1
|
Kobayashi J, Wen R, Nishikawa T, Nunomura Y, Suzuki T, Sejima Y, Gokan T, Furukawa M, Yokota T, Osawa N, Sato Y, Nibu Y, Mizutani T, Oba M. Natto extract inhibits infection caused by the Aujeszky's disease virus in mice. Microbiol Immunol 2023; 67:514-519. [PMID: 37815203 DOI: 10.1111/1348-0421.13099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Aujeszky's disease virus (ADV), also known as Suid alphaherpesvirus 1, which mainly infects swine, causes life-threatening neurological disorders. This disease is a serious global risk factor for economic losses in the swine industry. The development of new anti-ADV drugs is highly anticipated and required. Natto, a traditional Japanese fermented food made from soybeans, is a well-known health food. In our previous study, we confirmed that natto has the potential to inhibit viral infections by severe acute respiratory syndrome coronavirus 2 and bovine alphaherpesvirus 1 through their putative serine protease(s). In this study, we found that an agent(s) in natto functionally impaired ADV infection in cell culture assays. In addition, ADV treated with natto extract lost viral infectivity in the mice. We conducted an HPLC gel-filtration analysis of natto extract and molecular weight markers and confirmed that Fraction No. 10 had ADV-inactivating ability. Furthermore, the antiviral activity of Fraction No. 10 was inhibited by the serine protease inhibitor 4-(2-Aminoethyl) benzene sulfonyl fluoride hydrochloride (AEBSF). These results also suggest that Fraction No. 10, adjacent to the 12.5 kDa peak of the marker in natto extract, may inactivate ADV by proteolysis. Our findings provide new avenues of research for the prevention of Aujeszky's disease.
Collapse
Affiliation(s)
- Junya Kobayashi
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Research Institute for Animal Science in Biochemistry and Toxicology (RIAS), Sagamihara, Kanagawa, Japan
| | - Rongduo Wen
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Yuka Nunomura
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
| | | | | | | | | | - Tomoko Yokota
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
| | - Nanako Osawa
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoko Sato
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
| | - Yutaka Nibu
- The University Research Administration Center (URAC), Tokyo University of Agriculture and Technology, Tokyo, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mami Oba
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Liu YC, Han LL, Chen TY, Lu YB, Feng H. Characterization of a Protease Hyper-Productive Mutant of Bacillus pumilus by Comparative Genomic and Transcriptomic Analysis. Curr Microbiol 2020; 77:3612-3622. [PMID: 32749522 DOI: 10.1007/s00284-020-02154-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
Bacillus pumilus BA06 has great potential for the production of alkaline proteases. To improve the protease yield, classical mutagenesis to combine the physical and chemical mutagens was performed to obtain a protease hyper-productive mutant SCU11. The full genome sequences of BA06 and SCU11 strains were assembled through DNA sequencing using the PacBio sequencing platform. By comparative genomics analysis, 147 SNPs and 15 InDels were found between these two genomes, which lead to alternation of coding sequence in 15 genes. Noticeable, the gene (kinA) encoding sporulation kinase A is interrupted by introducing a stop codon in its coding region in BA06. Interestedly, this gene is reversely corrected in SCU11. Furthermore, comparative transcriptome analysis revealed that kinA and two positive regulatory genes (DegU and Spo0A) were upregulated in transcription in SCU11. In terms of the transcriptional data, upregulation of a phosphorylation cascade starting with KinA may enhance Spo0A phosphorylation, and thus activate expression of the gene aprE (encoding major extracellular protease) through repression of AbrB (a repressor of aprE) and activation of SinI, an antagonist of SinR (a repressor of aprE). In addition, the other genes involved in various metabolic pathways, especially of membrane transport and sporulation, were altered in transcription between these two strains. Conclusively, our transcriptome data suggested that upregulation degU and spo0A, as well as kinA, may at least partially contribute to the high production of alkaline protease in SCU11.
Collapse
Affiliation(s)
- Yong-Cheng Liu
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Lin-Li Han
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Tian-Yu Chen
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yan-Bing Lu
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Hong Feng
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.
| |
Collapse
|
3
|
Hohmann HP, van Dijl JM, Krishnappa L, Prágai Z. Host Organisms:Bacillus subtilis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hans-Peter Hohmann
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jan M. van Dijl
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Laxmi Krishnappa
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Zoltán Prágai
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| |
Collapse
|
4
|
Maturation of Fibrinolytic Bacillopeptidase F Involves both Hetero- and Autocatalytic Processes. Appl Environ Microbiol 2015; 82:318-27. [PMID: 26497454 DOI: 10.1128/aem.02673-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/19/2015] [Indexed: 11/20/2022] Open
Abstract
Bacillopeptidase F (Bpr) is a fibrinolytic serine protease produced by Bacillus subtilis. Its precursor is composed of a signal peptide, an N-terminal propeptide, a catalytic domain, and a long C-terminal extension (CTE). Several active forms of Bpr have been previously reported, but little is known about the maturation of this enzyme. Here, a gene encoding a Bpr (BprL) was cloned from B. subtilis LZW and expressed in B. subtilis WB700, and three fibrinolytic mature forms with apparent molecular masses of 45, 75, and 85 kDa were identified in the culture supernatant. After treatment with urea, the 75-kDa mature form had the same molecular mass as the 85-kDa mature form, from which we infer that they adopt different conformations. Mutational analysis revealed that while the 85-kDa mature form is generated via heterocatalytic processing of a BprL proform by an unidentified protease of B. subtilis, the production of the 75- and 45-kDa mature forms involves both hetero- and autocatalytic events. From in vitro analysis of BprL and its sequential C-terminal truncation variants, it appears that partial removal of the CTE is required for the initiation of autoprocessing of the N-terminal propeptide, which is composed of a core domain (N*) and a 15-residue linker peptide, thereby yielding the 45-kDa mature form. These data suggest that the differential processing of BprL, either heterocatalytically or autocatalytically, leads to the formation of multiple mature forms with different molecular masses or conformations.
Collapse
|
5
|
Abstract
The bacterial flagellum is assembled from over 20 structural components, and flagellar gene regulation is morphogenetically coupled to the assembly state by control of the anti-sigma factor FlgM. In the Gram-negative bacterium Salmonella enterica, FlgM inhibits late-class flagellar gene expression until the hook-basal body structural intermediate is completed and FlgM is inhibited by secretion from the cytoplasm. Here we demonstrate that FlgM is also secreted in the Gram-positive bacterium Bacillus subtilis and is degraded extracellularly by the proteases Epr and WprA. We further demonstrate that, like in S. enterica, the structural genes required for the flagellar hook-basal body are required for robust activation of σ(D)-dependent gene expression and efficient secretion of FlgM. Finally, we determine that FlgM secretion is strongly enhanced by, but does not strictly require, hook-basal body completion and instead demands a minimal subset of flagellar proteins that includes the FliF/FliG basal body proteins, the flagellar type III export apparatus components FliO, FliP, FliQ, FliR, FlhA, and FlhB, and the substrate specificity switch regulator FliK.
Collapse
|
6
|
The canonical twin-arginine translocase components are not required for secretion of folded green fluorescent protein from the ancestral strain of Bacillus subtilis. Appl Environ Microbiol 2014; 80:3219-32. [PMID: 24632256 DOI: 10.1128/aem.00335-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular processes, such as the digestion of macromolecules, phosphate acquisition, and cell motility, require bacterial secretion systems. In Bacillus subtilis, the predominant protein export pathways are Sec (generalized secretory pathway) and Tat (twin-arginine translocase). Unlike Sec, which secretes unfolded proteins, the Tat machinery secretes fully folded proteins across the plasma membrane and into the medium. Proteins are directed for Tat-dependent export by N-terminal signal peptides that contain a conserved twin-arginine motif. Thus, utilizing the Tat secretion system by fusing a Tat signal peptide is an attractive strategy for the production and export of heterologous proteins. As a proof of concept, we expressed green fluorescent protein (GFP) fused to the PhoD Tat signal peptide in the laboratory and ancestral strains of B. subtilis. Secretion of the Tat-GFP construct, as well as secretion of proteins in general, was substantially increased in the ancestral strain. Furthermore, our results show that secreted, fluorescent GFP could be purified directly from the extracellular medium. Nonetheless, export was not dependent on the known Tat secretion components or the signal peptide twin-arginine motif. We propose that the ancestral strain contains additional Tat components and/or secretion regulators that were abrogated following domestication.
Collapse
|
7
|
Gupta M, Dixit M, Rao KK. Spo0A positively regulates epr expression by negating the repressive effect of co-repressors, SinR and ScoC, in Bacillus subtilis. J Biosci 2013; 38:291-9. [DOI: 10.1007/s12038-013-9309-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Expression and identification of a minor extracellular fibrinolytic enzyme (Vpr) from Bacillus subtilis KCTC 3014. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0191-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Gupta M, Rao KK. Epr plays a key role in DegU-mediated swarming motility ofBacillus subtilis. FEMS Microbiol Lett 2009; 295:187-94. [DOI: 10.1111/j.1574-6968.2009.01596.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Kodama T, Endo K, Sawada K, Ara K, Ozaki K, Kakeshita H, Yamane K, Sekiguchi J. Bacillus subtilis AprX involved in degradation of a heterologous protein during the late stationary growth phase. J Biosci Bioeng 2007; 104:135-43. [PMID: 17884659 DOI: 10.1263/jbb.104.135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 05/21/2007] [Indexed: 11/17/2022]
Abstract
In Bacillus subtilis, extracellular protease-deficient mutants have been used in attempts to increase the productivity of heterologous proteins. We detected protease activity of AprX using protease zymography in the culture medium at the late stationary growth phase. An alpha-amylase-A522-PreS2 hybrid protein, in which the PreS2 antigen of human hepatitis B virus (HBV) is fused with the N-terminal 522-amino-acid polypeptide of B. subtilis alpha-amylase, has been produced in multiple-protease-deficient mutants. The B. subtilis KA8AX strain, which is deficient in eight extracellular proteases and AprX, did not show the proteolysis of alpha-amylase-A522-PreS2 in the late stationary growth phase. Moreover, the production of alpha-amylase-A522-PreS2 was about 80 mg/l, which was eight times higher than that by the KA8AX strain previously reported. In addition, we showed the degradation of the heterologous protein by AprX that leaked to the culture medium (probably caused by cell lysis) during the late stationary growth phase.
Collapse
Affiliation(s)
- Takeko Kodama
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kodama T, Endo K, Ara K, Ozaki K, Kakeshita H, Yamane K, Sekiguchi J. Effect of Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis. J Biosci Bioeng 2007; 103:13-21. [PMID: 17298895 DOI: 10.1263/jbb.103.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 10/02/2006] [Indexed: 11/17/2022]
Abstract
The Bacillus subtilis spo0A mutant is an adequate host for extracellular protein production (e.g., alpha-amylase). However the mutant was prone to cell lysis. SDS-PAGE and zymography of cell wall lytic proteins indicated that the spo0A mutant contained high amounts of two major autolysins (LytC [CwlB] and LytD [CwlG]) and two minor cell wall lytic enzymes (LytE [CwlF] and LytF [CwlE]). On the other hand, the expression of eight extracellular protease genes was very poor or absent in the spo0A mutant. An eight-extracellular-protease-deficient mutant (Dpr8 strain) was constructed and the strain also exhibited cell lysis. The autolysins from the spo0A mutant were degraded by the supernatant of the wild type but not degraded by that of the Dpr8 mutant. These results suggest that the extensive cell lysis of the spo0A mutant was partially caused by the stability of autolysins via the decrease of the extracellular proteases. The introduction of a major autolysin and/or SigD mutations into the spo0A mutant was effective for preventing cell lysis.
Collapse
Affiliation(s)
- Takeko Kodama
- Tochigi Research Laboratories of Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Glaser P, Kunst F, Arnaud M, Coudart MP, Gonzales W, Hullo MF, Ionescu M, Lubochinsicy B, Marcelino L, Moszer I, Presecan E, Santana M, Schneider E, Schwelzer J, Vertes A, Rapoport G, Danchin A. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333deg. Mol Microbiol 2006; 10:371-384. [PMID: 28776854 DOI: 10.1111/j.1365-2958.1993.tb01963.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the framework of the European project aimed at the sequencing of the Bacillus subtilis genome the DNA region located between gerB (314°) and sacXV (333°) was assigned to the Institut Pasteur. In this paper we describe the cloning and sequencing of a segment of 97 kb of contiguous DNA. Ninety-two open reading frames were predicted to encode putative proteins among which only forty-two were found to display significant similarities to known proteins present in databanks, e.g. amino acid permeases, proteins involved in cell wall or antibiotic biosynthesis, various regulatory proteins, proteins of several dehydrogenase families and enzymes II of the phosphotransferase system involved in sugar transport. Additional experiments led to the identification of the products of new B. subtilis genes, e.g. galactokinase and an operon involved in thiamine biosynthesis.
Collapse
Affiliation(s)
- P Glaser
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - F Kunst
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - M Arnaud
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - M-P Coudart
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - W Gonzales
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - M-F Hullo
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - M Ionescu
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - B Lubochinsicy
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - L Marcelino
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - I Moszer
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - E Presecan
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - M Santana
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - E Schneider
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - J Schwelzer
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - A Vertes
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - G Rapoport
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - A Danchin
- Unité de Régulation de l'Expression GénétiqueUnité de Biochimie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.GDR 1029, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.Laboratoire de Biochimie Cellulaire et de Biologie Moléculaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| |
Collapse
|
13
|
Kodgire P, Dixit M, Rao KK. ScoC and SinR negatively regulate epr by corepression in Bacillus subtilis. J Bacteriol 2006; 188:6425-8. [PMID: 16923912 PMCID: PMC1595376 DOI: 10.1128/jb.00427-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Negative regulation of epr in Bacillus subtilis 168 is mediated jointly by both ScoC and SinR, which bind to their respective target sites 62 bp apart. Increasing the distance between the two sites abolishes repression, indicating that the two proteins interact, thereby suggesting a mechanism of corepression.
Collapse
Affiliation(s)
- Prashant Kodgire
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | | |
Collapse
|
14
|
Murudkar CS, Kodgire P, Krishnamurthy Rao K. The carboxy terminal domain of Epr, a minor extracellular serine protease, is essential for the swarming motility ofBacillus subtilis168. FEMS Microbiol Lett 2006; 257:24-31. [PMID: 16553828 DOI: 10.1111/j.1574-6968.2006.00151.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this study we have investigated the role of Epr, a minor extracellular serine protease, in the swarming motility of Bacillus subtilis 168. We identified that the protease activity of Epr was dispensable for swarming. Since the protease activity of Epr was confined to its N-terminal domain, we hypothesized instead that its C-terminal domain (CTD) could be critical for swarming. Our study showed that not only the expression of Epr-CTD was necessary, but also its secretion was crucial for the swarming motility of B. subtilis 168.
Collapse
Affiliation(s)
- Charuta S Murudkar
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | | | | |
Collapse
|
15
|
Kho CW, Park SG, Cho S, Lee DH, Myung PK, Park BC. Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis. Protein Expr Purif 2005; 39:1-7. [PMID: 15596354 DOI: 10.1016/j.pep.2004.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 08/10/2004] [Indexed: 12/01/2022]
Abstract
We have previously reported a proteomic approach to detect fibrinolytic enzymes from the secreted proteins of Bacillus subtilis 168 and identified two extracellular fibrinolytic enzymes of Bacillus, namely, Vpr and WprA. In this study, to confirm the fibrinolytic activity of Vpr, we cloned the vpr gene and expressed it in Escherichia coli, where it is predominantly localized to inclusion bodies. After affinity purification and desalting steps, the expressed Vpr is auto-processed to an active form. Interestingly, after the desalting step, several additional bands with fibrinolytic activity were detected in zymography gel along with a mature form (68 kDa) of Vpr. MALDI-TOF analyses of these bands revealed that Vpr could exist in multiple forms.
Collapse
Affiliation(s)
- Chang Won Kho
- Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, P.O. Box 115, Daejeon 305-600, South Korea
| | | | | | | | | | | |
Collapse
|
16
|
Kim SJ, Cha MK, Oh ET, Kang SM, So JS, Kwon YJ. Use of protease produced byBacillus sp. SJ-121 for improvement of dyeing quality in wool and silk. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02932011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Park CH, Lee SJ, Lee SG, Lee WS, Byun SM. Hetero- and autoprocessing of the extracellular metalloprotease (Mpr) in Bacillus subtilis. J Bacteriol 2004; 186:6457-64. [PMID: 15375126 PMCID: PMC516591 DOI: 10.1128/jb.186.19.6457-6464.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most proteases are synthesized as inactive precursors which are processed by proteolytic cleavage into a mature active form, allowing regulation of their proteolytic activity. The activation of the glutamic-acid-specific extracellular metalloprotease (Mpr) of Bacillus subtilis has been examined. Analysis of Mpr processing in defined protease-deficient mutants by activity assay and Western blotting revealed that the extracellular protease Bpr is required for Mpr processing. pro-Mpr remained a precursor form in bpr-deficient strains, and glutamic-acid-specific proteolytic activity conferred by Mpr was not activated in bpr-deficient strains. Further, purified pro-Mpr was processed to an active form by purified Bpr protease in vitro. We conclude that Mpr is activated by Bpr in vivo, and that heteroprocessing, rather than autoprocessing, is the major mechanism of Mpr processing in vivo. Exchange of glutamic acid for serine in the cleavage site of Mpr (S93E) allowed processing of Mpr into its mature form, regardless of the presence of other extracellular proteases, including Bpr. Thus, a single amino acid change is sufficient to convert the Mpr processing mechanism from heteroprocessing to autoprocessing.
Collapse
Affiliation(s)
- Chi Hye Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| | | | | | | | | |
Collapse
|
18
|
Yamamoto H, Kurosawa SI, Sekiguchi J. Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J Bacteriol 2003; 185:6666-77. [PMID: 14594841 PMCID: PMC262103 DOI: 10.1128/jb.185.22.6666-6677.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LytF, LytE, and LytC are vegetative cell wall hydrolases in Bacillus subtilis. Immunofluorescence microscopy showed that an epitope-tagged LytF fusion protein (LytF-3xFLAG) in the wild-type background strain was localized at cell separation sites and one of the cell poles of rod-shaped cells during vegetative growth. However, in a mutant lacking both the cell surface protease WprA and the extracellular protease Epr, the fusion protein was observed at both cell poles in addition to cell separation sites. This suggests that LytF is potentially localized at cell separation sites and both cell poles during vegetative growth and that WprA and Epr are involved in LytF degradation. The localization pattern of LytE-3xFLAG was very similar to that of LytF-3xFLAG during vegetative growth. However, especially in the early vegetative growth phase, there was a remarkable difference between the shape of cells expressing LytE-3xFLAG and the shape of cells expressing LytF-3xFLAG. In the case of LytF-3xFLAG, it seemed that the signals in normal rod-shaped cells were stronger than those in long-chain cells. In contrast, the reverse was found in the case of LytE-3xFLAG. This difference may reflect the dependence on different sigma factors for gene expression. The results support and extend the previous finding that LytF and LytE are cell-separating enzymes. On the other hand, we observed that cells producing LytC-3xFLAG are uniformly coated with the fusion protein after the middle of the exponential growth phase, which supports the suggestion that LytC is a major autolysin that is not associated with cell separation.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | | | | |
Collapse
|
19
|
Corvey C, Stein T, Düsterhus S, Karas M, Entian KD. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem Biophys Res Commun 2003; 304:48-54. [PMID: 12705882 DOI: 10.1016/s0006-291x(03)00529-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maturation of the peptide antibiotic (lantibiotic) subtilin in Bacillus subtilis ATCC 6633 includes posttranslational modifications of the propeptide and proteolytic cleavage of the leader peptide. To identify subtilin processing activities, we used antimicrobial inactive subtilin precursors consisting of the leader peptide which was still attached to the fully matured propeptide. Two extracellular B. subtilis proteases were able to activate subtilin precursors, the commercially available serine protease prototype subtilisin (AprE) and WprA. The latter was isolated from B. subtilis WB600, a strain deficient in six extracellular proteases. Surprisingly, the aprE wprA double mutant of the ATCC 6633 strain was still able to produce active subtilin, however, with a reduced production rate. No subtilin processing was found within the culture supernatant of the WB800 strain, which is deficient in eight extracellular proteases. Vpr was identified as the third protease capable to process subtilin.
Collapse
Affiliation(s)
- Carsten Corvey
- Institut für Pharmazeutische Chemie, Johann Wolfgang Goethe-Universität, Marie-Curie-Str. 9-11, 60439, Frankfurt/M, Germany
| | | | | | | | | |
Collapse
|
20
|
Park SG, Kho CW, Cho S, Lee DH, Kim SH, Park BC. A functional proteomic analysis of secreted fibrinolytic enzymes from Bacillus subtilis 168 using a combined method of two-dimensional gel electrophoresis and zymography. Proteomics 2002; 2:206-11. [PMID: 11840566 DOI: 10.1002/1615-9861(200202)2:2<206::aid-prot206>3.0.co;2-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Here we describe a proteomic approach to detect fibrinolytic enzymes from the culture supernatant of Bacillus subtilis 168. Following isoelectric focusing without dithiothreitol, two gels, one for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and the other for zymography, were run in parallel. After silver staining of SDS-PAGE and activity staining of zymography gel, the two gels were superimposed to detect protein spots that coincided with clear zones on the zymography gel. We identified four protein spots and characterized them with matrix-assisted laser desorption/ionization mass spectrometry. Database search revealed that four spots contained at least one of the extracellular serine proteases such as WprA and Vpr. This combined method of two-dimensional gel and zymography can be used as a powerful tool to detect proteases from various organisms.
Collapse
Affiliation(s)
- Sung Goo Park
- Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, Yusung, Taejon, South Korea
| | | | | | | | | | | |
Collapse
|
21
|
Dixit M, Murudkar CS, Rao KK. Epr is transcribed from a final sigma(D) promoter and is involved in swarming of Bacillus subtilis. J Bacteriol 2002; 184:596-9. [PMID: 11751842 PMCID: PMC139581 DOI: 10.1128/jb.184.2.596-599.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epr is a minor extracellular protease secreted by Bacillus subtilis 168. In this study, we show that epr is transcribed by E sigma(D), the RNA polymerase associated with transcription of genes involved in chemotaxis and motility. Disruption of epr abolished swarming of Bacillus subtilis, suggesting its involvement in motility.
Collapse
Affiliation(s)
- Madhulika Dixit
- Biotechnology Centre, Indian Institute of Technology, Powai, Mumbai 400076, India
| | | | | |
Collapse
|
22
|
Stephenson K, Bron S, Harwood CR. Cellular lysis in Bacillus subtilis; the affect of multiple extracellular protease deficiencies. Lett Appl Microbiol 1999. [DOI: 10.1046/j.1472-765x.1999.00592.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998; 62:597-635. [PMID: 9729602 PMCID: PMC98927 DOI: 10.1128/mmbr.62.3.597-635.1998] [Citation(s) in RCA: 1039] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.
Collapse
Affiliation(s)
- M B Rao
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | | | | | |
Collapse
|
24
|
Babé LM, Schmidt B. Purification and biochemical analysis of WprA, a 52-kDa serine protease secreted by B. subtilis as an active complex with its 23-kDa propeptide. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1386:211-9. [PMID: 9675284 DOI: 10.1016/s0167-4838(98)00110-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis produces numerous proteases that are secreted to the extracellular milieu, and as strains are generated which lack the more prominent proteases, minor ones become detectable. We have isolated a 52-kDa secreted protease from the protease-deficient strain WB600. It is encoded by the wprA gene which encompasses a signal sequence, a 46-kDa propeptide further processed to 23 kDa, and the 52-kDa mature protease. The 52-kDa and 23-kDa polypeptides were previously detected in cell-wall preparations of a wild-type strain. We have co-purified these proteins from culture supernatant, and confirmed the same N-termini and molecular weights as the membrane-bound species. The WprA protease domain has 28.5% identity to subtilisin A, and like other subtilisins, it displays a broad substrate specificity. WprA and subtilisin A have similar pH profiles, showing optimal activity near pH 7.5 for substrates with Met, Gln, or Lys residues at P1. Using a substrate with Asp at P1, another peak of activity was observed for WprA at pH 5 and at pH 6 for subtilisin A. The pH dependence of some bacterial proteases in their interaction with substrates and inhibitors may be biologically relevant.
Collapse
Affiliation(s)
- L M Babé
- Axys Pharmaceuticals Inc., 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
25
|
Farchaus JW, Ribot WJ, Jendrek S, Little SF. Fermentation, purification, and characterization of protective antigen from a recombinant, avirulent strain of Bacillus anthracis. Appl Environ Microbiol 1998; 64:982-91. [PMID: 9501438 PMCID: PMC106355 DOI: 10.1128/aem.64.3.982-991.1998] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacillus anthracis, the etiologic agent for anthrax, produces two bipartite, AB-type exotoxins, edema toxin and lethal toxin. The B subunit of both exotoxins is an M(r) 83,000 protein termed protective antigen (PA). The human anthrax vaccine currently licensed for use in the United States consists primarily of this protein adsorbed onto aluminum oxyhydroxide. This report describes the production of PA from a recombinant, asporogenic, nontoxigenic, and nonencapsulated host strain of B. anthracis and the subsequent purification and characterization of the protein product. Fermentation in a high-tryptone, high-yeast-extract medium under nonlimiting aeration produced 20 to 30 mg of secreted PA per liter. Secreted protease activity under these fermentation conditions was low and was inhibited more than 95% by the addition of EDTA. A purity of 88 to 93% was achieved for PA by diafiltration and anion-exchange chromatography, while greater than 95% final purity was achieved with an additional hydrophobic interaction chromatography step. The purity of the PA product was characterized by reversed-phase high-pressure liquid chromatography, sodium dodecyl sulfate (SDS)-capillary electrophoresis, capillary isoelectric focusing, native gel electrophoresis, and SDS-polyacrylamide gel electrophoresis. The biological activity of the PA, when combined with excess lethal factor in the macrophage cell lysis assay, was comparable to previously reported values.
Collapse
Affiliation(s)
- J W Farchaus
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702-5011, USA.
| | | | | | | |
Collapse
|
26
|
Mine OM, Carnegie PR. Use of degenerate primers and heat-soaked polymerase chain reaction (PCR) to clone a serine protease antigen from Dermatophilus congolensis. Immunol Cell Biol 1997; 75:484-91. [PMID: 9429897 DOI: 10.1038/icb.1997.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Serine proteases are thought to be involved in the initial attack on sheep skin by Dermatophilus congolensis and are obvious antigens for inclusion in a vaccine to prevent lumpy wool disease (dermatophilosis). Degenerate primers were designed after alignment of seven bacterial serine proteases. Inosine was incorporated into the primers at positions of three- and four-base redundancy, and this reduced the complexity of the primer mixtures from several thousand to sixteen different sequences for each primer. The primers were validated by production and sequencing of amplicons from serine protease genes in Bacillus subtilis and Serratia marcescens. The primers were used with heat-soaked polymerase chain reaction (PCR) to produce amplicons from two D. congolensis strains, AG and MB. In the amplicon codons for arginine, rather than the expected serine, were found where inosine was used for both the first and third positions for a codon in the primer. A search with the deduced amino acid sequences of the amplicons showed significant similarity to a keratinase and other serine proteases from various organisms. Similarity was most apparent around the active site residues and other essential secondary structural elements.
Collapse
Affiliation(s)
- O M Mine
- State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia.
| | | |
Collapse
|
27
|
Presecan E, Moszer I, Boursier L, Ramos HC, de la Fuente V, Hullo MF, Lelong C, Schleich S, Sekowska A, Song BH, Villani G, Kunst F, Danchin A, Glaser P. The Bacillus subtilis genome from gerBC (311 degrees) to licR (334 degrees). MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3313-3328. [PMID: 9353933 DOI: 10.1099/00221287-143-10-3313] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As part of the international project to sequence the Bacillus subtilis genome, the DNA region located between gerBC (311 degrees) and licR (334 degrees) was assigned to the institut Pasteur. In this paper, the cloning and sequencing of 176 kb of DNA and the analysis of the sequence of the entire 271 kb region (6.5% of the B. subtilis chromosome) is described; 273 putative coding sequences were identified. Although the complete genome sequences of seven other organisms (five bacteria, one archaeon and the yeast Saccharomyces cerevisiae) are available in public database, 65 genes from this region of the B. subtilis chromosome encode proteins without significant similarities to other known protein sequences. Among the 208 other genes, 115 have paralogues in the currently known B. subtilis DNA sequences and the products of 178 genes were found to display similarities to protein sequences from public databases for which a function is known. Classification of these genes shows a high proportion of them to be involved in the adaptation to various growth conditions (non-essential cell wall constituents, catabolic and bioenergetic pathways); a small number of the genes are essential or encode anabolic enzymes.
Collapse
Affiliation(s)
- E Presecan
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - I Moszer
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - L Boursier
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - H Cruz Ramos
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - V de la Fuente
- Unité de Biochimie Microbienne Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - M-F Hullo
- Unité de Biochimie Microbienne Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - C Lelong
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - S Schleich
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - A Sekowska
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - B H Song
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - G Villani
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - F Kunst
- Unité de Biochimie Microbienne Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - A Danchin
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - P Glaser
- Unité de Régulation de I'Expression GénéeTique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
28
|
Lu Y, Turner RJ, Switzer RL. Roles of the three transcriptional attenuators of the Bacillus subtilis pyrimidine biosynthetic operon in the regulation of its expression. J Bacteriol 1995; 177:1315-25. [PMID: 7868607 PMCID: PMC176739 DOI: 10.1128/jb.177.5.1315-1325.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the Bacillus subtilis pyr operon is regulated by exogenous pyrimidines and the protein product of the first gene of the operon, PyrR. It has been proposed that PyrR mediates transcriptional attenuation at three untranslated segments of the operon (R.J. Turner, Y. Lu, and R.L. Switzer, J. Bacteriol., 176:3708-3722, 1994). In this study, transcriptional fusions of the pyr promoter followed by the pyr attenuation sequences, either individually or in tandem to a lacZ reporter gene, were used to examine the physiological functions of all three attenuators through their ability to affect beta-galactosidase expression. These fusions were studied as chromosomal integrants in various B. subtilis strains to examine the entire range of control by pyrimidines, PyrR dependence, amd developmental control of pyr gene expression. The nutritional regulation of each attenuator separately was roughly equivalent to that of the other two and was totally dependent upon PyrR, and that of tandem attenuators was cumulative. The regulation of a fusion of the spac promoter followed by the pyrP:pyrB intercistronic region to lacZ produced results similar to those obtained with the corresponding fusion containing the pyr promoter, demonstrating that attenuator-dependent regulation is independent of the promoter. Extreme pyrimidine starvation gave rise to two- to threefold-higher levels of expression of a pyr-lacZ fusion that lacked attenuators, independent of PyrR, than were obtained with cells that were not starved. Increased expression of a similar spac-lacZ fusion during pyrimidine starvation was also observed, however, indicating that attenuator-independent regulation is not a specific property of the pyr operon. Conversion of the initiator AUG codon in a small open reading frame in the pyrP:pyrB intercistronic region to UAG reduced expression by about half but did not alter regulation by pyrimidines, which excludes the possibility of a coupled transcription-translation attenuation mechanism. Developmental regulation of pyr expression during early stationary phase was found to be dependent upon the attenuators and PyrR, and the participation of SpoOA was excluded.
Collapse
Affiliation(s)
- Y Lu
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
29
|
Abstract
A series of shuttle vectors for Bacillus subtilis and Escherichia coli was developed. These are derived from one basic construct composed of parts of the Gram+ plasmid pUB110 and the Gram- plasmid pBR322. They contain multiple cloning sites flanked by transcriptional terminators. In one plasmid, a vegetative B. subtilis promoter drives transcription of inserted genes. For the construction of operon and gene fusions, the cat of pUB112 and the lacZ gene of E. coli were employed as reporter genes. With these vectors, cloning and expression of genes as well as probing of regulatory signals can be performed in B. subtilis and E. coli.
Collapse
Affiliation(s)
- R Brückner
- Molekulare Genetik der Universität, Heidelberg, Germany
| |
Collapse
|
30
|
Crutz AM, Steinmetz M. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system. J Bacteriol 1992; 174:6087-95. [PMID: 1400159 PMCID: PMC207674 DOI: 10.1128/jb.174.19.6087-6095.1992] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The adjacent sacX and sacY genes are involved in sucrose induction of the Bacillus subtilis sacB gene by an antitermination mechanism. sacB, encoding the exoenzyme levansucrase, is also subject to regulation by the DegS-DegU signalling system. Using sacXY'-lacZ and sacX'-lacZ fusions, we show that the transcription of the sacX and sacY genes is both inducible by sucrose and regulated by DegU. sacX and sacY appear to constitute an operon, since the deletion of the sacX leader region abolished the expression of a sacXY'-lacZ fusion. The degU-dependent promoter was located by deletion analysis and reverse transcriptase mapping 300 nucleotides upstream from the sacX initiator codon. Sucrose induction of the sacX'-lacZ fusion requires either SacY or the homologous SacT antiterminator, which is involved in sucrose induction of the intracellular sucrase gene (sacPA operon). Sequence analysis of the sacX leader region revealed (20 nucleotides downstream from the transcription start site) a putative binding site for these regulators; however, no structure resembling a rho-independent terminator could be found overlapping this site, unlike the situation for sacPA and sacB. Deletion of a segment of the leader region located 100 nucleotides downstream from this site led to constitutive expression of the sacXY'-lacZ and sacX'-lacZ fusions. These results suggest that the mechanism of sucrose induction of sacXY is different from that of sacPA and sacB.
Collapse
Affiliation(s)
- A M Crutz
- Laboratoire de Génétique des Microorganismes, Centre National de la Recherche Scientifique (URA 537), Thiverval-Grignon, France
| | | |
Collapse
|
31
|
Sloma A, Rufo GA, Theriault KA, Dwyer M, Wilson SW, Pero J. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J Bacteriol 1991; 173:6889-95. [PMID: 1938892 PMCID: PMC209042 DOI: 10.1128/jb.173.21.6889-6895.1991] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have purified a minor extracellular serine protease from a strain of Bacillus subtilis bearing null mutations in five extracellular protease genes: apr, npr, epr, bpr, and mpr (A. Sloma, C. Rudolph, G. Rufo, Jr., B. Sullivan, K. Theriault, D. Ally, and J. Pero, J. Bacteriol. 172:1024-1029, 1990). During purification, this novel protease (Vpr) was found bound in a complex in the void volume after gel filtration chromatography. The amino-terminal sequence of the purified protein was determined, and an oligonucleotide probe was constructed on the basis of the amino acid sequence. This probe was used to clone the structural gene (vpr) for this protease. The gene encodes a primary product of 806 amino acids. The amino acid sequence of the mature protein was preceded by a signal sequence of approximately 28 amino acids and a prosequence of approximately 132 amino acids. The mature protein has a predicted molecular weight of 68,197; however, the isolated protein has an apparent molecular weight of 28,500, suggesting that Vpr undergoes C-terminal processing or proteolysis. The vpr gene maps in the ctrA-sacA-epr region of the chromosome and is not required for growth or sporulation.
Collapse
Affiliation(s)
- A Sloma
- OmniGene, Inc., Cambridge, Massachusetts 02140
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- X S He
- Department of Biochemistry and Biophysics University of California, Davis 95616
| | | | | |
Collapse
|