1
|
Cheng M, Qian Y, Xing Z, Zylstra GJ, Huang X. The low-nanomolar 4-nitrobenzoate-responsive repressor PnbX negatively regulates the actinomycete-derived 4-nitrobenzoate-degrading pnb locus. Environ Microbiol 2021; 23:7028-7041. [PMID: 34554625 DOI: 10.1111/1462-2920.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
Nitroaromatic compounds pose severe threats to public health and environmental safety. Nitro group removal via ammonia release is an important strategy for bacterial detoxification of nitroaromatic compounds, such as the conversion of 4-nitrobenzoate (4-NBA) to protocatechuate by the bacterial pnb operon. In contrast to the LysR-family transcriptional regulator PnbR in proteobacteria, the actinomycete-derived pnb locus (4-NBA degradation structural genes) formed an operon with the TetR-family transcriptional regulator gene pnbX, implying that it has a distinct regulatory mechanism. Here, pnbBA from the actinomycete Nocardioides sp. strain LMS-CY was biochemically confirmed to express 4-NBA degradation enzymes, and pnbX was essential for inducible degradation of 4-NBA. Purified PnbX-6His could bind the promoter probe of the pnb locus in vitro, and 4-NBA prevented this binding. 4-NBA could bind PnbX at a 1:1 molar ratio with KD = 26.7 ± 4.2 nM. Low-nanomolar levels of 4-NBA induced the transcription of the pnb operon in strain LMS-CY. PnbX bound a palindromic sequence motif (5'-TTACGTTACA-N8 -TGTAACGTAA-3') that encompasses the pnb promoter. This study identified a TetR-family repressor for the actinomycete-derived pnb operon that recognizes 10-8 M 4-NBA as its ligand, implying that nitro group removal of nitroaromatic compounds may be especially important for actinomycetes.
Collapse
Affiliation(s)
- Minggen Cheng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yingying Qian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ziyu Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Gerben J Zylstra
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Ma X, Qi M, Li Z, Zhao Y, Yan P, Liang B, Wang A. Characterization of an efficient chloramphenicol-mineralizing bacterial consortium. CHEMOSPHERE 2019; 222:149-155. [PMID: 30703654 DOI: 10.1016/j.chemosphere.2019.01.131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/25/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Obtaining efficient antibiotic-mineralizing consortium or pure cultures is a central issue for the deep elimination of antibiotic-contaminated environments. However, the antibiotic chloramphenicol (CAP) mineralizing consortium has not yet been reported. In this study, an efficient CAP-mineralizing consortium was successfully obtained with municipal activated sludge as the initial inoculum. This consortium is capable of aerobically subsisting on CAP as the sole carbon, nitrogen and energy sources and completely degrading 50 mg L-1 CAP within 24 h. After 5 d, 71.50 ± 2.63% of CAP was mineralized and Cl- recovery efficiency was 90.80 ± 7.34%. Interestingly, the CAP degradation efficiency obviously decreased to 18.22 ± 3.52% within 12 h with co-metabolic carbon source glucose. p-nitrobenzoic acid (p-NBA) was identified as an intermediate product during CAP biodegradation. The consortium is also able to utilize p-NBA as the sole carbon and nitrogen sources and almost completely degrade 25 mg L-1p-NBA within 24 h. Microbial community analysis indicated that the dominant genera in the CAP-mineralizing consortium all belong to Proteobacteria (especially Sphingobium with the relative abundance over 63%), and most bacteria could degrade aromatics including p-NBA, suggesting these genera involved in the upstream and downstream pathway of CAP degradation. Although the acclimated consortium has been successively passaged 152 times, the microbial community structure and core genera were not obviously changed, which was consistent with the stable CAP degradation efficiency observed under different generations. This is the first report that the acclimated consortium is able to mineralize CAP through an oxidative pathway with p-NBA as an intermediate product.
Collapse
Affiliation(s)
- Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peisheng Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Zhang CL, Yu YY, Fang Z, Naraginti S, Zhang Y, Yong YC. Recent advances in nitroaromatic pollutants bioreduction by electroactive bacteria. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Wang X, Xing D, Mei X, Liu B, Ren N. Glucose and Applied Voltage Accelerated p-Nitrophenol Reduction in Biocathode of Bioelectrochemical Systems. Front Microbiol 2018; 9:580. [PMID: 29636747 PMCID: PMC5881249 DOI: 10.3389/fmicb.2018.00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
p-Nitrophenol (PNP) is common in the wastewater from many chemical industries. In this study, we investigated the effect of initial concentrations of PNP and glucose and applied voltage on PNP reduction in biocathode BESs and open-circuit biocathode BESs (OC-BES). The PNP degradation efficiency of a biocathode BES with 0.5 V (Bioc-0.5) reached 99.5 ± 0.8%, which was higher than the degradation efficiency of the BES with 0 V (Bioc-0) (62.4 ± 4.5%) and the OC-BES (59.2 ± 12.5%). The PNP degradation rate constant (kPNP) of Bioc-0.5 was 0.13 ± 0.01 h-1, which was higher than the kPNP of Bioc-0 (0.024 ± 0.002 h-1) and OC-BES (0.013 ± 0.0005 h-1). PNP degradation depended on the initial concentrations of glucose and PNP. A glucose concentration of 0.5 g L-1 was best for PNP degradation. The initial PNP increased from 50 to 130 mg L-1 and the kPNP decreased from 0.093 ± 0.008 to 0.027 ± 0.001 h-1. High-throughput sequencing of 16S rRNA gene amplicons indicated differences in microbial community structure between BESs with different voltages and the OC-BES. The predominant populations were affiliated with Streptococcus (42.7%) and Citrobacter (54.1%) in biocathode biofilms of BESs, and Dysgonomonas were the predominant microorganisms in biocathode biofilms of OC-BESs. The predominant populations were different among the cathode biofilms and the suspensions. These results demonstrated that applied voltage and biocathode biofilms play important roles in PNP degradation.
Collapse
Affiliation(s)
| | - Defeng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | | | | | - Nanqi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Degradation Pathways of 2- and 4-Nitrobenzoates in Cupriavidus sp. Strain ST-14 and Construction of a Recombinant Strain, ST-14::3NBA, Capable of Degrading 3-Nitrobenzoate. Appl Environ Microbiol 2016; 82:4253-4263. [PMID: 27208126 DOI: 10.1128/aem.00739-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Strain ST-14, characterized as a member of the genus Cupriavidus, was capable of utilizing 2- and 4-nitrobenzoates individually as sole sources of carbon and energy. Biochemical studies revealed the assimilation of 2- and 4-nitrobenzoates via 3-hydroxyanthranilate and protocatechuate, respectively. Screening of a genomic fosmid library of strain ST-14 constructed in Escherichia coli identified two gene clusters, onb and pob-pca, to be responsible for the complete degradation of 2-nitrobenzoate and protocatechuate, respectively. Additionally, a gene segment (pnb) harboring the genes for the conversion of 4-nitrobenzoate to protocatechuate was unveiled by transposome mutagenesis. Reverse transcription-PCR analysis showed the polycistronic nature of the gene clusters, and their importance in the degradation of 2- and 4-nitrobenzoates was ascertained by gene knockout analysis. Cloning and expression of the relevant pathway genes revealed the transformation of 2-nitrobenzoate to 3-hydroxyanthranilate and of 4-nitrobenzoate to protocatechuate. Finally, incorporation of functional 3-nitrobenzoate dioxygenase into strain ST-14 allowed the recombinant strain to utilize 3-nitrobenzoate via the existing protocatechuate metabolic pathway, thereby allowing the degradation of all three isomers of mononitrobenzoate by a single bacterial strain. IMPORTANCE Mononitrobenzoates are toxic chemicals largely used for the production of various value-added products and enter the ecosystem through industrial wastes. Bacteria capable of degrading mononitrobenzoates are relatively limited. Unlike other contaminants, these man-made chemicals have entered the environment since the last century, and it is believed that bacteria in nature evolved not quite efficiently to assimilate these compounds; as a consequence, to date, there are only a few reports on the bacterial degradation of one or more isomers of mononitrobenzoate. In the present study, fortunately, we have been able to isolate a Cupriavidus sp. strain capable of assimilating both 2- and 4-nitrobenzoates as the sole carbon source. Results of the biochemical and molecular characterization of catabolic genes responsible for the degradation of mononitrobenzoates led us to manipulate a single enzymatic step, allowing the recombinant host organism to expand its catabolic potential to assimilate 3-nitrobenzoate.
Collapse
|
6
|
Quantum mechanical and experimental analyses of TNT metabolite 2-hydroxylamino-4,6-dinitrotoluene. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.09.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Mulla SI, Manjunatha TP, Hoskeri RS, Tallur PN, Ninnekar HZ. Biodegradation of 3-Nitrobenzoate by Bacillus flexus strain XJU-4. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0611-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Li D, Yang M, Li Z, Qi R, He J, Liu H. Change of bacterial communities in sediments along Songhua River in Northeastern China after a nitrobenzene pollution event. FEMS Microbiol Ecol 2008; 65:494-503. [PMID: 18616580 DOI: 10.1111/j.1574-6941.2008.00540.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
More than 100 tons of nitrobenzene and related compounds were released into Songhua River due to the explosion of an aniline production factory in November, 2005. Sediment samples were taken from the heavily polluted drainage canal, one upstream and three downstream river sites. The change of bacterial community structures along the river was studied by denaturing gradient gel electrophoresis (DGGE) and cloning and sequencing of 16S rRNA genes with five clone libraries constructed and 101 sequences acquired representing 172 clones. Both DGGE profiles and sequences of 16S rRNA genes from clone libraries demonstrated that the contaminated drainage canal and three downstream river sites were similar in that all had Betaproteobacteria, mainly grouped into Comamonadaceae, as the dominant group of bacteria, and all had Firmicutes, primarily as Clostridium spp. These results suggest that these latter two groups of bacteria may play potential roles in degradation and detoxification of nitrobenzene in the present contaminated river environments.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
9
|
Ryan MP, Pembroke JT, Adley CC. Ralstonia pickettiiin environmental biotechnology: potential and applications. J Appl Microbiol 2007; 103:754-64. [PMID: 17897177 DOI: 10.1111/j.1365-2672.2007.03361.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenobiotic pollutants such as toluene and trichloroethylene are released into the environment by various industrial processes. Ralstonia pickettii possess significant biotechnological potential in the field of bioremediation and has demonstrated the ability to breakdown many of these toxic substances. Here, we provide a description of the major compounds that various strains of R. pickettii are capable of degrading and a brief review of their breakdown pathways and an argument for its use in bioremediation.
Collapse
Affiliation(s)
- M P Ryan
- Systems Microbiology Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | | | | |
Collapse
|
10
|
Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromatic compounds: an overview. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2007; 85:496-512. [PMID: 17703873 DOI: 10.1016/j.jenvman.2007.06.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 06/18/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
Nitro-aromatic compounds are produced by incomplete combustion of fossil fuel or nitration reactions and are used as chemical feedstock for synthesis of explosives, pesticides, herbicides, dyes, pharmaceuticals, etc. The indiscriminate use of nitro-aromatics in the past due to wide applications has resulted in inexorable environmental pollution. Hence, nitro-aromatics are recognized as recalcitrant and given Hazardous Rating-3. Although several conventional pump and treat clean up methods are currently in use for the removal of nitro-aromatics, none has proved to be sustainable. Recently, remediation by biological systems has attracted worldwide attention to decontaminate nitro-aromatics polluted sources. The incredible versatility inherited in microbes has rendered these compounds as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or non-specific transformation of nitro-aromatics either by aerobic or anaerobic processes. Aerobic degradation of nitro-aromatics applies mainly to mono-, dinitro-derivatives and to some extent to poly-nitro-aromatics through oxygenation by: (i) monooxygenase, (ii) dioxygenase catalyzed reactions, (iii) Meisenheimer complex formation, and (iv) partial reduction of aromatic ring. Under anaerobic conditions, nitro-aromatics are reduced to amino-aromatics to facilitate complete mineralization. The nitro-aromatic explosives from contaminated sediments are effectively degraded at field scale using in situ bioremediation strategies, while ex situ techniques using whole cell/enzyme(s) immobilized on a suitable matrix/support are gaining acceptance for decontamination of nitrophenolic pesticides from soils at high chemical loading rates. Presently, the qualitative and quantitative performance of biological approaches of remediation is undergoing improvement due to: (i) knowledge of catabolic pathways of degradation, (ii) optimization of various parameters for accelerated degradation, and (iii) design of microbe(s) through molecular biology tools, capable of detoxifying nitro-aromatic pollutants. Among them, degradative plasmids have provided a major handle in construction of recombinant strains. Although recombinants designed for high performance seem to provide a ray of hope, their true assessment under field conditions is required to address ecological considerations for sustainable bioremediation.
Collapse
Affiliation(s)
- Meenal Kulkarni
- School of Life Sciences, North Maharashtra University, P.B. No. 80, Jalgaon 425 001, Maharashtra, India
| | | |
Collapse
|
11
|
Liu G, Zhou J, Lv H, Xiang X, Wang J, Zhou M, Qv Y. Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase. Appl Microbiol Biotechnol 2007; 76:1271-9. [PMID: 17846764 DOI: 10.1007/s00253-007-1087-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 06/04/2007] [Accepted: 06/10/2007] [Indexed: 11/30/2022]
Abstract
Previously reported azoreductase (AZR) from Rhodobacter sphaeroides AS1.1737 was shown to be a flavodoxin possessing nitroreductase and flavin mononucleotide (FMN) reductase activities. The structure model of AZR constructed with SWISS-MODEL displayed a flavodoxin-like fold with a three-layer alpha/beta/alpha structure. With nitrofurazone as substrate, the optimal pH value and temperature were 7.0 and 50 degrees C, respectively. AZR could reduce a number of nitroaromatic compounds including 2,4-dinitrotoluene, 2,6-dinitrotoluene, 3,5-dinitroaniline, and 2,4,6-trinitrotoluene (TNT). TNT resulted to be the most efficient nitro substrate and was reduced to hydroxylamino-dinitrotoluene. Both NADH and NADPH could serve as electron donors of AZR, where the latter was preferred. Externally added FMN was also reduced by AZR via ping-pong mechanism and was a competitive inhibitor of NADPH, methyl red, and nitrofurazone. AZR with broad substrate specificity is a member of a new nitro/FMN reductase family demonstrating potential application in bioremediation.
Collapse
Affiliation(s)
- Guangfei Liu
- School of Environmental and Biological Science and Technology, Dalian University of Technology, 116024 Dalian, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Caballero A, Ramos JL. A double mutant of Pseudomonas putida JLR11 deficient in the synthesis of the nitroreductase PnrA and assimilatory nitrite reductase NasB is impaired for growth on 2,4,6-trinitrotoluene (TNT). Environ Microbiol 2006; 8:1306-10. [PMID: 16817939 DOI: 10.1111/j.1462-2920.2006.01012.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida JLR11 can grow on 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. We created nasB (nitrite reductase), pnrA (nitroaromatic reductase) and pnrA nasB mutants and tested their growth with TNT as the sole N source. The nasB and pnrA mutants grew at a reduced rate on TNT, whereas the double nasB pnrA mutant did not. This suggests that P. putida JLR11 carries out multiple enzymatic attacks on TNT-releasing nitrite and/or ammonium. The PnrA nitroreductase plays a key role in the reduction of TNT to 2,6-dinitro-4-hydroxylaminotoluene and the subsequent release of ammonium for growth.
Collapse
Affiliation(s)
- Antonio Caballero
- Estación Experimental del Zaidin, Department of Biochemistry, Profesor Albareda 1, 18008 Granada, Spain
| | | |
Collapse
|
13
|
Providenti MA, Shaye RE, Lynes KD, McKenna NT, O'brien JM, Rosolen S, Wyndham RC, Lambert IB. The locus coding for the 3-nitrobenzoate dioxygenase of Comamonas sp. strain JS46 is flanked by IS1071 elements and is subject to deletion and inversion events. Appl Environ Microbiol 2006; 72:2651-60. [PMID: 16597970 PMCID: PMC1449074 DOI: 10.1128/aem.72.4.2651-2660.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Comamonas sp. strain JS46, 3-nitrobenzoate (3Nba) is initially oxidized at the 3,4 position by a dioxygenase, which results in release of nitrite and production of protocatechuate. The locus coding for the 3Nba dioxygenase (designated mnb, for m-nitrobenzoate) was mobilized from strain JS46 using a plasmid capture method, cloned, and sequenced. The 3Nba dioxygenase (MnbA) is a member of the phthalate family of aromatic oxygenases. An open reading frame designated mnbB that codes for an NAD(P)H-dependent class IA aromatic oxidoreductase is downstream of mnbA. MnbB is tentatively identified as the oxidoreductase that transfers reducing equivalents to MnbA in strain JS46. The mnb locus is flanked by IS1071 elements. The upstream element is interrupted by a novel insertion sequence designated ISCsp1, and the transposase genes of the flanking insertion elements are transcribed in the direction opposite the direction of mnbA transcription. Spontaneous deletion of mnb occurs because of homologous recombination between the directly repeated flanking IS1071 elements. In addition, in approximately 0.007 to 0.2% of any population of JS46 cells growing on 3Nba, alternative orientations of mnb relative to the flanking IS1071 elements are detected. These alternative forms are the result of inversions of mnb and the flanking IS1071 elements. Inversions appear to occur because of homologous recombination between the inverted repeats that flank the IS1071 elements.
Collapse
Affiliation(s)
- Miguel A Providenti
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Caballero A, Lázaro JJ, Ramos JL, Esteve-Núñez A. PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 2005; 7:1211-9. [PMID: 16011758 DOI: 10.1111/j.1462-2920.2005.00801.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitroreductases are a group of proteins that catalyse pyridine nucleotide-dependent reduction of nitroaromatics compounds, showing significant human health and environmental implications. In this study we have identified the nitroreductase-family enzymes PnrA and PnrB from the TNT-degrading strain Pseudomonas putida. The enzyme encoded by the pnrA gene was expressed in Escherichia coli, purified to homogeneity and shown to be a flavoprotein that used 2 mol of NADPH to reduce 1 mol of 2,4,6-trinitrotoluene (TNT) to 4-hydroxylamine-2,6-dinitrotoluene, using a ping-pong bi-bi mechanism. The PnrA enzyme also recognized as substrates as a number of other nitroaromatic compounds, i.e. 2,4-dinitrotoluene, 3-nitrotoluene, 3- and 4-nitrobenzoate, 3,5-dinitrobenzamide and 3,5-dinitroaniline expanding the substrates profile from previously described nitroreductases. However, TNT resulted to be the most efficient substrate examined according to the Vmax/Km parameter. Expression analysis of pnrA- and pnrB-mRNA isolated from cells growing on different nitrogen sources suggested that expression of both genes was constitutive and that its level of expression was relatively constant regardless of the growth substrate. This is in agreement with enzyme-specific activity determined with cells growing with different N-sources.
Collapse
Affiliation(s)
- Antonio Caballero
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apdo Correos 419, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
15
|
Caballero A, Esteve-Núñez A, Zylstra GJ, Ramos JL. Assimilation of nitrogen from nitrite and trinitrotoluene in Pseudomonas putida JLR11. J Bacteriol 2005; 187:396-9. [PMID: 15601726 PMCID: PMC538816 DOI: 10.1128/jb.187.1.396-399.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida JLR11 releases nitrogen from the 2,4,6-trinitrotoluene (TNT) ring as nitrite or ammonium. These processes can occur simultaneously, as shown by the observation that a nasB mutant impaired in the reduction of nitrite to ammonium grew at a slower rate than the parental strain. Nitrogen from TNT is assimilated via the glutamine syntethase-glutamate synthase (GS-GOGAT) pathway, as evidenced by the inability of GOGAT mutants to use TNT. This pathway is also used to assimilate ammonium from reduced nitrate and nitrite. Three mutants that had insertions in ntrC, nasT, and cnmA, which encode regulatory proteins, failed to grow on nitrite but grew on TNT, although slower than the wild type.
Collapse
Affiliation(s)
- Antonio Caballero
- Consejo Superior de Investigaciones Cientificas, Estación Experimental del Zaidin, Department of Biochemistry and Molecular and Cellular Biology of Plants, Granada, Spain
| | | | | | | |
Collapse
|
16
|
Pandey G, Paul D, Jain RK. Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: identification of new intermediates. FEMS Microbiol Lett 2004; 229:231-6. [PMID: 14680704 DOI: 10.1016/s0378-1097(03)00844-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have earlier reported a novel reductive pathway for o-nitrobenzoate (ONB) degradation (at 0.5 mM) in Arthrobacter protophormiae RKJ100, which proceeds via the formation of o-hydroxylaminobenzoate (HABA) and anthranilate (AA). During growth of this organism at 40 times higher concentration (20 mM) of ONB, 3-hydroxyanthranilate (HAA) was identified as an intermediate by thin layer chromatography, gas chromatography and high performance liquid chromatography studies. Crude cell extracts of ONB-grown cells showed HAA 3,4-dioxygenase activity suggesting HAA as a terminal aromatic intermediate of the catabolic energy-yielding pathway as shown before in Pseudomonas fluorescens strain KU-7. HAA is further cleaved to 2-amino-3-carboxymuconic-6-semialdehyde by the action of HAA 3,4-dioxygenase. In this report we propose that ONB degradation occurs via the formation of HABA and the pathway branches at this point to form the two different aromatic intermediates AA and HAA by the action of a reductase and a mutase, respectively.
Collapse
Affiliation(s)
- Gunjan Pandey
- Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | | | |
Collapse
|
17
|
Nadeau LJ, He Z, Spain JC. Bacterial conversion of hydroxylamino aromatic compounds by both lyase and mutase enzymes involves intramolecular transfer of hydroxyl groups. Appl Environ Microbiol 2003; 69:2786-93. [PMID: 12732549 PMCID: PMC154516 DOI: 10.1128/aem.69.5.2786-2793.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H(2)(18)O did not indicate any (18)O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was (18)O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.
Collapse
Affiliation(s)
- Lloyd J Nadeau
- Air Force Research Laboratory, 139 Barnes Drive, Suite 2, Tyndall Air Force Base, FL 32403, USA
| | | | | |
Collapse
|
18
|
Peres CM, Russ R, Lenke H, Agathos SN. Biodegradation of 4-nitrobenzoate, 4-aminobenzoate and their mixtures: new strains, unusual metabolites and insights into pathway regulation. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00863.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Esteve-Núñez A, Caballero A, Ramos JL. Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 2001; 65:335-52, table of contents. [PMID: 11527999 PMCID: PMC99030 DOI: 10.1128/mmbr.65.3.335-352.2001] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve mineralization or reduction of TNT and immobilization of its amino derivatives on humic material. These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done.
Collapse
Affiliation(s)
- A Esteve-Núñez
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Apdo Correos 419, E-18008 Granada, Spain
| | | | | |
Collapse
|
20
|
Peres CM, Agathos SN. Biodegradation of nitroaromatic pollutants: from pathways to remediation. BIOTECHNOLOGY ANNUAL REVIEW 2001; 6:197-220. [PMID: 11193295 DOI: 10.1016/s1387-2656(00)06023-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitroaromatic compounds are important contaminants of the environment, mainly of anthropogenic origin. They are produced as intermediates and products in the industrial manufacturing of dyes, explosives, pesticides, etc. Their toxicity has been extensively demonstrated in a whole range of living organisms, and nitroaromatic contamination dating from World War II is the proof of the recalcitrance of such compounds to microbial recycling. In spite of this, bacteria have evolved diverse pathways that allow them to mineralize specific nitroaromatic compounds. Degradation sequences initiated by an oxidation, an attack by a hydride ion, or a partial reduction have been documented. Some of these reactions have been exploited in bioreactors. Although pathways and enzymes involved are rather well understood, the molecular basis of these pathways is still currently under investigation. However, productive metabolism is an exception. As a rule, most bacteria are only able to reduce the nitro group into an amino function. This reduction is cometabolic: the metabolism of exogenous carbon sources is required to provide reducing equivalents. Composting and processes in bioreactors have exploited the easy reduction of the nitroaromatic compounds. In the case an amino-aromatic compound is produced, it is important to incorporate it in the remediation scheme. Some processes dealing with both nitro- and amino-aromatic compounds have been described, the amino derivative being either mineralized by the same or, more often, another microorganism, or immobilized on soil particles. Depending on the nitroaromatic compound and the environment it is contaminating, a whole range of reactions and reactor studies are now available to help devise a successful remediation strategy.
Collapse
Affiliation(s)
- C M Peres
- Unité de Génie Biologique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
21
|
Hughes MA, Williams PA. Cloning and characterization of the pnb genes, encoding enzymes for 4-nitrobenzoate catabolism in Pseudomonas putida TW3. J Bacteriol 2001; 183:1225-32. [PMID: 11157934 PMCID: PMC94995 DOI: 10.1128/jb.183.4.1225-1232.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida strain TW3 is able to metabolize 4-nitrotoluene via 4-nitrobenzoate (4NBen) and 3, 4-dihydroxybenzoic acid (protocatechuate [PCA]) to central metabolites. We have cloned, sequenced, and characterized a 6-kbp fragment of TW3 DNA which contains five genes, two of which encode the enzymes involved in the catabolism of 4NBen to PCA. In order, they encode a 4NBen reductase (PnbA) which is responsible for catalyzing the direct reduction of 4NBen to 4-hydroxylaminobenzoate with the oxidation of 2 mol of NADH per mol of 4NBen, a reductase-like enzyme (Orf1) which appears to have no function in the pathway, a regulator protein (PnbR) of the LysR family, a 4-hydroxylaminobenzoate lyase (PnbB) which catalyzes the conversion of 4-hydroxylaminobenzoate to PCA and ammonium, and a second lyase-like enzyme (Orf2) which is closely associated with pnbB but appears to have no function in the pathway. The central pnbR gene is transcribed in the opposite direction to the other four genes. These genes complete the characterization of the whole pathway of 4-nitrotoluene catabolism to the ring cleavage substrate PCA in P. putida strain TW3.
Collapse
Affiliation(s)
- M A Hughes
- School of Biological Sciences, University of Wales Bangor, Bangor, Gwynedd LL57 2UW, Wales, United Kingdom
| | | |
Collapse
|
22
|
Hasegawa Y, Muraki T, Tokuyama T, Iwaki H, Tatsuno M, Lau PC. A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7. FEMS Microbiol Lett 2000; 190:185-90. [PMID: 11034277 DOI: 10.1111/j.1574-6968.2000.tb09284.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A bacterial strain KU-7, identified as a Pseudomonas fluorescens by 16S rDNA sequencing, was one of the 12 new isolates that are able to grow on 2-nitrobenzoate as a sole source of carbon, nitrogen, and energy. Resting cells of KU-7 were found to accumulate ammonia in the medium indicating that degradation of 2-NBA proceeds through a reductive route. Metabolite analyses by thin layer chromatography and high pressure liquid chromatography indicated that 3-hydroxyanthranilate is an intermediate of 2-nitrobenzoate metabolism in KU-7 cells. This offers an alternative route to 2-nitrobenzoate metabolism since anthranilate (2-aminobenzoate) or catechol were detected as intermediates in other bacteria. Crude extracts of KU-7 cells converted 2-nitrobenzoate to 3-hydroxyanthranilate with oxidation of 2 mol of NADPH. Ring cleavage of 3-hydroxyanthranilate produced a transient yellow product, identified as 2-amino-3-carboxymuconic 6-semialdehyde, that has a maximum absorbance at 360 nm. The initial enzymes of the 2-nitrobenzoate degradation pathway were found to be inducible since succinate-grown cells produced very low enzyme activities. A pathway for 2-nitrobenzoate degradation in KU-7 was proposed.
Collapse
Affiliation(s)
- Y Hasegawa
- Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
James KD, Hughes MA, Williams PA. Cloning and expression of ntnD, encoding a novel NAD(P)(+)-independent 4-nitrobenzyl alcohol dehydrogenase from Pseudomonas sp. Strain TW3. J Bacteriol 2000; 182:3136-41. [PMID: 10809692 PMCID: PMC94499 DOI: 10.1128/jb.182.11.3136-3141.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain TW3 is able to metabolize 4-nitrotoluene to 4-nitrobenzoate and toluene to benzoate aerobically via a route analogous to the upper pathway of the TOL plasmids. We report the cloning and characterization of a benzyl alcohol dehydrogenase gene (ntnD) which encodes the enzyme for the catabolism of 4-nitrobenzyl alcohol and benzyl alcohol to 4-nitrobenzaldehyde and benzaldehyde, respectively. The gene is located downstream of the previously reported ntn gene cluster. NtnD bears no similarity to the analogous TOL plasmid XylB (benzyl alcohol dehydrogenase) protein either in its biochemistry, being NAD(P)(+) independent and requiring assay via dye-linked electron transfer, or in its deduced amino acid sequence. It does, however, have significant similarity in its amino acid sequence to other NAD(P)(+)-independent alcohol dehydrogenases and contains signature patterns characteristic of type III flavin adenine dinucleotide-dependent alcohol oxidases. Reverse transcription-PCR demonstrated that ntnD is transcribed during growth on 4-nitrotoluene, although apparently not as part of the same transcript as the other ntn genes. The substrate specificity of the enzyme expressed from the cloned and overexpressed gene was similar to the activity expressed from strain TW3 grown on 4-nitrotoluene, providing evidence that ntnD is the previously unidentified gene in the pathway of 4-nitrotoluene catabolism. Examination of the 14.8-kb region around the ntn genes suggests that one or more recombination events have been involved in the formation of their current organization.
Collapse
Affiliation(s)
- K D James
- School of Biological Sciences, University of Wales Bangor, Bangor, Gwynedd LL57 2UW, Wales, United Kingdom
| | | | | |
Collapse
|
24
|
Samanta SK, Bhushan B, Chauhan A, Jain RK. Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 2000; 269:117-23. [PMID: 10694487 DOI: 10.1006/bbrc.2000.2204] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A Ralstonia sp. SJ98, isolated by a chemotactic enrichment technique, was capable of utilizing different nitroaromatic compounds (NACs). It utilized p-nitrophenol, 4-nitrocatechol, o-nitrobenzoic acid, and p-nitrobenzoic acid as the sole source of carbon and energy. It was observed that Ralstonia sp. SJ98 was chemotactic to the above-mentioned NACs as tested by the drop assay, swarm plate assay, and capillary assay. However, it failed to show chemotactic behavior toward those compounds which were not degraded by the microorganism. This is the first report which shows the chemotaxis of a microorganism toward different NACs and their subsequent degradation. Some of the intermediates of the NACs' degradative pathways have been identified using TLC, GC, and GC-MS studies. The results presented here indicate a correlation between chemotaxis and biodegradation of NACs.
Collapse
Affiliation(s)
- S K Samanta
- Environmental Biotechnology Laboratory, Institute of Microbial Technology, Sector-39A, Chandigarh, 160036, India
| | | | | | | |
Collapse
|
25
|
Chauhan A, Jain RK. Degradation of o-nitrobenzoate via anthranilic acid (o-aminobenzoate) by Arthrobacter protophormiae: a plasmid-encoded new pathway. Biochem Biophys Res Commun 2000; 267:236-44. [PMID: 10623604 DOI: 10.1006/bbrc.1999.1949] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An Arthrobacter protophormiae strain RKJ100, isolated by selective enrichment, was capable of utilizing o-nitrobenzoate (ONB(+)) as the sole carbon, nitrogen, and energy source. The degradation of ONB proceeds through an oxygen insensitive reductive route as shown by the release of ammonia in the culture medium aerobically rather than nitrite ions. Thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry of the intermediates have shown that ONB is degraded by a two-electron reduction of the nitro moiety, yielding o-hydroxylaminobenzoate and anthranilic acid. Quantitation of the intermediates, inhibition studies, and simultaneous induction studies have shown that anthranilic acid is produced as the terminal aromatic intermediate of a catabolic energy-yielding pathway and not as a side reaction taking place concurrently which is the first such report. A plasmid of approximately 65 kb was found to be responsible for harboring genes for ONB degradation in this strain. The same plasmid also encoded resistance to cobalt ions.
Collapse
Affiliation(s)
- A Chauhan
- Environmental Biotechnology Laboratory, Institute of Microbial Technology, Sector-39A, Chandigarh, 160036, India
| | | |
Collapse
|
26
|
Schenzle A, Lenke H, Spain JC, Knackmuss HJ. 3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 catalyzes a Bamberger rearrangement. J Bacteriol 1999; 181:1444-50. [PMID: 10049374 PMCID: PMC93532 DOI: 10.1128/jb.181.5.1444-1450.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Accepted: 10/20/1998] [Indexed: 11/20/2022] Open
Abstract
3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 is involved in the degradative pathway of 3-nitrophenol, in which it catalyzes the conversion of 3-hydroxylaminophenol to aminohydroquinone. To show that the reaction was really catalyzed by a single enzyme without the release of intermediates, the corresponding protein was purified to apparent homogeneity from an extract of cells grown on 3-nitrophenol as the nitrogen source and succinate as the carbon and energy source. 3-Hydroxylaminophenol mutase appears to be a relatively hydrophobic but soluble and colorless protein consisting of a single 62-kDa polypeptide. The pI was determined to be at pH 4.5. In a database search, the NH2-terminal amino acid sequence of the undigested protein and of two internal sequences of 3-hydroxylaminophenol mutase were found to be most similar to those of glutamine synthetases from different species. Hydroxylaminobenzene, 4-hydroxylaminotoluene, and 2-chloro-5-hydroxylaminophenol, but not 4-hydroxylaminobenzoate, can also serve as substrates for the enzyme. The enzyme requires no oxygen or added cofactors for its reaction, which suggests an enzymatic mechanism analogous to the acid-catalyzed Bamberger rearrangement.
Collapse
Affiliation(s)
- A Schenzle
- Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik, D-70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
27
|
Holt DE, Bajoria R. The role of nitro-reduction and nitric oxide in the toxicity of chloramphenicol. Hum Exp Toxicol 1999; 18:111-8. [PMID: 10100024 DOI: 10.1177/096032719901800208] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent work on the toxicology of chloramphenicol suggests that its propensity to cause damage to the blood forming organs may be related to its potential for nitro-reduction and the subsequent production of nitric oxide. In this study both aerobic and anaerobic nitro-reduction of chloramphenicol by human foetal and neonatal liver results in the production of the amine derivative. However intermediates of the reaction nitroso- or glutathionesulphinamido-chloramphenicol could not be detected by hplc. Perfusion of chloramphenicol through isolated lobules of human placentae caused a decrease in blood pressure at a time which coincided with a peak of nitric oxide production. However, although the pressure drop could be reversed by an inhibitor of nitric oxide synthetase, the nitric oxide profile remained the same. These observations suggest that involvement of the para-nitro group of chloramphenicol could cause both hemotoxicity and hypotension in susceptible individuals.
Collapse
Affiliation(s)
- D E Holt
- Karim Centre for Meningitis Research, ICSM Department of Paediatrics & Neonatal Medicine, Queen Charlotte's & Chelsea Hospital, London, UK
| | | |
Collapse
|
28
|
James KD, Williams PA. ntn genes determining the early steps in the divergent catabolism of 4-nitrotoluene and toluene in Pseudomonas sp. strain TW3. J Bacteriol 1998; 180:2043-9. [PMID: 9555884 PMCID: PMC107128 DOI: 10.1128/jb.180.8.2043-2049.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas sp. strain TW3 is able to oxidatively metabolize 4-nitrotoluene and toluene via a route analogous to the upper pathway of the TOL plasmids. We report the sequence and organization of five genes, ntnWCMAB*, which are very similar to and in the same order as the xyl operon of TOL plasmid pWW0 and present evidence that they encode enzymes which are expressed during growth on both 4-nitrotoluene and toluene and are responsible for their oxidation to 4-nitrobenzoate and benzoate, respectively. These genes encode an alcohol dehydrogenase homolog (ntnW), an NAD+-linked benzaldehyde dehydrogenase (ntnC), a two-gene toluene monooxygenase (ntnMA), and part of a benzyl alcohol dehydrogenase (ntnB*), which have 84 to 99% identity at the nucleotide and amino acid levels with the corresponding xylWCMAB genes. The xylB homolog on the TW3 genome (ntnB*) appears to be a pseudogene and is interrupted by a piece of DNA which destroys its functional open reading frame, implicating an additional and as-yet-unidentified benzyl alcohol dehydrogenase gene in this pathway. This conforms with the observation that the benzyl alcohol dehydrogenase expressed during growth on 4-nitrotoluene and toluene differs significantly from the XylB protein, requiring assay via dye-linked electron transfer rather than through a nicotinamide cofactor. The further catabolism of 4-nitrobenzoate and benzoate diverges in that the former enters the hydroxylaminobenzoate pathway as previously reported, while the latter is further metabolized via the beta-ketoadipate pathway.
Collapse
Affiliation(s)
- K D James
- School of Biological Sciences, University of Wales, Bangor, Gwynedd, United Kingdom
| | | |
Collapse
|
29
|
Spiess T, Desiere F, Fischer P, Spain JC, Knackmuss HJ, Lenke H. A new 4-nitrotoluene degradation pathway in a Mycobacterium strain. Appl Environ Microbiol 1998; 64:446-52. [PMID: 9464378 PMCID: PMC106064 DOI: 10.1128/aem.64.2.446-452.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/1997] [Accepted: 11/11/1997] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium sp. strain HL 4-NT-1, isolated from a mixed soil sample from the Stuttgart area, utilized 4-nitrotoluene as the sole source of nitrogen, carbon, and energy. Under aerobic conditions, resting cells of the Mycobacterium strain metabolized 4-nitrotoluene with concomitant release of small amounts of ammonia; under anaerobic conditions, 4-nitrotoluene was completely converted to 6-amino-m-cresol. 4-Hydroxylaminotoluene was converted to 6-amino-m-cresol by cell extracts and thus could be confirmed as the initial metabolite in the degradative pathway. This enzymatic equivalent to the acid-catalyzed Bamberger rearrangement requires neither cofactors nor oxygen. In the same crucial enzymatic step, the homologous substrate hydroxylaminobenzene was rearranged to 2-aminophenol. Abiotic oxidative dimerization of 6-amino-m-cresol, observed during growth of the Mycobacterium strain, yielded a yellow dihydrophenoxazinone. Another yellow metabolite (lambda max, 385 nm) was tentatively identified as 2-amino-5-methylmuconic semialdehyde, formed from 6-amino-m-cresol by meta ring cleavage.
Collapse
Affiliation(s)
- T Spiess
- Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss HJ. Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 1998; 64:246-52. [PMID: 16349484 PMCID: PMC124701 DOI: 10.1128/aem.64.1.246-252.1998] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/1997] [Accepted: 11/03/1997] [Indexed: 11/20/2022] Open
Abstract
Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur.
Collapse
Affiliation(s)
- C Vorbeck
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik, and Institut für Mikrobiologie and Institut für Organische Chemie der Universität Stuttgart, D-70569 Stuttgart, Germany, and Armstrong Laboratory AL/EQC, Tyndall Air Force Base, Florida 32403-5233
| | | | | | | | | |
Collapse
|
31
|
Schenzle A, Lenke H, Fischer P, Williams PA, Knackmuss H. Catabolism of 3-Nitrophenol by Ralstonia eutropha JMP 134. Appl Environ Microbiol 1997; 63:1421-7. [PMID: 16535572 PMCID: PMC1389550 DOI: 10.1128/aem.63.4.1421-1427.1997] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia eutropha JMP 134 utilizes 3-nitrophenol as the sole source of nitrogen, carbon, and energy. The entire catabolic pathway of 3-nitrophenol is chromosomally encoded. An initial NADPH-dependent reduction of 3-nitrophenol was found in cell extracts of strain JMP 134. By use of a partially purified 3-nitrophenol nitroreductase from 3-nitrophenol-grown cells, 3-hydroxylaminophenol was identified as the initial reduction product. Resting cells of R. eutropha JMP 134 metabolized 3-nitrophenol to N-acetylaminohydroquinone under anaerobic conditions. With cell extracts, 3-hydroxylaminophenol was converted into aminohydroquinone. This enzyme-mediated transformation corresponds to the acid-catalyzed Bamberger rearrangement. Enzymatic conversion of the analogous hydroxylaminobenzene yields a mixture of 2- and 4-aminophenol.
Collapse
|
32
|
Meulenberg R, Pepi M, de Bont JA. Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol. Biodegradation 1996; 7:303-11. [PMID: 8987889 DOI: 10.1007/bf00115744] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Growth of Pseudomonas putida B2 in chemostat cultures on a mixture of 3-nitrophenol and glucose induced 3-nitrophenol and 1,2,4-benzenetriol-dependent oxygen uptake activities. Anaerobic incubations of cell suspensions with 3-nitrophenol resulted in complete conversions of the substrate to ammonia and 1,2,4-benzenetriol. This indicates that P. putida B2 degrades 3-nitrophenol via 1,2,4-benzenetriol, via a pathway involving a hydroxylaminolyase. Involvement of this pathway in nitroaromatic metabolism has previously only been found for degradation of 4-nitrobenzoate. Reduction of 3 nitrophenol by cell-free extracts was strictly NADPH-dependent. Attempts to purify the enzymes responsible for 3-nitrophenol metabolism were unsuccessful, because their activities were extremely unstable. 3-Nitrophenol reductase was therefore characterized in cell-free extracts. The enzyme had a sharp pH optimum at pH 7 and a temperature optimum at 25 degrees C. At 30 degrees C, reductase activity was completely destroyed within one hour, while at 0 degrees C, the activity in cell-free extracts was over 100-fold more stable. The Km values for NADPH and 3-nitrophenol were estimated at 0.17 mM and below 2 microM, respectively. The substrate specificity of the reductase activity was very broad: all 17 nitroaromatics tested were reduced by cell-free extracts. However, neither intact cells nor cell-free extracts could convert a set of synthesized hydroxylaminoaromatic compounds to the corresponding catechols and ammonia. Apparently, the hydroxylaminolyase of P. putida B2 has a very narrow substrate specificity, indicating that this organism is not a suitable biocatalyst for the industrial production of catechols from nitroaromatics.
Collapse
Affiliation(s)
- R Meulenberg
- Wageningen Agricultural University, Department of Food Science, The Netherlands
| | | | | |
Collapse
|
33
|
Pieper DH, Timmis KN, Ramos JL. Designing bacteria for the degradation of nitro- and chloroaromatic pollutants. Naturwissenschaften 1996. [DOI: 10.1007/bf01143325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Yabannavar AV, Zylstra GJ. Cloning and characterization of the genes for p-nitrobenzoate degradation from Pseudomonas pickettii YH105. Appl Environ Microbiol 1995; 61:4284-90. [PMID: 8534095 PMCID: PMC167739 DOI: 10.1128/aem.61.12.4284-4290.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas pickettii YH105 was isolated for its ability to utilize p-nitrobenzoate as the sole source of carbon, nitrogen, and energy. Degradation of p-nitrobenzoate by this strain proceeds through a reductive route as evidenced by the accumulation of ammonia in the culture medium during growth on p-nitrobenzoate. Enzyme assays and high-performance liquid chromatography (HPLC) analysis of culture supernatants indicate that p-nitrobenzoate is degraded through p-hydroxylaminobenzoate and protocatechuate. In order to clone the genes responsible for the initial steps in the catabolic pathway, a cosmid library was constructed with P. pickettii YH105 genomic DNA. The library was screened for clones capable of transforming p-nitrobenzoate to protocatechuate, using a plate assay specific for diphenolic compounds. HPLC analysis of culture supernatants confirmed that the cosmid clones did indeed produce protocatechuate from p-nitrobenzoate. Five positive cosmid clones that possessed this activity were identified. Restriction digests of the cosmid clones indicated that all of the clones had two EcoRI fragments in common (3.9 and 1.0 kb). One of these cosmid clones, designated pGJZ1601, was chosen for further analysis. Subcloning and activity assay experiments localized the genes responsible for the conversion of p-nitrobenzoate to protocatechuate to a 1.4-kb SalI-SphI DNA fragment. Further subcloning experiments localized the gene coding for p-nitrobenzoate reductase, responsible for the first enzymatic step in the catabolic pathway, to a 0.8-kb SalI-ApaI DNA fragment. The gene for the second step in the catabolic pathway, coding for hydroxylaminolyase, was located adjacent to the gene for the p-nitrobenzoate reductase.
Collapse
Affiliation(s)
- A V Yabannavar
- Center for Agricultural Molecular Biology, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231, USA
| | | |
Collapse
|
35
|
Microbial degradation of nitrogenous xenobiotics of environmental concern. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0079-6352(06)80025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Field JA, Stams AJ, Kato M, Schraa G. Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie Van Leeuwenhoek 1995; 67:47-77. [PMID: 7741529 DOI: 10.1007/bf00872195] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Toxic aromatic pollutants, concentrated in industrial wastes and contaminated sites, can potentially be eliminated by low cost bioremediation systems. Most commonly, the goal of these treatment systems is directed at providing optimum environmental conditions for the mineralization of the pollutants by naturally occurring microflora. Electrophilic aromatic pollutants with multiple chloro, nitro and azo groups have proven to be persistent to biodegradation by aerobic bacteria. These compounds are readily reduced by anaerobic consortia to lower chlorinated aromatics or aromatic amines but are not mineralized further. The reduction increases the susceptibility of the aromatic molecule for oxygenolytic attack. Sequencing anaerobic and and aerobic biotreatment steps provide enhanced mineralization of many electrophilic aromatic pollutants. The combined activity of anaerobic and aerobic bacteria can also be obtained in a single treatment step if the bacteria are immobilized in particulate matrices (e.g. biofilm, soil aggregate, etc.). Due to the rapid uptake of oxygen by aerobes and facultative bacteria compared to the slow diffusion of oxygen, oxygen penetration into active biofilms seldom exceeds several hundred micrometers. The anaerobic microniches established inside the biofilms can be applied to the reduction of electron withdrawing functional groups in order to prepare recalcitrant aromatic compounds for further mineralization in the aerobic outer layer of the biofilm. Aside from mineralization, polyhydroxylated and chlorinated phenols as well as nitroaromatics and aromatic amines are susceptible to polymerization in aerobic environments. Consequently an alternative approach for bioremediation systems can be directed towards incorporating these aromatic pollutants into detoxified humic-like substances. The activation of aromatic pollutants for polymerization can potentially be encouraged by an anaerobic pretreatment step prior to oxidation. Anaerobic bacteria can modify aromatic pollutants by demethylating methoxy groups and reducing nitro groups. The resulting phenols and aromatic amines are readily polymerized in a subsequent aerobic step.
Collapse
Affiliation(s)
- J A Field
- Department of Environmental Technology, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
37
|
An D, Gibson DT, Spain JC. Oxidative release of nitrite from 2-nitrotoluene by a three-component enzyme system from Pseudomonas sp. strain JS42. J Bacteriol 1994; 176:7462-7. [PMID: 8002568 PMCID: PMC197201 DOI: 10.1128/jb.176.24.7462-7467.1994] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas sp. strain JS42 utilizes 2-nitrotoluene (2NT) as the sole source of carbon and energy for growth. Intact cells catalyze the oxidation of 2NT to 3-methylcatechol and nitrite in a reaction that requires molecular oxygen. Cell extracts oxidized 2NT to 3-methylcatechol and nitrite in the presence of NAD(P)H and ferrous iron. Ion-exchange chromatography yielded three protein fractions (A, B, and C) which were all required for the oxidation of 2NT to 3-methylcatechol and nitrite. Component B (reductase2NT) catalyzed a NAD(P)H-dependent reduction of cytochrome c. Solutions of component A (ISP2NT) were brown and showed absorption maxima at 458 and 324 nm. Two major bands with M(r)s 52,500 and 28,000 were observed when ISP2NT was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Component C could be replaced by ferredoxin NAP from the Pseudomonas putida NCIB 9816-4 naphthalene dioxygenase system and was given the designation ferredoxin2NT. Experiments with 18O2 showed that both oxygen atoms were added to the aromatic ring of 2NT to yield 3-methylcatechol. The enzyme is a new multicomponent enzyme system which we have designated 2NT 2,3-dioxygenase.
Collapse
Affiliation(s)
- D An
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
38
|
Abstract
New obligately anaerobic bacteria are being discovered at an accelerating rate and it is becoming very evident that the diversity of anoxic biotransformations has been greatly underestimated. Furthermore, among contemporary anaerobes there are many that thrive in extreme environments including, for example, an impressive array of both archaebacterial and eubacterial hyperthermophiles. Free energy for growth and reproduction may be conserved not only via fermentations but also by anoxygenic photophosphorylation and other modes of creating transmembrane proton potential. Thus forms of anaerobic respiration in which various inorganic oxidants (or indeed carbon dioxide) serve as terminal electron acceptors have greatly extended the natural habitats in which such organisms may predominate. Anaerobic bacteria are, however, often found in nature as members of close microbial communities (consortia) that, although sustained by syntrophic and other relations between component species, are liable to alter their composition and character in response to environmental changes, e.g., availability of terminal oxidants. It follows that the biotechnological exploitation of obligately anaerobic bacteria must be informed by knowledge both of their biochemical capacities and of their normal environmental roles. It is against this background that illustrative examples of the activities of anaerobic bacteria are considered under three heads: 1. Biodegradation/Bioremediation, with special reference to the anaerobic breakdown of aromatic and/or halogenated organic substances; 2. Biosynthesis/Bioproduction, encompassing normal and modified fermentations; and 3. Biotransformations, accomplished by whole or semipermeabilized organisms or by enzymes derived therefrom, with particular interest attaching to the production of chiral compounds by a number of procedures, including electromicrobial reduction.
Collapse
Affiliation(s)
- J G Morris
- Institute of Biological Sciences, University of Wales, Penglais, Aberystwyth, UK
| |
Collapse
|