo, Namgu, InCheon, 402-751, South Korea.
| | - Sangmin Lee
- Institute for Information and Electronics Research, Inha University, High-Tech center #716, 100 Inharo, Namgu, InCheon, 402-751, South Korea
- Department of Electronic Engineering, Inha University, High-Tech center #704, 100 Inharo, Namgu, InCheon, 402-751, South Korea
| | - Kyu-Sung Kim
- Research Institute for Aerospace Medicine, Inha University, High-Tech center #303, 100 Inharo, Namgu, InCheon, 402-751, South Korea
- Department of Otolaryngology Head & Neck Surg., Inha University Hospital, 27 Inhang-ro, Jung-Gu, Incheon, 400-711, South Korea
| |
Collapse
|
3
|
Phillips JO, Ling L, Nowack AL, Phillips CM, Nie K, Rubinstein JT. The Dynamics of Prosthetically Elicited Vestibulo-Ocular Reflex Function Across Frequency and Context in the Rhesus Monkey. Front Neurosci 2018; 12:88. [PMID: 29867306 PMCID: PMC5962652 DOI: 10.3389/fnins.2018.00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/02/2018] [Indexed: 12/25/2022] Open
Abstract
Electrical vestibular neurostimulation may be a viable tool for modulating vestibular afferent input to restore vestibular function following injury or disease. To do this, such stimulators must provide afferent input that can be readily interpreted by the central nervous system to accurately represent head motion to drive reflexive behavior. Since vestibular afferents have different galvanic sensitivity, and different natural sensitivities to head rotational velocity and acceleration, and electrical stimulation produces aphysiological synchronous activation of multiple afferents, it is difficult to assign a priori an appropriate transformation between head velocity and acceleration and the properties of the electrical stimulus used to drive vestibular reflex function, i.e., biphasic pulse rate or pulse current amplitude. In order to empirically explore the nature of the transformation between vestibular prosthetic stimulation and vestibular reflex behavior, in Rhesus macaque monkeys we parametrically varied the pulse rate and current amplitude of constant rate and current amplitude pulse trains, and the modulation frequency of sinusoidally modulated pulse trains that were pulse frequency modulated (FM) or current amplitude modulated (AM). In addition, we examined the effects of differential eye position and head position on the observed eye movement responses. We conclude that there is a strong and idiosyncratic, from canal to canal, effect of modulation frequency on the observed eye velocities that are elicited by stimulation. In addition, there is a strong effect of initial eye position and initial head position on the observed responses. These are superimposed on the relationships between pulse frequency or current amplitude and eye velocity that have been shown previously.
Collapse
Affiliation(s)
- James O Phillips
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Leo Ling
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Amy L Nowack
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Christopher M Phillips
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Epidemiology, University of Washington, Seattle, WA, United States
| | - Kaibao Nie
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States.,Bioengineering, University of Washington, Seattle, WA, United States
| | - Jay T Rubinstein
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States.,Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Wills TJ, Muessig L, Cacucci F. The development of spatial behaviour and the hippocampal neural representation of space. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130409. [PMID: 24366148 PMCID: PMC3866458 DOI: 10.1098/rstb.2013.0409] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The role of the hippocampal formation in spatial cognition is thought to be supported by distinct classes of neurons whose firing is tuned to an organism's position and orientation in space. In this article, we review recent research focused on how and when this neural representation of space emerges during development: each class of spatially tuned neurons appears at a different age, and matures at a different rate, but all the main spatial responses tested so far are present by three weeks of age in the rat. We also summarize the development of spatial behaviour in the rat, describing how active exploration of space emerges during the third week of life, the first evidence of learning in formal tests of hippocampus-dependent spatial cognition is observed in the fourth week, whereas fully adult-like spatial cognitive abilities require another few weeks to be achieved. We argue that the development of spatially tuned neurons needs to be considered within the context of the development of spatial behaviour in order to achieve an integrated understanding of the emergence of hippocampal function and spatial cognition.
Collapse
Affiliation(s)
- Thomas J Wills
- Department of Cell and Developmental Biology, University College London, , London WC1E 6BT, UK
| | | | | |
Collapse
|
5
|
Day BL, Marsden JF, Ramsay E, Mian OS, Fitzpatrick RC. Non-linear vector summation of left and right vestibular signals for human balance. J Physiol 2009; 588:671-82. [PMID: 20026614 DOI: 10.1113/jphysiol.2009.181768] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The left and right vestibular organs always transduce the same signal of head movement, and with natural stimuli can only be activated simultaneously. To investigate how signals from the left and right vestibular organs are integrated to control human balance we electrically modulated the firing of vestibular afferents from each labyrinth independently and measured the resulting balance responses. Stimulation of one side at a time (monaural) showed that individual leg muscles receive equal inputs from the two labyrinths even though a single labyrinth appeared capable of signalling 3-D head motion. To deduce principles of left-right integration, balance responses to simultaneous stimulation of both sides (binaural) were compared with responses to monaural stimuli. The binaural whole-body response direction was compatible with vector summation of the left and right monaural responses. The binaural response magnitude, however, was only 64-74% that predicted by the monaural sum. This probably reflects a central non-linearity between vestibular input and motor output because stimulation of just one labyrinth revealed a power law relationship between stimulus current and response size with exponents 0.56 (force) and 0.51 (displacement). Thus, doubling total signal magnitude either by doubling monaural current or by binaural stimulation produced equivalent responses. We conclude that both labyrinths provide independent estimates of head motion that are summed vectorially and transformed non-linearly into motor output. The former process improves signal-to-noise and reduces artifactual common-mode changes, while the latter enhances responses to small signals, all critical for detecting the small head movements needed to control human balance.
Collapse
Affiliation(s)
- Brian L Day
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | |
Collapse
|
6
|
Dynamic displacement of normal and detached semicircular canal cupula. J Assoc Res Otolaryngol 2009; 10:497-509. [PMID: 19513793 PMCID: PMC2774407 DOI: 10.1007/s10162-009-0174-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/04/2009] [Indexed: 11/25/2022] Open
Abstract
The dynamic displacement of the semicircular canal cupula and modulation of afferent nerve discharge were measured simultaneously in response to physiological stimuli in vivo. The adaptation time constant(s) of normal cupulae in response to step stimuli averaged 36 s, corresponding to a mechanical lower corner frequency for sinusoidal stimuli of 0.0044 Hz. For stimuli equivalent to 40–200 deg/s of angular head velocity, the displacement gain of the central region of the cupula averaged 53 nm per deg/s. Afferents adapted more rapidly than the cupula, demonstrating the presence of a relaxation process that contributes significantly to the neural representation of angular head motions by the discharge patterns of canal afferent neurons. We also investigated changes in time constants of the cupula and afferents following detachment of the cupula at its apex—mechanical detachment that occurs in response to excessive transcupular endolymph pressure. Detached cupulae exhibited sharply reduced adaptation time constants (300 ms–3 s, n = 3) and can be explained by endolymph flowing rapidly over the apex of the cupula. Partially detached cupulae reattached and normal afferent discharge patterns were recovered 5–7 h following detachment. This regeneration process may have relevance to the recovery of semicircular canal function following head trauma.
Collapse
|
7
|
Semicircular canal size determines the developmental onset of angular vestibuloocular reflexes in larval Xenopus. J Neurosci 2008; 28:8086-95. [PMID: 18685033 DOI: 10.1523/jneurosci.1288-08.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Semicircular canals have been sensors of angular acceleration for 450 million years. This vertebrate adaptation enhances survival by implementing postural and visual stabilization during motion in a three-dimensional environment. We used an integrated neuroethological approach in larval Xenopus to demonstrate that semicircular canal dimensions, and not the function of other elements, determines the onset of angular acceleration detection. Before angular vestibuloocular function in either the vertical or horizontal planes, at stages 47 and 48, respectively, each individual component of the vestibuloocular system was shown to be operational: extraocular muscles could be activated, central neural pathways were complete, and canal hair cells were capable of evoking graded responses. For Xenopus, a minimum semicircular canal lumen radius of 60 microm was necessary to permit endolymph displacement sufficient for sensor function at peak accelerations of 400 degrees /s(2). An intra-animal comparison demonstrated that this size is reached in the vertical canals earlier in development than in the horizontal canals, corresponding to the earlier onset of vertical canal-activated ocular motor behavior. Because size constitutes a biophysical threshold for canal-evoked behavior in other vertebrates, such as zebrafish, we suggest that the semicircular canal lumen and canal circuit radius are limiting the onset of vestibular function in all small vertebrates. Given that the onset of gravitoinertial acceleration detection precedes angular acceleration detection by up to 10 d in Xenopus, these results question how the known precise spatial patterning of utricular and canal afferents in adults is achieved during development.
Collapse
|
8
|
Fractionating dead reckoning: role of the compass, odometer, logbook, and home base establishment in spatial orientation. Naturwissenschaften 2008; 95:1011-26. [PMID: 18553065 DOI: 10.1007/s00114-008-0410-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 01/08/2023]
Abstract
Rats use multiple sources of information to maintain spatial orientation. Although previous work has focused on rats' use of environmental cues, a growing number of studies have demonstrated that rats also use self-movement cues to organize navigation. This review examines the extent that kinematic analysis of naturally occurring behavior has provided insight into processes that mediate dead-reckoning-based navigation. This work supports a role for separate systems in processing self-movement cues that converge on the hippocampus. The compass system is involved in deriving directional information from self-movement cues; whereas, the odometer system is involved in deriving distance information from self-movement cues. The hippocampus functions similar to a logbook in that outward path unique information from the compass and odometer is used to derive the direction and distance of a path to the point at which movement was initiated. Finally, home base establishment may function to reset this system after each excursion and anchor environmental cues to self-movement cues. The combination of natural behaviors and kinematic analysis has proven to be a robust paradigm to investigate the neural basis of spatial orientation.
Collapse
|
9
|
Yang A, Hullar TE. Relationship of semicircular canal size to vestibular-nerve afferent sensitivity in mammals. J Neurophysiol 2007; 98:3197-205. [PMID: 17913986 DOI: 10.1152/jn.00798.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between semicircular canal radius of curvature and afferent sensitivity has not been experimentally determined. We characterized mouse semicircular canal afferent responses to sinusoidal head rotations to facilitate interspecies and intraspecies comparisons of canal size to sensitivity. The interspecies experiment compared the horizontal canal afferent responses among animals ranging in size from mouse to rhesus monkey. The intraspecies experiment compared afferent responses from the larger anterior canal to those from the smaller horizontal canal of mice. The responses of mouse vestibular-nerve afferents showed a low- and high-frequency phase lead and high-frequency gain enhancement. Regular horizontal-canal afferents showed a sensitivity to 0.5-Hz sinusoidal rotations of 0.10 +/- 0.03 (SD) spike . s(-1)/deg . s(-1) and high-gain irregular afferents showed a sensitivity of 0.25 +/- 0.11 spike . s(-1)/deg . s(-1). The interspecies comparison showed that the sensitivity of regular afferents was related to the radius of curvature R according to the formula G(r) = 0.23R - 0.09 (r(2) = 0.86) and the sensitivity of irregular afferents was related to radius according to the formula G(i) = 0.32R + 0.01 (r(2) = 0.67). The intraspecies comparison showed that regularly firing anterior canal afferents were significantly more sensitive than those from the relatively smaller horizontal canal, with G(r) = 0.25R. This suggests that canal radius of curvature is closely related to afferent sensitivity both among and within species. If the relationship in humans is similar to that demonstrated here, the sensitivity of their regular vestibular-nerve afferents to 0.5-Hz rotations is likely to be about 0.67 spike . s(-1)/deg . s(-1) and of their high-gain irregular afferents about 1.06 spikes . s(-1)/deg . s(-1).
Collapse
Affiliation(s)
- Aizhen Yang
- Department of Otolaryngology, Head and Neck Surgery, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
10
|
Merfeld DM, Gong W, Morrissey J, Saginaw M, Haburcakova C, Lewis RF. Acclimation to chronic constant-rate peripheral stimulation provided by a vestibular prosthesis. IEEE Trans Biomed Eng 2006; 53:2362-72. [PMID: 17073343 DOI: 10.1109/tbme.2006.883645] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We are developing two types of vestibular prosthetics that electrically stimulate afferent neurons. One type replaces absent sensory function by providing stimulation that modulates above and below a baseline established with the head stationary. The other type provides constant stimulation and is turned on only when necessary, for example, to override unnatural variations like those experienced by patients suffering from Ménère's syndrome; this prosthesis does not provide motion information. Both prostheses require neural plasticity, which we investigated by providing chronic constant-rate stimulation to semicircular canal neurons in three guinea pigs. The stimulation was alternately switched on or off for eight consecutive weeks before being switched daily. A brisk horizontal nystagmus was measured when the stimulation was first turned on and then dissipated over the course of a day. The nystagmus demonstrated an after-effect in the opposite direction when the stimulation was turned off. The nystagmus that we measured after just a few (2 to 5) off-to-on transitions returned to baseline more rapidly than when first turned on. In fact, after many such off-to-on or on-to-off transitions, little nystagmus was evoked by turning the stimulation on or off. These findings show that the brain acclimates to constant-rate stimulation.
Collapse
Affiliation(s)
- Daniel M Merfeld
- Jenks Vestibular Physiology Lab., Massachusetts Eye and Ear Infirmary, Room 421, 243 Charles Street, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Curthoys IS, Kim J, McPhedran SK, Camp AJ. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 2006; 175:256-67. [PMID: 16761136 DOI: 10.1007/s00221-006-0544-1] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 05/02/2006] [Indexed: 02/07/2023]
Abstract
The main objective of this study was to determine whether bone-conducted vibration (BCV) is equally effective in activating both semicircular canal and otolith afferents in the guinea pig or whether there is preferential activation of one of these classes of vestibular afferents. To answer this question a large number (346) of single primary vestibular neurons were recorded extracellularly in anesthetized guinea pigs and were identified by their location in the vestibular nerve and classed as regular or irregular on the basis of the variability of their spontaneous discharge. If a neuron responded to angular acceleration it was classed as a semicircular canal neuron, if it responded to maintained roll or pitch tilts it was classified as an otolith neuron. Each neuron was then tested by BCV stimuli-either clicks, continuous pure tones (200-1,500 Hz) or short tone bursts (500 Hz lasting 7 ms)-delivered by a B-71 clinical bone-conduction oscillator cemented to the guinea pig's skull. All stimulus intensities were referred to that animal's own auditory brainstem response (ABR) threshold to BCV clicks, and the maximum intensity used was within the animal's physiological range and was usually around 70 dB above BCV threshold. In addition two sensitive single axis linear accelerometers cemented to the skull gave absolute values of the stimulus acceleration in the rostro-caudal direction. The criterion for a neuron being classed as activated was an audible, stimulus-locked increase in firing rate (a 10% change was easily detectable) in response to the BCV stimulus. At the stimulus levels used in this study, semicircular canal neurons, both regular and irregular, were insensitive to BCV stimuli and very few responded: only nine of 189 semicircular canal neurons tested (4.7%) showed a detectable increase in firing in response to BCV stimuli up to the maximum 2 V peak-to-peak level we delivered to the B-71 oscillator (which produced a peak-to-peak skull acceleration of around 6-8 g and was usually around 60-70 dB above the animal's own ABR threshold for BCV clicks). Regular otolithic afferents likewise had a poor response; only 14 of 99 tested (14.1%) showed any increase in firing rate up to the maximum BCV stimulus level. However, most irregular otolithic afferents (82.8%) showed a clear increase in firing rate in response to BCV stimuli: of the 58 irregular otolith neurons tested, 48 were activated, with some being activated at very low intensities (only about 10 dB above the animal's ABR threshold to BCV clicks). Most of the activated otolith afferents were in the superior division of the vestibular nerve and were probably utricular afferents. That was confirmed by evidence using juxtacellular injection of neurobiotin near BCV activated neurons to trace their site of origin to the utricular macula. We conclude there is a very clear preference for irregular otolith afferents to be activated selectively by BCV stimuli at low stimulus levels and that BCV stimuli activate some utricular irregular afferent neurons. The BCV generates compressional and shear waves, which travel through the skull and constitute head accelerations, which are sufficient to stimulate the most sensitive otolithic receptor cells.
Collapse
Affiliation(s)
- Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, University of Sydney, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
12
|
Andreescu CE, De Ruiter MM, De Zeeuw CI, De Jeu MTG. Otolith Deprivation Induces Optokinetic Compensation. J Neurophysiol 2005; 94:3487-96. [PMID: 16079198 DOI: 10.1152/jn.00147.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
According to the multisensory integration theory vestibular, optokinetic and proprioceptive inputs act in concert to maintain a stable retinal image of the visual world. Yet, it remains elusive to what extent the otolith organs contribute to this process and whether a specific loss of otolith input is compensated for. Here we investigated the compensatory eye movements in tilted mice, which lack otoconia because of a mutation in otopetrin 1. Tilted mice showed very small displacements of the eyes in the orbit during static roll paradigms, suggesting the absence of functional otolith organs. Independent of head position with respect to gravity, the gain and phase lead of angular vestibuloocular reflex of tilted mice were decreased and increased, respectively (frequencies 0.2 to 1 Hz and peak accelerations 8 to 197°/s2, respectively). Furthermore, lack of otolith input increases the dependency of the vestibular system on stimulus frequency. In contrast, the gain of optokinetic reflex in tilted mice was significantly higher in the low-frequency range than in control mice, regardless of the position of the mice in space or the plane of the eye movements. To explain these results, a simple model was used in which a multisensory integration unit was embedded. With this model, we were able to simulate all the behaviors observed. Thus our data and the model support the presence of the multisensory integration system and revealed a compensatory enhanced optokinetic reflex in tilted mice, indicating an adaptive synergism in the processing of otolith and visually driven signals.
Collapse
Affiliation(s)
- Corina E Andreescu
- Department of Neuroscience, Erasmus University Medical Center Rotterdam, Dr. Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
13
|
Highstein SM, Rabbitt RD, Holstein GR, Boyle RD. Determinants of spatial and temporal coding by semicircular canal afferents. J Neurophysiol 2005; 93:2359-70. [PMID: 15845995 PMCID: PMC3000935 DOI: 10.1152/jn.00533.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vestibular semicircular canals are internal sensors that signal the magnitude, direction, and temporal properties of angular head motion. Fluid mechanics within the 3-canal labyrinth code the direction of movement and integrate angular acceleration stimuli over time. Directional coding is accomplished by decomposition of complex angular accelerations into 3 biomechanical components-one component exciting each of the 3 ampullary organs and associated afferent nerve bundles separately. For low-frequency angular motion stimuli, fluid displacement within each canal is proportional to angular acceleration. At higher frequencies, above the lower corner frequency, real-time integration is accomplished by viscous forces arising from the movement of fluid within the slender lumen of each canal. This results in angular velocity sensitive fluid displacements. Reflecting this, a subset of afferent fibers indeed report angular acceleration to the brain for low frequencies of head movement and report angular velocity for higher frequencies. However, a substantial number of afferent fibers also report angular acceleration, or a signal between acceleration and velocity, even at frequencies where the endolymph displacement is known to follow angular head velocity. These non-velocity-sensitive afferent signals cannot be attributed to canal biomechanics alone. The responses of non-velocity-sensitive cells include a mathematical differentiation (first-order or fractional) imparted by hair-cell and/or afferent complexes. This mathematical differentiation from velocity to acceleration cannot be attributed to hair cell ionic currents, but occurs as a result of the dynamics of synaptic transmission between hair cells and their primary afferent fibers. The evidence for this conclusion is reviewed below.
Collapse
Affiliation(s)
- Stephen M Highstein
- Washington University School of Medicine, Department of Otolaryngology, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Galvanic vestibular stimulation (GVS) is a simple, safe, and specific way to elicit vestibular reflexes. Yet, despite a long history, it has only recently found popularity as a research tool and is rarely used clinically. The obstacle to advancing and exploiting GVS is that we cannot interpret the evoked responses with certainty because we do not understand how the stimulus acts as an input to the system. This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses. These responses are large and highly organized over all body segments and adapt to postural and balance requirements. To achieve this, neurons in the vestibular nuclei receive convergent signals from all vestibular receptors and somatosensory and cortical inputs. GVS sway responses are affected by other sources of information about balance but can appear as the sum of otolithic and semicircular canal responses. Electrophysiological studies showing similar activation of primary afferents from the otolith organs and canals and their convergence in the vestibular nuclei support this. On the basis of the morphology of the cristae and the alignment of the semicircular canals in the skull, rotational vectors calculated for every mode of GVS agree with the observed sway. However, vector summation of signals from all utricular afferents does not explain the observed sway. Thus we propose the hypothesis that the otolithic component of the balance response originates from only the pars medialis of the utricular macula.
Collapse
Affiliation(s)
- Richard C Fitzpatrick
- Prince of Wales Medical Research Institute, Easy St., Randwick, Sydney, NSW 2031, Australia.
| | | |
Collapse
|
15
|
Hullar TE, Della Santina CC, Hirvonen T, Lasker DM, Carey JP, Minor LB. Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations. J Neurophysiol 2004; 93:2777-86. [PMID: 15601735 DOI: 10.1152/jn.01002.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian vestibular-nerve afferents innervating the semicircular canals have been divided into groups according to their discharge regularity, gain at 2-Hz rotational stimulation, and morphology. Low-gain irregular afferents terminate in calyx endings in the central crista, high-gain irregular afferents synapse more peripherally in dimorphic (bouton and calyx) endings, and regular afferents terminate in the peripheral zone as bouton-only and dimorphic endings. The response dynamics of these three groups have been described only up to 4 Hz in previous studies. Reported here are responses of chinchilla semicircular canal vestibular-nerve afferents to rotational stimuli at frequencies up to 16 Hz. The sensitivity of all afferents increased with increasing frequency with the sensitivity of low-gain irregular afferents increasing the most and matching the high-gain irregular afferents at 16 Hz. All afferents increased their phase lead with respect to stimulus velocity at higher frequencies with the highest leads in low-gain irregular afferents and the lowest in regular afferents. No attenuation of sensitivity or shift in phase consistent with the presence of a high-frequency pole over the range tested was noted. Responses were best fit with a torsion-pendulum model combined with a lead operator (tau(HF1)s + 1)(tau(HF2)s + 1). The discharge regularity of individual afferents was correlated to the value of each afferent's lead operator time constants. These findings suggest that low-gain irregular afferents are well suited for encoding the onset of rapid head movements, a property that would be advantageous for initiation of reflexes with short latency such as the vestibulo-ocular reflex.
Collapse
Affiliation(s)
- Timothy E Hullar
- Department of Otolaryngology--Head and Neck Surgery, Washington University School of Medicine, 660 S. Euclid Ave. #8115, Saint Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Gong W, Merfeld DM. System design and performance of a unilateral horizontal semicircular canal prosthesis. IEEE Trans Biomed Eng 2002; 49:175-81. [PMID: 12066886 DOI: 10.1109/10.979358] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have reported preliminary results regarding a prototype semicircular canal prosthesis and concluded that it can provide rotational cues to the nervous system. This paper presents the system design of the prosthesis, and also reports the prosthesis system performance and effectiveness. The prosthesis delivers electrical pulses to the nerve branch innervating the horizontal semicircular canal on one side via implanted electrodes. To allow us to encode both directions of angular velocity, the baseline stimulation pulse frequency was set at 150 Hz, which is somewhat higher than the average firing rate of afferents innervating the semicircular canals in normal guinea pigs (approximately 60Hz). A sensor measures angular velocity to modulate (increase or decrease) the pulse rate. The prosthetic system was provided to a guinea pig whose horizontal canals were surgically plugged. The animal responded to the baseline stimulation initially and adapted to the baseline stimulation in roughly one day. After this baseline adaptation the animal responded to yaw rotation, showing that the function of the canals was partially restored. The experiments also show that the nervous system adapts to the artificial rotational cue provided via electrical stimulation.
Collapse
Affiliation(s)
- Wangsong Gong
- Department of Otology and Laryngology, Harvard Medical School and the Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston 02114, USA
| | | |
Collapse
|
17
|
Murofushi T, Curthoys IS, Topple AN, Colebatch JG, Halmagyi GM. Responses of guinea pig primary vestibular neurons to clicks. Exp Brain Res 1995; 103:174-8. [PMID: 7615033 DOI: 10.1007/bf00241975] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Responses of single neurons in the vestibular nerve to high-intensity clicks were studied by extracellular recording in anaesthetised guinea pigs. One hundred and two neurons in the posterior division of the superior branch or in the inferior branch of the vestibular nerve were activated at short latency by intense clicks. The latency of activation was short (median 0.9 ms) and the threshold was high: the click intensity for evoking the response of these cells was around 60 dB above the auditory brainstem response threshold. Animals were tilted and rotated to identify physiologically the sensory region of the labyrinth from which the activated neurons originated. Seventeen neurons responded to static tilt as well as clicks. These results show that vestibular receptors, probably the otoliths, respond to clicks at intensities corresponding to those used in a new clinical test of the vestibulo-collic pathway.
Collapse
Affiliation(s)
- T Murofushi
- Department of Psychology, University of Sydney, Australia
| | | | | | | | | |
Collapse
|
18
|
Serafin M, Khateb A, de Waele C, Vidal PP, Mühlethaler M. Medial vestibular nucleus in the guinea-pig: NMDA-induced oscillations. Exp Brain Res 1992; 88:187-92. [PMID: 1347271 DOI: 10.1007/bf02259140] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently shown in vivo that N-Methyl-D-Aspartate (NMDA) receptors are present in the guinea-pig vestibular complex and demonstrated that they are involved in the regulation of the resting discharge of vestibular neurones. A parallel in vitro study has identified in the guinea-pig medial vestibular nuclei (MVN) two main neuronal cell types, A and B MVNn, differing by their intrinsic membrane properties. One subtype of B MVNn was further characterized by the presence of a low threshold calcium spike (LTS). The present study investigated in vitro the responses of these different cell types to NMDA. Both A and B MVNn were depolarized by NMDA, which also induced a decrease in membrane resistance and an increase in the spontaneous firing rate. These effects could be blocked by D-AP5, a specific antagonist of NMDA receptors. Following a 10-30 mV hyperpolarization, a long-lasting oscillatory behavior could be induced in presence of NMDA. These oscillations were however restricted to the subtype of B MVNn without LTS. The NMDA-induced oscillations were tetrodotoxine-resistant, but could be eliminated by D-AP5 or by replacing sodium with choline. Functional implications of this oscillatory behavior are discussed.
Collapse
Affiliation(s)
- M Serafin
- Département de Physiologie, CMU, Genève, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Serafin M, Khateb A, de Waele C, Vidal PP, Mühlethaler M. Low threshold calcium spikes in medial vestibular nuclei neurones in vitro: a role in the generation of the vestibular nystagmus quick phase in vivo? Exp Brain Res 1990; 82:187-90. [PMID: 2257903 DOI: 10.1007/bf00230850] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intracellular recordings were obtained from medial vestibular nuclei neurones in guinea-pig brainstem slices. A subpopulation of neurones in this nucleus was found to have burst firing properties. Using ionic channel blockers the underlying mechanism was shown to be a low threshold calcium spike. It is speculated that this property could be implicated in the generation of the quick phase of the vestibular nystagmus in the behaving guinea-pig.
Collapse
Affiliation(s)
- M Serafin
- Département de Physiologie, CMU, Genève, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Yamashita M, Ohmori H. Synaptic responses to mechanical stimulation in calyceal and bouton type vestibular afferents studied in an isolated preparation of semicircular canal ampullae of chicken. Exp Brain Res 1990; 80:475-88. [PMID: 2387349 DOI: 10.1007/bf00227989] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Relationships between the response patterns of semicircular canal afferents to mechanical stimulation and the morphologies of their peripheral endings were investigated in an isolated preparation of the anterior semicircular canal ampulla of chicken, using a combination of electrical recording with intracellular injections of Lucifer Yellow CH. The hair bundle mechanical stimulus was applied in a diffuse manner by a glass rod vibrating in the nearby bathing medium. Two types of spike discharge patterns and postsynaptic potentials were recorded. One type was found exclusively in the bouton type afferent and demonstrated a phasic increase of firing frequency and transient depolarizing postsynaptic potentials at the beginning of mechanical stimulation. These synaptic potentials were also observed spontaneously and their amplitudes were increased by membrane hyperpolarization. The other type was found exclusively in afferents with calyceal endings and showed a tonic increase of spiking frequency and depolarizing DC postsynaptic potentials with superimposing AC responses at the frequency of the mechanical stimulation. Amplitudes of postsynaptic potentials were increased by hyperpolarization. Hair cells generated depolarizing DC transduction potentials superimposed with AC potentials at frequency of the mechanical stimulation. The spontaneous spike discharging patterns of afferent nerve fibres were classified either as a regular type (CV less than 0.10) or as an irregular type (CV greater than 0.25) on the basis of coefficient of variation (CV) of interspike intervals. The spontaneous firing rate of regular units was higher than that of irregular units. Several membrane characteristics are different between these two types of afferent fibers; irregular units had short membrane time constants and fast spikes associated with clear spike-afterhyperpolarization. These features fit with the fact that irregular units tend to have phasic responses to mechanical stimulation while regular units typically have tonic responses. Irregular units had bouton endings with an average axonal diameter thicker than the regular units which had calix endings.
Collapse
Affiliation(s)
- M Yamashita
- National Institute for Physiological Sciences, Okazaki, Japan
| | | |
Collapse
|
21
|
Courjon JH, Precht W, Sirkin DW. Vestibular nerve and nuclei unit responses and eye movement responses to repetitive galvanic stimulation of the labyrinth in the rat. Exp Brain Res 1987; 66:41-8. [PMID: 3582534 DOI: 10.1007/bf00236200] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two-second cathodal current pulses were applied at one-minute intervals at a point external to the round window in the ear of each albino rat subject. Responses were recorded in the vestibular nerve ganglion, the vestibular nuclei (single units), or in the eye movements (search coil recording method) of anaesthetized, decerebrated, or alert rats. The unit responses to the galvanic stimuli were characterized and compared with responses to galvanic and rotational stimuli reported in the literature. The main focus of the study, however, was effects of stimulus repetition. In both the vestibular nerve and vestibular nuclei recordings, the responses of many units were substantially larger or smaller at the end of a 13-pulse stimulus train than at the beginning. In the vestibular nuclei, but not in the nerve, there was a slight bias towards a decrease in response magnitude, with 10/88 units showing decreases great enough to be considered as reflecting an habituation process. In contrast, the eye movement responses showed more consistent response decrements, especially in the alert condition, but also in the other conditions (none of the unit recordings were done in alert rats). It is concluded that some of the modifications underlying habituation of the vestibuloocular reflex probably occur in portions of the neuronal reflex pathways that are downstream from the vestibular nuclei.
Collapse
|