1
|
Versantvoort W, Guerrero-Castillo S, Wessels HJCT, van Niftrik L, Jetten MSM, Brandt U, Reimann J, Kartal B. Complexome analysis of the nitrite-dependent methanotroph Methylomirabilis lanthanidiphila. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:734-744. [PMID: 31376363 DOI: 10.1016/j.bbabio.2019.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 01/31/2023]
Abstract
The atmospheric concentration of the potent greenhouse gases methane and nitrous oxide (N2O) has increased drastically during the last century. Methylomirabilis bacteria can play an important role in controlling the emission of these two gases from natural ecosystems, by oxidizing methane to CO2 and reducing nitrite to N2 without producing N2O. These bacteria have an anaerobic metabolism, but are proposed to possess an oxygen-dependent pathway for methane activation. Methylomirabilis bacteria reduce nitrite to NO, and are proposed to dismutate NO into O2 and N2 by a putative NO dismutase (NO-D). The O2 produced in the cell can then be used to activate methane by a particulate methane monooxygenase. So far, the metabolic model of Methylomirabilis bacteria was based mainly on (meta)genomics and physiological experiments. Here we applied a complexome profiling approach to determine which of the proposed enzymes are actually expressed in Methylomirabilis lanthanidiphila. To validate the proposed metabolic model, we focused on enzymes involved in respiration, as well as nitrogen and carbon transformation. All complexes suggested to be involved in nitrite-dependent methane oxidation, were identified in M. lanthanidiphila, including the putative NO-D. Furthermore, several complexes involved in nitrate reduction/nitrite oxidation and NO reduction were detected, which likely play a role in detoxification and redox homeostasis. In conclusion, complexome profiling validated the expression and composition of enzymes hypothesized to be involved in the energy, methane and nitrogen metabolism of M. lanthanidiphila, thereby further corroborating their unique metabolism involved in the environmentally relevant process of nitrite-dependent methane oxidation.
Collapse
Affiliation(s)
- Wouter Versantvoort
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, the Netherlands.
| | - Sergio Guerrero-Castillo
- Molecular Bioenergetics Group, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert-Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Geert-Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Laura van Niftrik
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert-Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; KPA Aging-Associated Diseases, CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Joachim Reimann
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
2
|
Purwantini E, Torto-Alalibo T, Lomax J, Setubal JC, Tyler BM, Mukhopadhyay B. Genetic resources for methane production from biomass described with the Gene Ontology. Front Microbiol 2014; 5:634. [PMID: 25520705 PMCID: PMC4253957 DOI: 10.3389/fmicb.2014.00634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022] Open
Abstract
Methane (CH4) is a valuable fuel, constituting 70–95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing “gold standards” for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http://www.mengo.biochem.vt.edu/).
Collapse
Affiliation(s)
- Endang Purwantini
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Trudy Torto-Alalibo
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Jane Lomax
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory Hinxton, UK
| | - João C Setubal
- Department of Biochemistry, Universidade de São Paulo São Paulo, Brazil ; Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University Blacksburg, VA, USA ; Center for Genome Research and Biocomputing, Oregon State University Corvallis, OR, USA
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg, VA, USA ; Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University Blacksburg, VA, USA ; Department of Biological Sciences, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| |
Collapse
|
3
|
Kojima H, Moll J, Kahnt J, Fukui M, Shima S. A reversed genetic approach reveals the coenzyme specificity and other catalytic properties of three enzymes putatively involved in anaerobic oxidation of methane with sulfate. Environ Microbiol 2014; 16:3431-42. [DOI: 10.1111/1462-2920.12475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/09/2014] [Accepted: 03/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Hisaya Kojima
- The Institute of Low Temperature Science; Hokkaido University; Sapporo Japan
| | - Johanna Moll
- Department of Biochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Jörg Kahnt
- Department of Biochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Manabu Fukui
- The Institute of Low Temperature Science; Hokkaido University; Sapporo Japan
| | - Seigo Shima
- The Institute of Low Temperature Science; Hokkaido University; Sapporo Japan
- Department of Biochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
- PRESTO; Japan Science and Technology Agency (JST); Saitama Japan
| |
Collapse
|
4
|
Upadhyay V, Demmer U, Warkentin E, Moll J, Shima S, Ermler U. Structure and Catalytic Mechanism of N5,N10-Methenyl-tetrahydromethanopterin Cyclohydrolase. Biochemistry 2012; 51:8435-43. [DOI: 10.1021/bi300777k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vikrant Upadhyay
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, D-60438
Frankfurt am Main, Germany
| | - Ulrike Demmer
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, D-60438
Frankfurt am Main, Germany
| | - Eberhard Warkentin
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, D-60438
Frankfurt am Main, Germany
| | - Johanna Moll
- Max-Planck-Institut für Terrestrische Mikrobiologie, Karl-von-Frisch-Straße,
D-35043 Marburg, Germany
| | - Seigo Shima
- Max-Planck-Institut für Terrestrische Mikrobiologie, Karl-von-Frisch-Straße,
D-35043 Marburg, Germany
- PRESTO, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama
332-0012, Japan
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, D-60438
Frankfurt am Main, Germany
| |
Collapse
|
5
|
Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T. Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters. Appl Environ Microbiol 2010; 60:1227-31. [PMID: 16349231 PMCID: PMC201463 DOI: 10.1128/aem.60.4.1227-1231.1994] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A hyperthermophilic sulfate reducer, strain 7324, was isolated from hot (75 degrees C) oil field waters from an oil production platform in the Norwegian sector of the North Sea. It was enriched on a complex medium and isolated on lactate with sulfate. The cells were nonmotile, irregular coccoid to disc shaped, and 0.3 to 1.0 mum wide. The temperature for growth was between 60 and 85 degrees C with an optimum of 76 degrees C. Lactate, pyruvate, and valerate plus H(2) were utilized as carbon and energy sources with sulfate as electron acceptor. Lactate was completely oxidized to CO(2). The cells contained an active carbon monoxide dehydrogenase but no 2-oxoglutarate dehydrogenase activity, indicating that lactate was oxidized to CO(2) via the acetyl coenzyme A/carbon monoxide dehydrogenase pathway. The cells produced small amounts of methane simultaneously with sulfate reduction. F(420) was detected in the cells which showed a blue-green fluorescence at 420 nm. On the basis of morphological, physiological, and serological features, the isolate was classified as an Archaeoglobus sp. Strain 7324 showed 100% DNA-DNA homology with A. fulgidus Z, indicating that it belongs to the species A. fulgidus. Archaeoglobus sp. has been selectively enriched and immunomagnetically captured from oil field waters from three different platforms in the North Sea. Our results show that strain 7324 may grow in oil reservoirs at 70 to 85 degrees C and contribute to hydrogen sulfide formation in this environment.
Collapse
Affiliation(s)
- J Beeder
- Department of Microbiology and Plant Physiology, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
6
|
Otte MM, Escalante-Semerena JC. Biochemical characterization of the GTP:adenosylcobinamide-phosphate guanylyltransferase (CobY) enzyme of the hyperthermophilic archaeon Methanocaldococcus jannaschii. Biochemistry 2009; 48:5882-9. [PMID: 19489548 DOI: 10.1021/bi8023114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The archaeal cobY gene encodes the nonorthologous replacement of the bacterial NTP:AdoCbi kinase (EC 2.7.7.62)/GTP:AdoCbi-P guanylyltransferase (EC 3.1.3.73) and is required for de novo synthesis of AdoCbl (coenzyme B(12)). Here we show that ORF MJ1117 of the hyperthermophilic, methanogenic archaeon Methanocaldococcus jannaschii encodes a CobY protein (Mj CobY) that transfers the GMP moiety of GTP to AdoCbi-P to form AdoCbi-GDP. Results from isothermal titration calorimetry (ITC) experiments show that MjCobY binds GTP (K(d) = 5 muM), but it does not bind the GTP analogues GMP-PNP (guanosine 5'-(beta,gamma)-imidotriphosphate) or GMP-PCP (guanylyl 5'-(beta,gamma)-methylenediphosphonate) nor GDP. Results from ITC experiments indicate that MjCobY binds one GTP per dimer. Results from in vivo studies support the conclusion that the 5'-deoxyadenosyl upper ligand of AdoCbi-P is required for MjCobY function. Consistent with these findings, MjCobY displayed high affinity for AdoCbi-P (K(d) = 0.76 muM) but did not bind nonadenosylated Cbi-P. Kinetic parameters for theMj CobY reaction were determined. Results from circular dichroism studies indicate that, in isolation, MjCobY denatures at 80 degrees C with a concomitant loss of activity. We propose that ORF MJ1117 of M. jannaschii be annotated as cobY to reflect its involvement in AdoCbl biosynthesis.
Collapse
Affiliation(s)
- Michele M Otte
- Department of Bacteriology, University of Wisconsin at Madison, 1550 Linden Drive, Madison, Wisconsin 53706-1521, USA
| | | |
Collapse
|
7
|
Shima S, Warkentin E, Thauer RK, Ermler U. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J Biosci Bioeng 2002; 93:519-30. [PMID: 16233244 DOI: 10.1016/s1389-1723(02)80232-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Accepted: 05/07/2002] [Indexed: 11/29/2022]
Abstract
Methane is an end product of anaerobic degradation of organic compounds in fresh water environments such as lake sediments and the intestinal tract of animals. Methanogenic archaea produce methane from carbon dioxide and molecular hydrogen, acetate and C1 compounds such as methanol in an energy gaining process. The methanogenic pathway utilizing carbon dioxide and molecular hydrogen involves ten methanogen specific enzymes, which catalyze unique reactions using novel coenzymes. These enzymes have been purified and biochemically characterized. The genes encoding the enzymes have been cloned and sequenced. Recently, crystal structures of five methanogenic enzymes: formylmethanofuran : tetrahydromethanopterin formyltransferase, methenyltetrahydromethanopterin cyclohydrolase, methylenetetrahydromethanopterin reductase, F420H2:NADP oxidoreductase and methyl-coenzyme M reductase were reported. In this review, we describe the pathway utilizing carbon dioxide and molecular hydrogen and the catalytic mechanisms of the enzymes based on their crystal structures.
Collapse
Affiliation(s)
- Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Karl-von-Frisch Strasse, D-35043 Marburg, Germany.
| | | | | | | |
Collapse
|
8
|
Steen IH, Hvoslef H, Lien T, Birkeland NK. Isocitrate dehydrogenase, malate dehydrogenase, and glutamate dehydrogenase from Archaeoglobus fulgidus. Methods Enzymol 2001; 331:13-26. [PMID: 11265455 DOI: 10.1016/s0076-6879(01)31043-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- I H Steen
- Department of Microbiology, University of Bergen, Bergen N-5020, Norway
| | | | | | | |
Collapse
|
9
|
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001; 65:1-43. [PMID: 11238984 PMCID: PMC99017 DOI: 10.1128/mmbr.65.1.1-43.2001] [Citation(s) in RCA: 1392] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.
Collapse
Affiliation(s)
- C Vieille
- Biochemistry Department, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
10
|
Lamosa P, Burke A, Peist R, Huber R, Liu MY, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C, Santos H. Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 2000; 66:1974-9. [PMID: 10788369 PMCID: PMC101442 DOI: 10.1128/aem.66.5.1974-1979.2000] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diglycerol phosphate accumulates under salt stress in the archaeon Archaeoglobus fulgidus (L. O. Martins, R. Huber, H. Huber, K. O. Stetter, M. S. da Costa, and H. Santos, Appl. Environ. Microbiol. 63:896-902, 1997). This solute was purified after extraction from the cell biomass. In addition, the optically active and the optically inactive (racemic) forms of the compound were synthesized, and the ability of the solute to act as a protecting agent against heating was tested on several proteins derived from mesophilic or hyperthermophilic sources. Diglycerol phosphate exerted a considerable stabilizing effect against heat inactivation of rabbit muscle lactate dehydrogenase, baker's yeast alcohol dehydrogenase, and Thermococcus litoralis glutamate dehydrogenase. Highly homologous and structurally well-characterized rubredoxins from Desulfovibrio gigas, Desulfovibrio desulfuricans (ATCC 27774), and Clostridium pasteurianum were also examined for their thermal stabilities in the presence or absence of diglycerol phosphate, glycerol, and inorganic phosphate. These proteins showed different intrinsic thermostabilities, with half-lives in the range of 30 to 100 min. Diglycerol phosphate exerted a strong protecting effect, with approximately a fourfold increase in the half-lives for the loss of the visible spectra of D. gigas and C. pasteurianum rubredoxins. In contrast, the stability of D. desulfuricans rubredoxin was not affected. These different behaviors are discussed in the light of the known structural features of rubredoxins. The data show that diglycerol phosphate is a potentially useful protein stabilizer in biotechnological applications.
Collapse
Affiliation(s)
- P Lamosa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-156 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Grabarse W, Vaupel M, Vorholt JA, Shima S, Thauer RK, Wittershagen A, Bourenkov G, Bartunik HD, Ermler U. The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri. Structure 1999; 7:1257-68. [PMID: 10545331 DOI: 10.1016/s0969-2126(00)80059-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND The reduction of carbon dioxide to methane in methanogenic archaea involves the tetrahydrofolate analogue tetrahydromethanopterin (H(4)MPT) as a C(1) unit carrier. In the third step of this reaction sequence, N(5)-formyl-H(4)MPT is converted to methenyl-H(4)MPT(+) by the enzyme methenyltetrahydromethanopterin cyclohydrolase. The cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri (Mch) is extremely thermostable and adapted to a high intracellular concentration of lyotropic salts. RESULTS Mch was crystallized and its structure solved at 2.0 A resolution using a combination of the single isomorphous replacement (SIR) and multiple anomalous dispersion (MAD) techniques. The structure of the homotrimeric enzyme reveals a new alpha/beta fold that is composed of two domains forming a large sequence-conserved pocket between them. Two phosphate ions were found in and adjacent to this pocket, respectively; the latter is displaced by the phosphate moiety of the substrate formyl-H(4)MPT according to a hypothetical model of the substrate binding. CONCLUSIONS Although the exact position of the substrate is not yet known, the residues lining the active site of Mch could be tentatively assigned. Comparison of Mch with the tetrahydrofolate-specific cyclohydrolase/dehydrogenase reveals similarities in domain arrangement and in some active-site residues, whereas the fold appears to be different. The adaptation of Mch to high salt concentrations and high temperatures is reflected by the excess of acidic residues at the trimer surface and by the higher oligomerization state of Mch compared with its mesophtic counterparts.
Collapse
Affiliation(s)
- W Grabarse
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043, Marburg, Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Strasse 7, 60528, Frankurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Thauer RK. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2377-2406. [PMID: 9782487 DOI: 10.1099/00221287-144-9-2377] [Citation(s) in RCA: 628] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Straße, D-35032 Marburg, GermanyIn 1933, Stephenson & Stickland (1933a) published that they had isolated from river mud, by the single cell technique, a methanogenic organism capable of growth in an inorganic medium with formate as the sole carbon source.
Collapse
Affiliation(s)
- Rudolf K Thauer
- (Delivered at the 140th Ordinary Meeting of the Society for General Microbiology, 31 March 1998)
| |
Collapse
|
13
|
Abstract
Enzymes synthesized by thermophiles (organisms with optimal growth temperatures > 60 degrees C) and hyperthermophiles (optimal growth temperatures > 80 degrees C) are typically thermostable (resistant to irreversible inactivation at high temperatures) and thermophilic (optimally active at high temperatures, i.e., > 60 degrees C). These enzymes, called thermozymes, share catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, thermozymes usually retain their thermal properties, suggesting that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, and crystal structure comparisons indicate that thermozymes are, indeed, very similar to mesophilic enzymes. No obvious sequence or structural features account for enzyme thermostability and thermophilicity. Thermostability and thermophilicity molecular mechanisms are varied, differing from enzyme to enzyme. Thermostability and thermophilicity are usually caused by the accumulation of numerous subtle sequence differences. This review concentrates on the mechanisms involved in enzyme thermostability and thermophilicity. Their relationships with protein rigidity and flexibility and with protein folding and unfolding are discussed. Intrinsic stabilizing forces (e.g., salt bridges, hydrogen bonds, hydrophobic interactions) and extrinsic stabilizing factors are examined. Finally, thermozymes' potential as catalysts for industrial processes and specialty uses are discussed, and lines of development (through new applications, and protein engineering) are also proposed.
Collapse
Affiliation(s)
- C Vieille
- Department of Biochemistry, Michigan State University, East Lansing 48909, USA
| | | | | |
Collapse
|
14
|
Affiliation(s)
- J N Reeve
- Department of Microbiology, The Ohio State University, Columbus 43210, USA.
| | | | | | | |
Collapse
|
15
|
Vaupel M, Dietz H, Linder D, Thauer RK. Primary structure of cyclohydrolase (Mch) from Methanobacterium thermoautotrophicum (strain Marburg) and functional expression of the mch gene in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:294-300. [PMID: 8617278 DOI: 10.1111/j.1432-1033.1996.00294.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gene mch encoding N5,N10-methenyltetrahydromethanopterin cyclohydrolase (Mch) in Methano-bacterium thermoautotrophicum (strain Marburg) was cloned and sequenced. The gene, 963 bp, was found to be located at the 3' end of a 3.5-kbp BamHI fragment. Upstream of the mch gene two open reading frames were recognized, one encoding for a 25-kDa protein with sequence similarity to deoxyuridylate hydroxymethylase and the other encoding for a 34.6-kDa protein with sequence similarity to cobalamin-independent methionine synthase (MetE). The N-terminal amino acid sequence deduced for the deoxyuridylate hydroxymethylase was identical to that previously published for thymidylate synthase (TysY) from M. thermoautotrophicum. The 3' end of the tysY gene overlapped by 8 bp with the 5' end of the mch gene. Despite this fact, the mch gene appeared to be transcribed monocistronically as evidenced by Northern blot analysis and primer-extension experiments. The mch gene was overexpressed in Escherichia coli yielding an active enzyme of 37 kDa with a specific activity of 30 U/mg cell extract protein.
Collapse
Affiliation(s)
- M Vaupel
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | | | | | | |
Collapse
|
16
|
Vornolt J, Kunow J, Stetter KO, Thauer RK. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch Microbiol 1995. [DOI: 10.1007/bf00381784] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
|
18
|
Kunow J, Linder D, Stetter KO, Thauer RK. F420H2: quinone oxidoreductase from Archaeoglobus fulgidus. Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:503-11. [PMID: 8055920 DOI: 10.1111/j.1432-1033.1994.tb19019.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Archaeoglobus fulgidus, a hyperthermophilic sulfate-reducing archaeon, was found to contain a membrane-bound F420H2: quinone oxidoreductase complex presumed to be involved in energy conservation during growth on lactate plus sulfate. After solubilization with dodecyl-beta-D-maltoside the complex was purified 32-fold with a yield of 24%. Using both gel filtration and native PAGE, an apparent molecular mass of approximately 270 kDa was determined. SDS/PAGE revealed the presence of at least seven polypeptides with apparent molecular masses 56, 45, 41, 39, 37, 33, and 32 kDa. The purified complex contained 1.6 mol FAD, 9 mol non-heme iron and 7 mol acid-labile sulfur/mol complex. It did not contain cytochromes, which were, however, present in the membrane fraction of A. fulgidus (3 nmol/mg membrane protein). The purified F420H2: quinone oxidoreductase complex catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone (apparent Km 190 microM) with reduced coenzyme F420 (apparent Km 50 microM) exhibiting a specific activity of 500 U/mg (apparent Vmax) at pH 8.0 (pH optimum) and 65 degrees C (temperature optimum). 2-Methyl-1,4-naphthoquinone (menadione), 2-hydroxy-1,4-naphthoquinone, 1,4-naphthoquinone, 2,3-dimethoxy-5-methyl-1,4- benzoquinone, and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (decyl-ubiquinone) were also reduced with F420H2, albeit with lower rates. The physiological electron acceptor of the F420H2: quinone oxidoreductase complex is most likely the menaquinone found in the membrane fraction of A. fulgidus.
Collapse
Affiliation(s)
- J Kunow
- Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität, Marburg, Germany
| | | | | | | |
Collapse
|
19
|
Setzke E, Hedderich R, Heiden S, Thauer RK. H2: heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum. Composition and properties. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:139-48. [PMID: 8119281 DOI: 10.1111/j.1432-1033.1994.tb18608.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reduction of the heterodisulfide (CoM-S-S-HTP) of coenzyme M (H-S-CoM) and N-7-mercaptoheptanoylthreonine phosphate (H-S-HTP) with H2 is an energy-conserving step in most methanogenic Archaea. In this study, we show that in Methanobacterium thermoautotrophicum (strain Marburg) this reaction is catalyzed by a stable H2-heterodisulfide oxidoreductase complex of F420-non-reducing hydrogenase and heterodisulfide reductase. This complex, which was loosely associated with the cytoplasmic membrane, was purified 17-fold with 80% yield to apparent homogeneity. The purified complex was composed of six different subunits of apparent molecular masses 80, 51, 41, 36, 21 and 17 kDa, and 1 mol complex, with apparent molecular mass 250 kDa, contained approximately 0.6 mol nickel, 0.9 mol FAD, 26 mol non-heme iron and 22 mol acid-labile sulfur. In 25 mM Chaps, the complex partially dissociated into two subcomplexes. The first subcomplex was was composed of the 51-, 41- and 17-kDa subunits; 1 mol trimer contained 0.7 mol nickel, 10 mol non-heme iron and 9 mol acid-labile sulfur and exhibited F420-non-reducing hydrogenase activity. The other subcomplex was composed of the 80-, 36- and 21-kDa subunits; 1 mol trimer contained 0.8 mol FAD, 22 mol non-heme iron and 15 mol acid-labile sulfur and exhibited heterodi-sulfide-reductase activity. The stimulatory effects of potassium phosphate, a membrane component, uracil derivatives and coenzyme F430 on the H2:heterodisulfide-oxidoreductase activity of the purified complex are described.
Collapse
Affiliation(s)
- E Setzke
- Max-Planck-Institut für Terrestrsche Mikrobiologie, Marburg, Germany
| | | | | | | |
Collapse
|
20
|
Kunow J, Schwörer B, Stetter KO, Thauer RK. A F420-dependent NADP reductase in the extremely thermophilic sulfate-reducing Archaeoglobus fulgidus. Arch Microbiol 1993. [DOI: 10.1007/bf00249125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Schwörer B, Breitung J, Klein AR, Stetter KO, Thauer RK. Formylmethanofuran: tetrahydromethanopterin formyltransferase and N5,N10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with the enzymes from methanogenic Archaea. Arch Microbiol 1993; 159:225-32. [PMID: 8481089 DOI: 10.1007/bf00248476] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sulfate-reducing Archaeoglobus fulgidus contains a number of enzymes previously thought to be unique for methanogenic Archaea. The purification and properties of two of these enzymes, of formylmethanofuran: tetrahydromethanopterin formyltransferase and of N5,N10-methylenetetrahydromethanopterin dehydrogenase (coenzyme F420 dependent) are described here. A comparison of the N-terminal amino acid sequences and of other molecular properties with those of the respective enzymes from three methanogenic Archaea revealed a high degree of similarity.
Collapse
Affiliation(s)
- B Schwörer
- Laboratorium für Mikrobiologie des Fachbereichs Biologie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|