1
|
Santin A, Collura F, Singh G, Morlino MS, Bizzotto E, Bellan A, Gupte AP, Favaro L, Campanaro S, Treu L, Morosinotto T. Deciphering the genetic landscape of enhanced poly-3-hydroxybutyrate production in Synechocystis sp. B12. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:101. [PMID: 39014484 PMCID: PMC11253406 DOI: 10.1186/s13068-024-02548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium Synechocystis sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation. RESULTS Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing Synechocystis sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased Synechocystis sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, Synechocystis sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances. CONCLUSIONS Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of Synechocystis in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.
Collapse
Grants
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- Ministero dell’Istruzione, dell’Università e della Ricerca
- Università degli Studi di Padova
Collapse
Affiliation(s)
- Anna Santin
- Department of Biology, University of Padova, 35131, Padua, Italy.
| | - Flavio Collura
- Department of Biology, University of Padova, 35131, Padua, Italy
| | - Garima Singh
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Edoardo Bizzotto
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Ameya Pankaj Gupte
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
| | - Lorenzo Favaro
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Laura Treu
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | |
Collapse
|
4
|
Lange C, Zerulla K, Breuert S, Soppa J. Gene conversion results in the equalization of genome copies in the polyploid haloarchaeon Haloferax volcanii. Mol Microbiol 2011; 80:666-77. [PMID: 21338422 DOI: 10.1111/j.1365-2958.2011.07600.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Haloferax volcanii is highly polyploid and contains about 20 copies of the major chromosome. A heterozygous strain was constructed that contained two different types of genomes: the leuB locus contained either the wild-type leuB gene or a leuB:trpA gene introduced by gene replacement. As the trpA locus is devoid of the wild-type trpA gene, growth in the absence of both amino acids is only possible when both types of genomes are simultaneously present, exemplifying gene redundancy and the potential to form heterozygous cells as one possible evolutionary advantage of polyploidy. The heterozygous strain was grown (i) in the presence of tryptophan, selecting for the presence of leuB, (ii) in the presence of leucine selecting for leuB:trpA and (iii) in the absence of selection. Both types of genomes were quantified with real-time PCR. The first condition led to a complete loss of leuB:trpA-containing genomes, while under the second condition leuB-containing genomes were lost. Also in the absence of selection gene conversion led to a fast equalization of genomes and resulted in homozygous leuB-containing cells. Gene conversion leading to genome equalization can explain the escape from 'Muller's ratchet' as well as the ease of mutant construction using polyploid haloarchaea.
Collapse
Affiliation(s)
- Christian Lange
- Johann Wolfgang Goethe University, Institute for Molecular Biosciences, Max-von-Laue-Strasse 9, 60438 Frankfurt a.M., Germany
| | | | | | | |
Collapse
|
6
|
Volkmer T, Schneider D, Bernát G, Kirchhoff H, Wenk SO, Rögner M. Ssr2998 of Synechocystis sp. PCC 6803 is involved in regulation of cyanobacterial electron transport and associated with the cytochrome b6f complex. J Biol Chem 2006; 282:3730-7. [PMID: 17166849 DOI: 10.1074/jbc.m604948200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To analyze the function of a protein encoded by the open reading frame ssr2998 in Synechocystis sp. PCC 6803, the corresponding gene was disrupted, and the generated mutant strain was analyzed. Loss of the 7.2-kDa protein severely reduced the growth of Synechocystis, especially under high light conditions, and appeared to impair the function of the cytochrome b6 f complex. This resulted in slower electron donation to cytochrome f and photosystem 1 and, concomitantly, over-reduction of the plastoquinone pool, which in turn had an impact on the photosystem 1 to photosystem 2 stoichiometry and state transition. Furthermore, a 7.2-kDa protein, encoded by the open reading frame ssr2998, was co-isolated with the cytochrome b6 f complex from the cyanobacterium Synechocystis sp. PCC 6803. ssr2998 seems to be structurally and functionally associated with the cytochrome b6 f complex from Synechocystis, and the protein could be involved in regulation of electron transfer processes in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Thomas Volkmer
- Biochemie der Pflanzen, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Gerdes SY, Kurnasov OV, Shatalin K, Polanuyer B, Sloutsky R, Vonstein V, Overbeek R, Osterman AL. Comparative genomics of NAD biosynthesis in cyanobacteria. J Bacteriol 2006; 188:3012-23. [PMID: 16585762 PMCID: PMC1446974 DOI: 10.1128/jb.188.8.3012-3023.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 01/23/2006] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of NAD(P) cofactors is of special importance for cyanobacteria due to their role in photosynthesis and respiration. Despite significant progress in understanding NAD(P) biosynthetic machinery in some model organisms, relatively little is known about its implementation in cyanobacteria. We addressed this problem by a combination of comparative genome analysis with verification experiments in the model system of Synechocystis sp. strain PCC 6803. A detailed reconstruction of the NAD(P) metabolic subsystem using the SEED genomic platform (http://theseed.uchicago.edu/FIG/index.cgi) helped us accurately annotate respective genes in the entire set of 13 cyanobacterial species with completely sequenced genomes available at the time. Comparative analysis of operational variants implemented in this divergent group allowed us to elucidate both conserved (de novo and universal pathways) and variable (recycling and salvage pathways) aspects of this subsystem. Focused genetic and biochemical experiments confirmed several conjectures about the key aspects of this subsystem. (i) The product of the slr1691 gene, a homolog of Escherichia coli gene nadE containing an additional nitrilase-like N-terminal domain, is a NAD synthetase capable of utilizing glutamine as an amide donor in vitro. (ii) The product of the sll1916 gene, a homolog of E. coli gene nadD, is a nicotinic acid mononucleotide-preferring adenylyltransferase. This gene is essential for survival and cannot be compensated for by an alternative nicotinamide mononucleotide (NMN)-preferring adenylyltransferase (slr0787 gene). (iii) The product of the slr0788 gene is a nicotinamide-preferring phosphoribosyltransferase involved in the first step of the two-step non-deamidating utilization of nicotinamide (NMN shunt). (iv) The physiological role of this pathway encoded by a conserved gene cluster, slr0787-slr0788, is likely in the recycling of endogenously generated nicotinamide, as supported by the inability of this organism to utilize exogenously provided niacin. Positional clustering and the co-occurrence profile of the respective genes across a diverse collection of cellular organisms provide evidence of horizontal transfer events in the evolutionary history of this pathway.
Collapse
Affiliation(s)
- Svetlana Y. Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Oleg V. Kurnasov
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Konstantin Shatalin
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Boris Polanuyer
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Roman Sloutsky
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Veronika Vonstein
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Ross Overbeek
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Andrei L. Osterman
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
9
|
Schneider D, Berry S, Rich P, Seidler A, Rögner M. A regulatory role of the PetM subunit in a cyanobacterial cytochrome b6f complex. J Biol Chem 2001; 276:16780-5. [PMID: 11278512 DOI: 10.1074/jbc.m009503200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the function of the PetM subunit of the cytochrome b6f complex, the petM gene encoding this subunit was inactivated by insertional mutagenesis in the cyanobacterium Synechocystis PCC 6803. Complete segregation of the mutant reveals a nonessential function of PetM for the structure and function of the cytochrome b6f complex in this organism. Photosystem I, photosystem II, and the cytochrome b6f complex still function normally in the petM- mutant as judged by cytochrome f re-reduction and oxygen evolution rates. In contrast to the wild type, however, the content of phycobilisomes and photosystem I as determined from 77 K fluorescence spectra is reduced in the petM- strain. Furthermore, whereas under anaerobic conditions the kinetics of cytochrome f re-reduction are identical, under aerobic conditions these kinetics are slower in the petM- strain. Fluorescence induction measurements indicate that this is due to an increased plastoquinol oxidase activity in the mutant, causing the plastoquinone pool to be in a more oxidized state under aerobic dark conditions. The finding that the activity of the cytochrome b6f complex itself is unchanged, whereas the stoichiometry of other protein complexes has altered, suggests an involvement of the PetM subunit in regulatory processes mediated by the cytochrome b6f complex.
Collapse
Affiliation(s)
- D Schneider
- Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie, Ruhr-Universität Bochum, Universitätsstrabetae 150, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
11
|
Cramer WA, Martinez SE, Huang D, Tae GS, Everly RM, Heymann JB, Cheng RH, Baker TS, Smith JL. Structural aspects of the cytochrome b6f complex; structure of the lumen-side domain of cytochrome f. J Bioenerg Biomembr 1994; 26:31-47. [PMID: 8027021 PMCID: PMC4167668 DOI: 10.1007/bf00763218] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The following findings concerning the structure of the cytochrome b6f complex and its component polypeptides, cyt b6, subunit IV and cytochrome f subunit are discussed: (1) Comparison of the amino acid sequences of 13 and 16 cytochrome b6 and subunit IV polypeptides, respectively, led to (a) reconsideration of the helix lengths and probable interface regions, (b) identification of two likely surface-seeking helices in cyt b6 and one in SU IV, and (c) documentation of a high degree of sequence invariance compared to the mitochondrial cytochrome. The extent of identity is particularly high (88% for conserved and pseudoconserved residues) in the segments of cyt b6 predicted to be extrinsic on the n-side of the membrane. (2) The intramembrane attractive forces between trans-membrane helices that normally stabilize the packing of integral membrane proteins are relatively weak. (3) The complex isolated in dimeric form has been visualized, along with isolated monomer, by electron microscopy. The isolated dimer is much more active than the monomer, is the major form of the complex isolated and purified from chloroplasts, and is inferred to be a functional form in the membrane. (4) The isolated cyt b6f complex contains one molecule of chlorophyll a. (5) The structure of the 252 residue lumen-side domain of cytochrome f isolated from turnip chloroplasts has been solved by X-ray diffraction analysis to a resolution of 2.3 A.
Collapse
Affiliation(s)
- W A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | | | | | | | | | |
Collapse
|