1
|
Chakraborty S, Harris JM. At the Crossroads of Salinity and Rhizobium-Legume Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:540-553. [PMID: 35297650 DOI: 10.1094/mpmi-09-21-0231-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legume roots interact with soil bacteria rhizobia to develop nodules, de novo symbiotic root organs that host these rhizobia and are mini factories of atmospheric nitrogen fixation. Nodulation is a sophisticated developmental process and is sensitive to several abiotic factors, salinity being one of them. While salinity influences both the free-living partners, symbiosis is more vulnerable than other aspects of plant and microbe physiology, and the symbiotic interaction is strongly impaired even under moderate salinity. In this review, we tease apart the various known components of rhizobium-legume symbiosis and how they interact with salt stress. We focus primarily on the initial stages of symbiosis since we have a greater mechanistic understanding of the interaction at these stages.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| |
Collapse
|
2
|
Lin HH, Huang HM, Yu M, Lai EM, Chien HL, Liu CT. Functional Exploration of the Bacterial Type VI Secretion System in Mutualism: Azorhizobium caulinodans ORS571-Sesbania rostrata as a Research Model. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018. [PMID: 29516754 DOI: 10.1094/mpmi-01-18-0026-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The bacterial type VI secretion system (T6SS) has been considered the armed force of bacteria because it can deliver toxin effectors to prokaryotic or eukaryotic cells for survival and fitness. Although many legume symbiotic rhizobacteria encode T6SS in their genome, the biological function of T6SS in these bacteria is still unclear. To elucidate this issue, we used Azorhizobium caulinodans ORS571 and its symbiotic host Sesbania rostrata as our research model. By using T6SS gene deletion mutants, we found that T6SS provides A. caulinodans with better symbiotic competitiveness when coinfected with a T6SS-lacking strain, as demonstrated by two independent T6SS-deficient mutants. Meanwhile, the symbiotic effectiveness was not affected by T6SS because the nodule phenotype, nodule size, and nodule nitrogen-fixation ability did not differ between the T6SS mutants and the wild type when infected alone. Our data also suggest that under several lab culture conditions tested, A. caulinodans showed no T6SS-dependent interbacterial competition activity. Therefore, instead of being an antihost or antibacterial weapon of the bacterium, the T6SS in A. caulinodans ORS571 seems to participate specifically in symbiosis by increasing its symbiotic competitiveness.
Collapse
Affiliation(s)
- Hsiao-Han Lin
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
- 2 Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2, Academia Rd., Nankang, Taipei 11529, Taiwan; and
| | - Hsin-Mei Huang
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
| | - Manda Yu
- 2 Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2, Academia Rd., Nankang, Taipei 11529, Taiwan; and
| | - Erh-Min Lai
- 2 Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2, Academia Rd., Nankang, Taipei 11529, Taiwan; and
| | - Hsiao-Lin Chien
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
| | - Chi-Te Liu
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
- 3 Agricultural Biotechnology Research Center, Academia Sinica
| |
Collapse
|
3
|
Ng JLP, Mathesius U. Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation. FRONTIERS IN PLANT SCIENCE 2018; 9:169. [PMID: 29497432 PMCID: PMC5818462 DOI: 10.3389/fpls.2018.00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/30/2018] [Indexed: 05/23/2023]
Abstract
Legumes enter into a symbiotic relationship with nitrogen-fixing rhizobia, leading to nodule development. Two main types of nodules have been widely studied, indeterminate and determinate, which differ in the location of the first cell division in the root cortex, and persistency of the nodule meristem. Here, we compared the control of auxin transport, content, and response during the early stages of indeterminate and determinate nodule development in the model legumes Medicago truncatula and Lotus japonicus, respectively, to investigate whether differences in auxin transport control could explain the differences in the location of cortical cell divisions. While auxin responses were activated in dividing cortical cells during nodulation of both nodule types, auxin (indole-3-acetic acid) content at the nodule initiation site was transiently increased in M. truncatula, but transiently reduced in L. japonicus. Root acropetal auxin transport was reduced in M. truncatula at the very start of nodule initiation, in contrast to a prolonged increase in acropetal auxin transport in L. japonicus. The auxin transport inhibitors 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid (NPA) only induced pseudonodules in legume species forming indeterminate nodules, but failed to elicit such structures in a range of species forming determinate nodules. The development of these pseudonodules in M. truncatula exhibited increased auxin responses in a small primordium formed from the pericycle, endodermis, and inner cortex, similar to rhizobia-induced nodule primordia. In contrast, a diffuse cortical auxin response and no associated cortical cell divisions were found in L. japonicus. Collectively, we hypothesize that a step of acropetal auxin transport inhibition is unique to the process of indeterminate nodule development, leading to auxin responses in pericycle, endodermis, and inner cortex cells, while increased auxin responses in outer cortex cells likely require a different mechanism during the formation of determinate nodules.
Collapse
Affiliation(s)
- Jason L. P. Ng
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
4
|
Zhao Y, Nickels LM, Wang H, Ling J, Zhong Z, Zhu J. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans. FEMS Microbiol Lett 2016; 363:fnw130. [PMID: 27190162 DOI: 10.1093/femsle/fnw130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Logan M Nickels
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Wang
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Jun Ling
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Zengtao Zhong
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Jun Zhu
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095 Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Cocking EC. The Challenge of Establishing Symbiotic Nitrogen Fixation in Cereals. AGRONOMY MONOGRAPHS 2015. [DOI: 10.2134/agronmonogr52.c3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Rajaonson S, Vandeputte OM, Vereecke D, Kiendrebeogo M, Ralambofetra E, Stévigny C, Duez P, Rabemanantsoa C, Mol A, Diallo B, Baucher M, El Jaziri M. Virulence quenching with a prenylated isoflavanone renders the Malagasy legume Dalbergia pervillei resistant to Rhodococcus fascians. Environ Microbiol 2011; 13:1236-52. [DOI: 10.1111/j.1462-2920.2011.02424.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Lee SH, Kim JM, Lee HJ, Jeon CO. Screening of promoters from rhizosphere metagenomic DNA using a promoter-trap vector and flow cytometric cell sorting. J Basic Microbiol 2011; 51:52-60. [DOI: 10.1002/jobm.201000291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/09/2010] [Indexed: 11/06/2022]
|
8
|
Comparative genome-wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic conditions. Appl Environ Microbiol 2009; 75:5037-46. [PMID: 19542345 DOI: 10.1128/aem.00398-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The whole-genome sequence of the endosymbiotic bacterium Azorhizobium caulinodans ORS571, which forms nitrogen-fixing nodules on the stems and roots of Sesbania rostrata, was recently determined. The sizes of the genome and symbiosis island are 5.4 Mb and 86.7 kb, respectively, and these sizes are the smallest among the sequenced rhizobia. In the present study, a whole-genome microarray of A. caulinodans was constructed, and transcriptomic analyses were performed on free-living cells grown in rich and minimal media and in bacteroids isolated from stem nodules. Transcriptional profiling showed that the genes involved in sulfur uptake and metabolism, acetone metabolism, and the biosynthesis of exopolysaccharide were highly expressed in bacteroids compared to the expression levels in free-living cells. Some mutants having Tn5 transposons within these genes with increased expression were obtained as nodule-deficient mutants in our previous study. A transcriptomic analysis was also performed on free-living cells grown in minimal medium supplemented with a flavonoid, naringenin, which is one of the most efficient inducers of A. caulinodans nod genes. Only 18 genes exhibited increased expression by the addition of naringenin, suggesting that the regulatory mechanism responding to the flavonoid could be simple in A. caulinodans. The combination of our genome-wide transcriptional profiling and our previous genome-wide mutagenesis study has revealed new aspects of nodule formation and maintenance.
Collapse
|
9
|
Lee KB, De Backer P, Aono T, Liu CT, Suzuki S, Suzuki T, Kaneko T, Yamada M, Tabata S, Kupfer DM, Najar FZ, Wiley GB, Roe B, Binnewies TT, Ussery DW, D'Haeze W, Herder JD, Gevers D, Vereecke D, Holsters M, Oyaizu H. The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics 2008; 9:271. [PMID: 18522759 PMCID: PMC2443382 DOI: 10.1186/1471-2164-9-271] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/04/2008] [Indexed: 11/17/2022] Open
Abstract
Background Biological nitrogen fixation is a prokaryotic process that plays an essential role in the global nitrogen cycle. Azorhizobium caulinodans ORS571 has the dual capacity to fix nitrogen both as free-living organism and in a symbiotic interaction with Sesbania rostrata. The host is a fast-growing, submergence-tolerant tropical legume on which A. caulinodans can efficiently induce nodule formation on the root system and on adventitious rootlets located on the stem. Results The 5.37-Mb genome consists of a single circular chromosome with an overall average GC of 67% and numerous islands with varying GC contents. Most nodulation functions as well as a putative type-IV secretion system are found in a distinct symbiosis region. The genome contains a plethora of regulatory and transporter genes and many functions possibly involved in contacting a host. It potentially encodes 4717 proteins of which 96.3% have homologs and 3.7% are unique for A. caulinodans. Phylogenetic analyses show that the diazotroph Xanthobacter autotrophicus is the closest relative among the sequenced genomes, but the synteny between both genomes is very poor. Conclusion The genome analysis reveals that A. caulinodans is a diazotroph that acquired the capacity to nodulate most probably through horizontal gene transfer of a complex symbiosis island. The genome contains numerous genes that reflect a strong adaptive and metabolic potential. These combined features and the availability of the annotated genome make A. caulinodans an attractive organism to explore symbiotic biological nitrogen fixation beyond leguminous plants.
Collapse
Affiliation(s)
- Kyung-Bum Lee
- Laboratory of Plant Biotechnology, Biotechnology Research Center, University of Tokyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Den Herder J, Vanhee C, De Rycke R, Corich V, Holsters M, Goormachtig S. Nod factor perception during infection thread growth fine-tunes nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:129-37. [PMID: 17313164 DOI: 10.1094/mpmi-20-2-0129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bacterial nodulation factors (NFs) are essential signaling molecules for the initiation of a nitrogen-fixing symbiosis in legumes. NFs are perceived by the plant and trigger both local and distant responses, such as curling of root hairs and cortical cell divisions. In addition to their requirement at the start, NFs are produced by bacteria that reside within infection threads. To analyze the role of NFs at later infection stages, several phases of nodulation were studied by detailed light and electron microscopy after coinoculation of adventitious root primordia of Sesbania rostrata with a mixture of Azorhizobium caulinodans mutants ORS571-V44 and ORS571-X15. These mutants are deficient in NF production or surface polysaccharide synthesis, respectively, but they can complement each other, resulting in functional nodules occupied by ORS571-V44. The lack of NFs within the infection threads was confirmed by the absence of expression of an early NF-induced marker, leghemoglobin 6 of S. rostrata. NF production within the infection threads is shown to be necessary for proper infection thread growth and for synchronization of nodule formation with bacterial invasion. However, local production of NFs by bacteria that are taken up by the plant cells at the stage of bacteroid formation is not required for correct symbiosome development.
Collapse
Affiliation(s)
- Jeroen Den Herder
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
11
|
Ohishi K, Murase K, Ohta T, Etoh H. Cloning and sequencing of the deacetylase gene from Vibrio alginolyticus H-8. J Biosci Bioeng 2005; 90:561-3. [PMID: 16232910 DOI: 10.1016/s1389-1723(01)80041-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2000] [Accepted: 08/08/2000] [Indexed: 11/24/2022]
Abstract
A gene encoding deacetylase DA1 that is specific for N, N'-diacetylchitobiose was cloned using the shot-gun method with pUC118 and sequenced. The open reading frame encoded a protein of 427 amino acids including the signal peptide. The molecular mass of the mature enzyme estimated from the amino acid sequence data was 44.7 kDa, which is approximately similar to that, estimated by SDS-PAGE (48.0 kDa), of the purified enzyme reported previously. The N-terminal amino acid sequence deduced from the cloned deacetylase gene showed partial sequence homology with the Nod B protein from Rhizobium sp. (37% identity) and chitin deacetylase from Mucor rouxii (28%). It contained a domain, which showed homology with a chitin-binding domain of chitinase A from Bacillus circulans (39%).
Collapse
Affiliation(s)
- K Ohishi
- United Graduate School of Agricultural Sciences, Gifu University (Shizuoka University), 422-8529, Japan
| | | | | | | |
Collapse
|
12
|
Lievens S, Goormachtig S, Den Herder J, Capoen W, Mathis R, Hedden P, Holsters M. Gibberellins are involved in nodulation of Sesbania rostrata. PLANT PHYSIOLOGY 2005; 139:1366-79. [PMID: 16258018 PMCID: PMC1283772 DOI: 10.1104/pp.105.066944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Upon submergence, Azorhizobium caulinodans infects the semiaquatic legume Sesbania rostrata via the intercellular crack entry process, resulting in lateral root-based nodules. A gene encoding a gibberellin (GA) 20-oxidase, SrGA20ox1, involved in GA biosynthesis, was transiently up-regulated during lateral root base nodulation. Two SrGA20ox1 expression patterns were identified, one related to intercellular infection and a second observed in nodule meristem descendants. The infection-related expression pattern depended on bacterially produced nodulation (Nod) factors. Pharmacological studies demonstrated that GAs were involved in infection pocket and infection thread formation, two Nod factor-dependent events that initiate lateral root base nodulation, and that they were also needed for nodule primordium development. Moreover, GAs inhibited the root hair curling process. These results show that GAs are Nod factor downstream signals for nodulation in hydroponic growth.
Collapse
Affiliation(s)
- Sam Lievens
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
13
|
Capoen W, Goormachtig S, De Rycke R, Schroeyers K, Holsters M. SrSymRK, a plant receptor essential for symbiosome formation. Proc Natl Acad Sci U S A 2005; 102:10369-74. [PMID: 16006516 PMCID: PMC1177396 DOI: 10.1073/pnas.0504250102] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Indexed: 11/18/2022] Open
Abstract
The symbiosis between legumes and rhizobia is essential for the nitrogen input into the life cycle on our planet. New root organs, the nodules, are established, which house N2-fixing bacteria internalized into the host cell cytoplasm as horizontally acquired organelles, the symbiosomes. The interaction is initiated by bacterial invasion via epidermal root hair curling and cell division in the cortex, both triggered by bacterial nodulation factors. Of the several genes involved in nodule initiation that have been identified, one encodes the leucine-rich repeat-type receptor kinase SymRK. In SymRK mutants of Lotus japonicus or its orthologs in Medicago sp. and Pisum sativum, nodule initiation is arrested at the level of the root hair interaction. Because of the epidermal block, the role of SymRK at later stages of nodule development remained enigmatic. To analyze the role of SymRK downstream of the epidermis, the water-tolerant legume Sesbania rostrata was used that has developed a nodulation strategy to circumvent root hair responses for bacterial invasion. Evidence is provided that SymRK plays an essential role during endosymbiotic uptake in plant cells.
Collapse
Affiliation(s)
- Ward Capoen
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | |
Collapse
|
14
|
Mathis R, Van Gijsegem F, De Rycke R, D'Haeze W, Van Maelsaeke E, Anthonio E, Van Montagu M, Holsters M, Vereecke D. Lipopolysaccharides as a communication signal for progression of legume endosymbiosis. Proc Natl Acad Sci U S A 2005; 102:2655-60. [PMID: 15699329 PMCID: PMC549025 DOI: 10.1073/pnas.0409816102] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Establishment of a successful symbiosis between rhizobia and legumes results from an elaborate molecular dialogue between both partners. Bacterial nodulation (Nod) factors are indispensable for initiating plant responses, whereas bacterial surface polysaccharides are important for infection progression and nodule development. The mutant ORS571-oac2 of Azorhizobium caulinodans, affected in its surface polysaccharides, provokes a defective interaction with its host Sesbania rostrata. ORS571-oac2 induced structures with retarded development and continued generation of infection centers and organ primordia, leading to multilobed ineffective nodules. Bacterial development throughout the interaction occurred without major defects. A functional bidirectional complementation was obtained upon coinfection of ORS571-oac2 and a Nod factor-deficient mutant, indicating that the Fix- phenotype of ORS571-oac2-induced nodules resulted from the absence of a positive signal from ORS571-oac2. Indeed, the Fix- phenotype could be complemented by coinoculation of ORS571-oac2 with lipopolysaccharides (LPSs) purified from A. caulinodans. Our data show that Nod factors and LPSs are consecutive signals in symbiosis. Nod factors act first to trigger the onset of the nodulation and invasion program; LPSs inform the plant to proceed with the symbiotic interaction and to develop a functional fixation zone.
Collapse
Affiliation(s)
- René Mathis
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Baginsky C, Palacios JM, Imperial J, Ruiz-Argüeso T, Brito B. Molecular and functional characterization of the Azorhizobium caulinodans ORS571 hydrogenase gene cluster. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09723.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
D'Haeze W, Glushka J, De Rycke R, Holsters M, Carlson RW. Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. Mol Microbiol 2004; 52:485-500. [PMID: 15066035 DOI: 10.1111/j.1365-2958.2004.03989.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During lateral root base nodulation, the microsymbiont Azorhizobium caulinodans enters its host plant, Sesbania rostrata, via the formation of outer cortical infection pockets, a process that is characterized by a massive production of H(2)O(2). Infection threads guide bacteria from infection pockets towards nodule primordia. Previously, two mutants were constructed that produce lipopolysaccharides (LPSs) similar to one another but different from the wild-type LPS, and that are affected in extracellular polysaccharide (EPS) production. Mutant ORS571-X15 was blocked at the infection pocket stage and unable to produce EPS. The other mutant, ORS571-oac2, was impaired in the release from infection threads and was surrounded by a thin layer of EPS in comparison to the wild-type strain that produced massive amounts of EPS. Structural characterization revealed that EPS purified from cultured and nodule bacteria was a linear homopolysaccharide of alpha-1,3-linked 4,6-O-(1-carboxyethylidene)-D-galactosyl residues. In situ H(2)O(2) localization demonstrated that increased EPS production during early stages of invasion prevented the incorporation of H(2)O(2) inside the bacteria, suggesting a role for EPS in protecting the microsymbiont against H(2)O(2). In addition, ex planta assays confirmed a positive correlation between increased EPS production and enhanced protection against H(2)O(2).
Collapse
Affiliation(s)
- Wim D'Haeze
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602-4712, USA.
| | | | | | | | | |
Collapse
|
17
|
D'Haeze W, De Rycke R, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M. Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci U S A 2003; 100:11789-94. [PMID: 12975522 PMCID: PMC208836 DOI: 10.1073/pnas.1333899100] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Indexed: 11/18/2022] Open
Abstract
Lateral root base nodulation on the tropical, semiaquatic legume Sesbania rostrata results from two coordinated, Nod factor-dependent processes: formation of intercellular infection pockets and induction of cell division. Infection pocket formation is associated with cell death and production of hydrogen peroxide. Pharmacological experiments showed that ethylene and reactive oxygen species mediate Nod factor responses and are required for nodule initiation, whereby induction of division and infection could not be uncoupled. Application of purified Nod factors triggered cell division, and both Nod factors and ethylene induced cavities and cell death features in the root cortex. Thus, in S. rostrata, ethylene and reactive oxygen species act downstream from the Nod factors in pathways that lead to formation of infection pockets and initiation of nodule primordia.
Collapse
Affiliation(s)
- Wim D'Haeze
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Raychaudhuri S, Rajasekharan R. Nonorganellar acyl carrier protein from oleaginous yeast is a homologue of ribosomal protein P2. J Biol Chem 2003; 278:37648-57. [PMID: 12869567 DOI: 10.1074/jbc.m305052200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl carrier protein (ACP) is responsible for carrying the growing fatty acid chain from one enzyme active site to the next during fatty acid biosynthesis. Here we report the identification, purification, immunocytochemical localization, and cloning of ACP from the oleaginous yeast, Rhodotorula glutinis. The soluble fraction of this organism can synthesize triacylglycerol and is able to accept the acyl group from acyl-ACP for the synthesis. The ACP, cloned from the system, showed a significant similarity with ribosomal protein P2. Expression and characterization of the recombinant protein showed that the ACP was acylated in vitro. The recombinant protein was post-translationally modified, since it was observed in [14C]beta-alanine labeling and matrix-assisted laser desorption mass spectroscopic analysis. Site-directed mutants were generated to identify a serine residue responsible for phosphopantetheinylation and found that mutation of serine 59 to alanine abrogated the fatty acylation ability of the protein. These results demonstrate that a novel modification of ribosomal protein P2 allows it to act as an acyl carrier protein and participate in acylation reactions.
Collapse
Affiliation(s)
- Sumana Raychaudhuri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
19
|
Ba S, Willems A, de Lajudie P, Roche P, Jeder H, Quatrini P, Neyra M, Ferro M, Promé JC, Gillis M, Boivin-Masson C, Lorquin J. Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. Syst Appl Microbiol 2002; 25:130-45. [PMID: 12086180 DOI: 10.1078/0723-2020-00091] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A collection of rhizobia isolated from Acacia tortilis subsp. raddiana from various sites in the North and South of Sahara was analyzed for their diversity at both taxonomic and symbiotic levels. On the basis of whole cell protein (SDS-PAGE) and 16S rDNA sequence analysis, most of the strains were found to belong to the Sinorhizobium and Mesorhizobium genera where they may represent several different genospecies. Despite their chromosomal diversity, most A. tortilis Mesorhizobium and Sinorhizobium symbionts exhibited very similar symbiotic characters. Nodulation tests showed that the strains belong to the Acacia-Leucaena-Prosopis nodulation group, although mainly forming non-fixing nodules on species other than A. tortilis. Most of the strains tested responded similarly to flavonoid nod gene inducers, as estimated by using heterologous nodA-lacZ fusions. Thin layer chromatography analysis of the Nod factors synthesized by overproducing strains showed that most of the strains exhibited similar profiles. The structures of Nod factors produced by four different Sinorhizobium sp. strains were determined and found to be similar to other Acacia-Prosopis-Leucaena nodulating rhizobia of the Sinorhizobium-Mesorhizobium-Rhizobium branch. They are chitopentamers, N-methylated and N-acylated by common fatty acids at the terminal non reducing sugar. The molecules can also be 6-O sulfated at the reducing end and carbamoylated at the non reducing end. The phylogenetic analysis of available NodA sequences, including new sequences from A. tortilis strains, confirmed the clustering of the NodA sequences of members of the Acacia-Prosopis-Leucaena nodulation group.
Collapse
Affiliation(s)
- Salif Ba
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD-INRA-CIRAD-ENSAM, Baillarguet, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
D'Haeze W, Verplancke C, Mironov V, Holsters M. pMH11, A tool for gene disruption and expression analysis in Azorhizobium caulinodans. Plasmid 2002; 47:88-93. [PMID: 11982330 DOI: 10.1006/plas.2002.1565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tools for mutagenesis and expression analyses are needed to study the role of bacterial genes. Here, we report the construction of pMH11, a small, mobilizable plasmid that replicates in Escherichia coli, but not in Azorhizobium caulinodans, a nodulating microsymbiont of Sesbania rostrata, and that contains a unique BamHI restriction site upstream of a promoterless lacZ gene. pMH11 and two derivatives with the multiple cloning site of pBluescript (KS(II)) are useful for mutagenesis by gene disruption and for expression analyses after selection for cointegration by kanamycin resistance. Weakly constitutive promoter activity from the vector allowed transcription of genes downstream of the integration site, so that no polar effects were caused by gene disruption.
Collapse
Affiliation(s)
- Wim D'Haeze
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
21
|
Goormachtig S, Van de Velde W, Lievens S, Verplancke C, Herman S, De Keyser A, Holsters M. Srchi24, a chitinase homolog lacking an essential glutamic acid residue for hydrolytic activity, is induced during nodule development on Sesbania rostrata. PLANT PHYSIOLOGY 2001; 127:78-89. [PMID: 11553736 PMCID: PMC117964 DOI: 10.1104/pp.127.1.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2001] [Revised: 04/02/2001] [Accepted: 06/04/2001] [Indexed: 05/23/2023]
Abstract
The interaction between the tropical legume Sesbania rostrata and the bacterium Azorhizobium caulinodans results in the formation of nodules on both stem and roots. Stem nodulation was used as a model system to isolate early markers by differential display. One of them, Srchi24 is a novel early nodulin whose transcript level increased already 4 h after inoculation. This enhancement depended on Nod factor-producing bacteria. Srchi24 transcript levels were induced also by exogenous cytokinins. In situ hybridization and immunolocalization experiments showed that Srchi24 transcripts and proteins were present in the outermost cortical cell layers of the developing nodules. Sequence analyses revealed that Srchi24 is similar to class III chitinases, but lacks an important catalytic glutamate residue. A fusion between a maltose-binding protein and Srchi24 had no detectable hydrolytic activity. A function in nodulation is proposed for the Srchi24 protein.
Collapse
Affiliation(s)
- S Goormachtig
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, Karel Lodewijk Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Gao M, D'Haeze W, De Rycke R, Wolucka B, Holsters M. Knockout of an azorhizobial dTDP-L-rhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:857-66. [PMID: 11437259 DOI: 10.1094/mpmi.2001.14.7.857] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A nonpolar mutation was made in the oac2 gene of Azorhizobium caulinodans. oac2 is an ortholog of the Salmonella typhimurium rfbD gene that encodes a dTDP-L-rhamnose synthase. The knockout of oac2 changed the lipopolysaccharide (LPS) pattern and affected the extracellular polysaccharide production but had no effect on bacterial hydrophobicity. Upon hot phenol extraction, the wild-type LPS partitioned in the phenol phase. The LPS fraction of ORS571-oac2 partitioned in the water phase and had a reduced rhamnose content and truncated LPS molecules on the basis of faster migration in detergent gel electrophoresis. Strain ORS571-oac2 induced ineffective nodule-like structures on Sesbania rostrata. There was no clear demarcation between central and peripheral tissues, and neither leghemoglobin nor bacteroids were present. Light and electron microscopy revealed that the mutant bacteria were retained in enlarged, thick-walled infection threads. Infection centers emitted a blue autofluorescence under UV light. The data indicate that rhamnose synthesis is important for the production of surface carbohydrates that are required to sustain the compatible interaction between A. caulinodans and S. rostrata.
Collapse
Affiliation(s)
- M Gao
- Department of Plantengenetica, Universiteit Gent, Belgium
| | | | | | | | | |
Collapse
|
23
|
D'Haeze W, Mergaert P, Promé JC, Holsters M. Nod factor requirements for efficient stem and root nodulation of the tropical legume Sesbania rostrata. J Biol Chem 2000; 275:15676-84. [PMID: 10821846 DOI: 10.1074/jbc.275.21.15676] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azorhizobium caulinodans ORS571 synthesizes mainly pentameric Nod factors with a household fatty acid, an N-methyl, and a 6-O-carbamoyl group at the nonreducing-terminal residue and with a d-arabinosyl, an l-fucosyl group, or both at the reducing-terminal residue. Nodulation on Sesbania rostrata was carried out with a set of bacterial mutants that produce well characterized Nod factor populations. Purified Nod factors were tested for their capacity to induce root hair formation and for their stability in an in vitro degradation assay with extracts of uninfected adventitious rootlets. The glycosylations increased synergistically the nodulation efficiency and the capacity to induce root hairs, and they protected the Nod factor against degradation. The d-arabinosyl group was more important than the l-fucosyl group for nodulation efficiency. Replacement of the 6-O-l-fucosyl group by a 6-O-sulfate ester did not affect Nod factor stability, but reduced nodulation efficiency, indicating that the l-fucosyl group may play a role in recognition. The 6-O-carbamoyl group contributes to nodulation efficiency, biological activity, and protection, but could be replaced by a 6-O-acetyl group for root nodulation. The results demonstrate that none of the studied substitutions is strictly required for triggering normal nodule formation. However, the nodulation efficiency was greatly determined by the synergistic presence of substitutions. Within the range tested, fluctuations of Nod factor amounts had little impact on the symbiotic phenotype.
Collapse
Affiliation(s)
- W D'Haeze
- Vakgroep Moleculaire Genetica en Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
24
|
Fernandez-Lopez M, Goormachtig S, Gao M, D'Haeze W, Holsters M. Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proc Natl Acad Sci U S A 1998; 95:12724-8. [PMID: 9770553 PMCID: PMC22898 DOI: 10.1073/pnas.95.21.12724] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leguminous plants in symbiosis with rhizobia form either indeterminate nodules with a persistent meristem or determinate nodules with a transient meristematic region. Sesbania rostrata was thought to possess determinate stem and root nodules. However, the nature of nodule development is hybrid, and the early stages resemble those of indeterminate nodules. Here we show that, depending on the environmental conditions, mature root nodules can be of the indeterminate type. In situ hybridizations with molecular markers for plant cell division, as well as the patterns of bacterial nod and nif gene expression, confirmed the indeterminate nature of 30-day-old functional root nodules. Experimental data provide evidence that the switch in nodule type is mediated by the plant hormone ethylene.
Collapse
Affiliation(s)
- M Fernandez-Lopez
- Laboratorium voor Genetica, Departement Genetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
25
|
Goormachtig S, Mergaert P, Van Montagu M, Holsters M. The symbiotic interaction between Azorhizobium caulinodans and Sesbania rostrata molecular cross-talk in a beneficial plant-bacterium interaction. Subcell Biochem 1998; 29:117-64. [PMID: 9594646 DOI: 10.1007/978-1-4899-1707-2_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S Goormachtig
- Department of Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
26
|
Samain E, Drouillard S, Heyraud A, Driguez H, Geremia RA. Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli. Carbohydr Res 1997; 302:35-42. [PMID: 9249951 DOI: 10.1016/s0008-6215(97)00107-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cultivation of Escherichia coli harbouring heterologous genes of oligosaccharide synthesis is presented as a new method for preparing large quantities of high-value oligosaccharides. To test the feasibility of this method, we successfully produced in high yield (up to 2.5 g/L) penta-N-acetyl-chitopentaose (1) and its deacetylated derivative tetra-N-acetyl-chitopentaose (2) by cultivating at high density cells of E. coli expressing nodC or nodBC genes (nodC and nodB encode for chitooligosaccharide synthase and chitooligosaccharide N-deacetylase, respectively). These two products were easily purified by charcoal adsorption and ion-exchange chromatography. One important application of compound 2 could be its utilisation as a precursor for the preparation of synthetic nodulation factors by chemical acylation.
Collapse
Affiliation(s)
- E Samain
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), Grenoble, France.
| | | | | | | | | |
Collapse
|
27
|
Gough C, Galera C, Vasse J, Webster G, Cocking EC, Dénarié J. Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:560-570. [PMID: 9204562 DOI: 10.1094/mpmi.1997.10.5.560] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ability of Azorhizobium caulinodans ORS571 and other diazotrophic bacteria to internally colonize roots of Arabidopsis thaliana has been studied. Strains tagged with lacZ or gusA reporter genes were used, and the principal colonization sites were found to be the points of emergence of lateral roots, lateral root cracks (LRCs). High frequencies of colonization were found; 63 to 100% of plants were colonized by ORS571, and 100% of plants were colonized by Herbaspirillum seropedicae. After LRCs were colonized, bacteria moved into intercellular spaces between the cortical and endodermal cell layers. Specific flavonoids, naringenin and daidzein, at 5 x 10(-5) M, significantly promoted colonization by ORS571. By using a nodC and a nodD mutant of ORS571, it was shown that neither Nod factors nor NodD are involved in colonization or flavonoid stimulation of colonization. Flavonoids did not appear to be stimulating LRC colonization by their activity as nutritional factors. LRC and intercellular colonization by H. seropedicae was stimulated by naringenin and daidzein at the same concentration that stimulated colonization by ORS571.
Collapse
Affiliation(s)
- C Gough
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, INRA-CNRS, Castanet-Tolosan, France.
| | | | | | | | | | | |
Collapse
|
28
|
Cloutier J, Laberge S, Antoun H. Sequence and mutational analysis of the 6.7-kb region containing nodAFEG genes of Rhizobium sp. strain N33: evidence of DNA rearrangements. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:401-406. [PMID: 9100384 DOI: 10.1094/mpmi.1997.10.3.401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A 6.7-kb region upstream of nodBC genes in Rhizobium sp. strain N33 was shown to contain the nodAFEG genes and an open reading frame designated orfZ. The open reading frames for these genes contain 591, 282, 1209, 738, and 1,338 nucleotides respectively. Homologues of these genes were found in other rhizobia with the exception of orfZ, for which there was no counterpart found in the Genbank/EMBL database. Tn5 mutagenesis in nodEG and in the intergenic nodG-B region has shown a Nod+ phenotype on their temperate hosts Onobrychis viciifolia and Astragalus cicer. The nodules formed on O. viciifolia plants by these mutants were altered in shape and size. However, on A. cicer there was only a reduction in the number of nodules formed, compared with the wild-type strain. Sequence analysis of the orfZ-nodA and nodG-B intergenic regions indicates the presence of truncated nodD genes.
Collapse
Affiliation(s)
- J Cloutier
- Recherche en sciences de la vie et de la santé, Pavillon Charles-Eugène Marchand, Université Laval, Québec (Québec), Canada
| | | | | |
Collapse
|
29
|
Goormachtig S, Alves-Ferreira M, Van Montagu M, Engler G, Holsters M. Expression of cell cycle genes during Sesbania rostrata stem nodule development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:316-325. [PMID: 9100377 DOI: 10.1094/mpmi.1997.10.3.316] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Upon infection of Sesbania rostrata with Azorhizobium caulinodans, nodules are formed on roots and stems. Stem nodules develop from abundantly distributed dormant root primordia. To acquire more insight into the meristem organization during stem nodule development, the expression patterns of a mitotic B1-type cyclin gene (Sesro; CycB1;1), a cyclin-dependent kinase gene (Cdc-2-1Sr), and a histone H4 gene (H4-1Sr) of S. rostrata were followed by in situ hybridization. Cdc2-1Sr transcripts were found in all cells of uninfected and infected root primordia. In uninfected root primordia, Sesro;CycB1;1 transcripts were detected in a few cells of the apical root meristem whereas H4-1Sr transcripts were abundant in this region. Interestingly, after inoculation with A. caulinodans, H4-1Sr transcripts disappeared in the root meristem and a patchy pattern of Sesro;CycB1;1 and H4-1Sr expression appeared in the cortex of the root primordium, reflecting the formation of globular nodule primordia. When bacterial invasion started, a distal nodule meristem was delimited wherein Sesro;CycB1;1 and H4-1Sr expression was concentrated. Approximately 1 week after inoculation, meristem activity ceased, indicated by the loss of Sesro;CycB1;1 and H4-1Sr expression.
Collapse
Affiliation(s)
- S Goormachtig
- Department of Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Universiteit Gent, Belgium
| | | | | | | | | |
Collapse
|
30
|
Keenleyside WJ, Whitfield C. A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J Biol Chem 1996; 271:28581-92. [PMID: 8910488 DOI: 10.1074/jbc.271.45.28581] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The plasmid-encoded gene cluster for O:54 O-polysaccharide synthesis in Salmonella enterica serovar Borreze (rfbO:54) contains three genes that direct synthesis of a ManNAc homopolymer with alternating beta1,3 and beta1,4 linkages. In Escherichia coli K-12, RfbAO:54 adds the first ManNAc residue to the Rfe (UDP-GlcpNAc::undecaprenylphosphate GlcpNAc-1-phosphate transferase)- modified lipopolysaccharide core. Hydrophobic cluster analysis of RfbAO:54 indicates this protein belongs to the ExoU family of nonprocessive beta-glycosyltransferases. Two putative catalytic residues and a potential substrate-binding motif were identified in RfbAO:54. Topological analysis of RfbBO:54 predicts four transmembrane domains and a large central cytoplasmic domain. The latter shares homology with a similar domain in the processive beta-glycosyltransferases Cps3S of Streptococcus pneumoniae and HasA of Streptococcus pyogenes. Hydrophobic cluster analysis of RfbBO:54 and Cps3S indicates both possess the structural features characteristic of the HasA family of processive beta-glycosyltransferases. Four potential catalytic residues and a putative substrate-binding motif were identified in RfbBO:54. In Deltarfb E. coli K-12, RfbAO:54 and RfbBO:54 direct synthesis of smooth O:54 lipopolysaccharide, indicating that this O-polysaccharide involves a novel pathway for O-antigen transport. Based on sequence and structural conservation, 15 new ExoU-related and 17 new HasA-related transferases were identified.
Collapse
Affiliation(s)
- W J Keenleyside
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
31
|
Fernández-López M, D'Haeze W, Mergaert P, Verplancke C, Promé JC, Van Montagu M, Holsters M. Role of nodl and nodJ in lipo-chitooligosaccharide secretion in Azorhizobium caulinodans and Escherichia coli. Mol Microbiol 1996; 20:993-1000. [PMID: 8809752 DOI: 10.1111/j.1365-2958.1996.tb02540.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipo-chitooligosaccharide (LCO) Nod factors are produced and secreted by rhizobia and trigger nodule development in leguminous host plants. The products of the bacterial nodlJ genes are related to transporters of capsular polysaccharides and were proposed to be involved in LCO transport. We have studied nodlJ of Azorhizobium caulinodans ORS571 by analysis of cell-associated and secreted radioactively labelled Nod factors in wild-type ORS571, a nodJ mutant and a complemented strain. Secretion was strongly reduced in the nodJ mutant, and restored to wild-type levels after complementation. Constructs were made for expression of combinations of different nod genes in Escherichia coli DH5 alpha. The strain DH5 alpha (pUCNABCSU) synthesized LCOs, but they were only secreted when a plasmid containing both nodl and nodJ was supplied in trans. nodl or nodJ alone was not sufficient. In E. coli as well as in Azorhizobium, the nodlJ-encoded transporter showed a specificity for more hydrophilic LCOs.
Collapse
Affiliation(s)
- M Fernández-López
- Laboratorium voor Genetica, Flanders Interuniversity Institute for Biotechnology, Universiteit Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
Tomekpe K, Holsters M, Dreyfus B. Root nodulation of Sesbania rostrata suppresses stem nodulation by Sinorhizobium teranga but not Azorhizobium caulinodans. Can J Microbiol 1996. [DOI: 10.1139/m96-028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Azorhizobium caulinodans ORS571 and Sinorhizobium teranga ORS51 and ORS52 are symbionts of the same host plant Sesbania rostrata. In nature, A. caulinodans nodulates more competitively the stem-located infection sites of Sesbania rostrata. Sinorhizobium strains, although frequently present in root nodules, are seldom found in stem nodules. One probable explanation for this phenomenon is the more abundant presence of Azorhizobium on the leaf and stem surfaces of the host plant. Work presented here hints at other plausible factors that determine the greater "stem specificity" of Azorhizobium. We found that under experimental conditions in which roots are not inoculated, all strains nodulated stems very well. However, ORS51 and ORS52 were much more sensitive than ORS571 to suppression of stem nodulation by previous root inoculation. The introduction of the regulatory nodD gene from A. caulinodans diminished the sensitivity to this suppression, probably by enhanced nod gene expression and subsequent Nod factor production. Our hypothesis is that the greater infectivity of ORS571 is due to a more efficient production of mitogenic Nod factors at stem-located infection sites, thereby more readily overcoming systemic suppression caused by previous root inoculations.Key words: autoregulation, nitrogen fixation, rhizobial ecology, systemic suppression of nodulation.
Collapse
|
33
|
Abstract
Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes; they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in our knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants.
Collapse
Affiliation(s)
- S G Pueppke
- Department of Plant Pathology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
34
|
Mergaert P, D'Haeze W, Geelen D, Promé D, Van Montagu M, Geremia R, Promé JC, Holsters M. Biosynthesis of Azorhizobium caulinodans Nod factors. Study of the activity of the NodABCS proteins by expression of the genes in Escherichia coli. J Biol Chem 1995; 270:29217-23. [PMID: 7493950 DOI: 10.1074/jbc.270.49.29217] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
By in vitro and in vivo studies with Escherichia coli expressing different combinations of the nodABCS genes of Azorhizobium caulinodans, Nod factor intermediates were identified and their structures determined using mass spectrometry. Substrate-product relationships were studied by time course experiments, and the Nod factor biosynthetic pathway was partially resolved. E. coli strains, harboring nodA and/or nodB, did not produce Nod metabolites, whereas the strain expressing nodC produced chitooligosaccharides. Thus, the first committed step was the production of the carbohydrate backbone. Bacitracin and tunicamycin did not affect this step, suggesting that undecaprenyl pyrophosphate-linked intermediates were not involved. The second step was the deacetylation of chitooligosaccharides by NodB since the E. coli strain expressing nodBC produced chitooligosaccharides, deacetylated at the non-reducing end and since the NodC products were precursors of the NodBC products. A strain expressing nodBCS produced N-methylated oligosaccharides, whereas a strain expressing nodCS produced unmethylated oligosaccharides. Time course experiments showed that methylation occurred after deacetylation. Thus, NodS acted after NodB. The NodBCS metabolites were partially converted to lipo-chitooligosaccharides when the nodABCS genes were expressed, showing that NodA was involved in the acylation and acted after NodS.
Collapse
Affiliation(s)
- P Mergaert
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Geelen D, Goethals K, Van Montagu M, Holsters M. The nodD locus from Azorhizobium caulinodans is flanked by two repetitive elements. Gene 1995; 164:107-11. [PMID: 7590297 DOI: 10.1016/0378-1119(95)00456-g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sequence surrounding the Azorhizobium caulinodans (Ac) regulatory nodD gene was analyzed. Upstream from nodD and in the opposite orientation, two small open reading frames were identified (ORF1 and ORF2). The DNA sequence corresponding to ORF1, termed epsilon 1, is similar to a part of the insertion element IS51 from Pseudomonas savastanoi. Immediately downstream from nodD, a repeated element, delta 1, has been described [Goethals et al., Mol. Plant-Microbe Interact. 5 (1992) 405-411]. The elements epsilon 1 and delta 1 form the borders of a shift in GC content between nodD and its surrounding sequences. delta 1 and the ORF1+ORF2 sequence both occur as two copies in the Ac genome. Based on these observations, we postulate that the repeated elements played a role in the horizontal transfer of nodD during evolution. Insertion mutations in epsilon 1 and delta 1 did not influence the induction of the nodulation operon, nodABCSUIJ, and had no effect on the nodulation behavior on Sesbania rostrata. lacZ fusion studies suggested that nodD is constitutively transcribed and that the promoter driving nodD expression overlaps with the ORF1 sequence. In contrast, promoter activity in the direction of ORF1 and ORF2 was not observed. In the nodD-ORF1-intervening sequence, a nod box-related motif was recognized that deviates from active nod boxes by the absence of an ATC-9-bp-GAT palindrome, i.e., a sequence involved in NodD-mediated transcription stimulation [Goethals et al., Proc. Natl. Acad. Sci. USA 89 (1992) 1646-1650].
Collapse
Affiliation(s)
- D Geelen
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
36
|
Geelen D, van Montagu M, Holsters M. Cloning of an Azorhizobium caulinodans endoglucanase gene and analysis of its role in symbiosis. Appl Environ Microbiol 1995; 61:3304-10. [PMID: 7574641 PMCID: PMC167611 DOI: 10.1128/aem.61.9.3304-3310.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Azorhizobium caulinodans ORS571, a symbiont of the tropical leguminous plant Sesbania rostrata, showed low, constitutive levels of endoglucanase (Egl) activity. A clone carrying the gene responsible for this phenotype was isolated via introduction of a genomic library into the wild-type strain and screening for transconjugants with enhanced Egl activity. By subcloning and expression in Escherichia coli, the Egl phenotype was allocated to a 3-kb EcoRI-BamHI fragment. However, sequence analysis showed the egl gene to be much larger, consisting of an open reading frame of 1,836 amino acids. Within the deduced polypeptide, three kinds of putative domains were identified: a catalytic domain, two cellulose-binding domains, and an eightfold reiterated motif. The catalytic domain belongs to the family A of cellulases. A C-terminal stretch of 100 amino acids was similar to family II cellulose-binding domains. A second copy of this domain occurred near the middle of the polypeptide, flanked by reiterated motifs. ORS571 mutants carrying a Tn5 insertion in the egl gene had lost the Egl activity. These mutants as well as Egl-overproducing strains showed a normal nodulation behavior, indistinguishable from wild-type nodulation on Sesbania rostrata under laboratory conditions.
Collapse
Affiliation(s)
- D Geelen
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | |
Collapse
|
37
|
Nagahashi S, Sudoh M, Ono N, Sawada R, Yamaguchi E, Uchida Y, Mio T, Takagi M, Arisawa M, Yamada-Okabe H. Characterization of chitin synthase 2 of Saccharomyces cerevisiae. Implication of two highly conserved domains as possible catalytic sites. J Biol Chem 1995; 270:13961-7. [PMID: 7775457 DOI: 10.1074/jbc.270.23.13961] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chitin synthase 2 of Saccharomyces cerevisiae was characterized by means of site-directed mutagenesis and subsequent expression of the mutant enzymes in yeast cells. Chitin synthase 2 shares a region whose sequence is highly conserved in all chitin synthases. Substitutions of conserved amino acids in this region with alanine (alanine scanning) identified two domains in which any conserved amino acid could not be replaced by alanine to retain enzyme activity. These two domains contained unique sequences, Glu561-Asp562-Arg563 and Gln601-Arg602-Arg603-Arg604-Trp605, that were conserved in all types of chitin synthases. Glu561 or arginine at 563, 602, and 603 could be substituted by glutamic acid and lysine, respectively, without significant loss of enzyme activity. However, even conservative substitutions of Asp562 with glutamic acid, Gln601 with asparagine, Arg604 with lysine, or Trp605 with tyrosine drastically decreased the activity, but did not affect apparent Km values for the substrate significantly. In addition to these amino acids, Asp441 was also found in all chitin synthase. The mutant harboring a glutamic acid substitution for Asp441 severely lost activity, but it showed a similar apparent Km value for the substrate. Amounts of the mutant enzymes in total membranes were more or less the same as found in the wild type. Furthermore, Asp441, Asp562, Gln601, Arg604, and Trp605 are completely conserved in other proteins possessing N-acetylglucosaminyltransferase activity such as NodC proteins of Rhizobium bacterias. These results suggest that Asp441, Asp562, Gln601, Arg604, and Trp605 are located in the active pocket and that they function as the catalytic residues of the enzyme.
Collapse
Affiliation(s)
- S Nagahashi
- Department of Mycology, Nippon Roche Research Center, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Saxena IM, Brown RM, Fevre M, Geremia RA, Henrissat B. Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol 1995; 177:1419-24. [PMID: 7883697 PMCID: PMC176755 DOI: 10.1128/jb.177.6.1419-1424.1995] [Citation(s) in RCA: 310] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- I M Saxena
- Department of Botany, University of Texas, Austin 78713-7640
| | | | | | | | | |
Collapse
|
39
|
Abstract
Rhizobium, Bradyrhizobium, and Azorhizobium species are able to elicit the formation of unique structures, called nodules, on the roots or stems of the leguminous host. In these nodules, the rhizobia convert atmospheric N2 into ammonia for the plant. To establish this symbiosis, signals are produced early in the interaction between plant and rhizobia and they elicit discrete responses by the two symbiotic partners. First, transcription of the bacterial nodulation (nod) genes is under control of the NodD regulatory protein, which is activated by specific plant signals, flavonoids, present in the root exudates. In return, the nod-encoded enzymes are involved in the synthesis and excretion of specific lipooligosaccharides, which are able to trigger on the host plant the organogenic program leading to the formation of nodules. An overview of the organization, regulation, and function of the nod genes and their participation in the determination of the host specificity is presented.
Collapse
Affiliation(s)
- P van Rhijn
- F.A. Janssens Laboratory of Genetics, KU Leuven, Heverlee, Belgium
| | | |
Collapse
|
40
|
|
41
|
Relić B, Perret X, Estrada-García MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ. Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 1994; 13:171-8. [PMID: 7984092 DOI: 10.1111/j.1365-2958.1994.tb00412.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Symbiotic interactions between rhizobia and legumes are largely controlled by reciprocal signal exchange. Legume roots excrete flavonoids which induce rhizobial nodulation genes to synthesize and excrete lipo-oligosaccharide Nod factors. In turn, Nod factors provoke deformation of the root hairs and nodule primordium formation. Normally, rhizobia enter roots through infection threads in markedly curled root hairs. If Nod factors are responsible for symbiosis-specific root hair deformation, they could also be the signal for entry of rhizobia into legume roots. We tested this hypothesis by adding, at inoculation, NodNGR-factors to signal-production-deficient mutants of the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium japonicum strain USDA110. Between 10(-7) M and 10(-6) M NodNGR factors permitted these NodABC- mutants to penetrate, nodulate and fix nitrogen on Vigna unguiculata and Glycine max, respectively. NodNGR factors also allowed Rhizobium fredii strain USDA257 to enter and fix nitrogen on Calopogonium caeruleum, a nonhost. Detailed cytological investigations of V. unguiculata showed that the NodABC- mutant NGR delta nodABC, in the presence of NodNGR factors, entered roots in the same way as the wild-type bacterium. Since infection threads were also present in the resulting nodules, we conclude that Nod factors are the signals that permit rhizobia to penetrate legume roots via infection threads.
Collapse
Affiliation(s)
- B Relić
- LBMPS, Université de Genève, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Geremia RA, Mergaert P, Geelen D, Van Montagu M, Holsters M. The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Natl Acad Sci U S A 1994; 91:2669-73. [PMID: 8146173 PMCID: PMC43431 DOI: 10.1073/pnas.91.7.2669] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nod factors are signal molecules produced by Azorhizobium, Bradyrhizobium, and Rhizobium species that trigger nodule formation in leguminous host plants. The backbone of Nod factors consists of a beta-1,4-N-acetylglucosamine oligosaccharide from which the N-acetyl group at the nonreducing end is replaced by a fatty acid. The nodABC gene products are necessary for backbone biosynthesis. By incubation of cell extracts from Azorhizobium caulinodans with radioactive uridine diphosphate-N-acetylglucosamine, Nod factor precursors were identified and characterized as beta-1,4-N-acetylglucosamine oligosaccharides. By analysis of different nod gene mutants and by expression of nodC in Escherichia coli, the N-acetylglucosaminyltransferase activity was ascribed to the NodC protein. The results suggest that the first step in biosynthesis of Nod factors is the assembly of the oligosaccharide chain.
Collapse
Affiliation(s)
- R A Geremia
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | | | | | |
Collapse
|
43
|
Goethals K, Leyman B, Van Den Eede G, Van Montagu M, Holsters M. An Azorhizobium caulinodans ORS571 locus involved in lipopolysaccharide production and nodule formation on Sesbania rostrata stems and roots. J Bacteriol 1994; 176:92-9. [PMID: 7506708 PMCID: PMC205018 DOI: 10.1128/jb.176.1.92-99.1994] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Azorhizobium caulinodans ORS571 is able to nodulate roots and stems of the tropical legume Sesbania rostrata. An ORS571 Tn5 insertion mutant, strain ORS571-X15, had a rough colony morphology, was nonmotile, and showed clumping behavior on various media. When this pleiotropic mutant was inoculated on roots or stems of the host, no nodules developed (Nod-). Compared with the wild type, strain ORS571-X15 produced lipopolysaccharides (LPS) with an altered ladder pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, suggestive of a different O-antigen structure with a lower degree of polymerization. A cosmid clone, pRG20, that fully complemented all phenotypes of ORS571-X15 was isolated. With a 6-kb EcoRI subfragment of pRG20, clumping was relieved and nodulation was almost completely restored, but the strain was still nonmotile. LPS preparations from these complemented strains resembled the wild-type LPS, although minor quantitative and qualitative differences were evident. The sequence of the locus hit by the Tn5 in ORS571-X15 (the oac locus) revealed a striking homology with the rfb locus of Salmonella typhimurium, which is involved in O-antigen biosynthesis. The Tn5 insertion position was mapped to the oac3 gene, homologous to rfbA, encoding dTDP-D-glucose synthase. Biochemical assaying showed that ORS571-X15 is indeed defective in dTDP-D-glucose synthase activity, essential for the production of particular deoxyhexoses. Therefore, it was proposed that the O antigen of the mutant strain is devoid of such sugars.
Collapse
Affiliation(s)
- K Goethals
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | | | | | |
Collapse
|
44
|
Cell and Molecular Biology of Rhizobium-Plant. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0074-7696(08)62252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
45
|
Kafetzopoulos D, Thireos G, Vournakis JN, Bouriotis V. The primary structure of a fungal chitin deacetylase reveals the function for two bacterial gene products. Proc Natl Acad Sci U S A 1993; 90:8005-8. [PMID: 8367456 PMCID: PMC47276 DOI: 10.1073/pnas.90.17.8005] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chitin deacetylase (EC 3.5.1.41) hydrolyzes the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin. A cDNA to the Mucor rouxii mRNA encoding chitin deacetylase was isolated, characterized, and sequenced. Protein sequence comparisons revealed significant similarities of the fungal chitin deacetylase to rhizobial nodB proteins and to an uncharacterized protein encoded by a Bacillus stearothermophilus open reading frame. These data suggest the functional homology of these evolutionarily distant proteins. NodB is a chitooligosaccharide deacetylase essential for the biosynthesis of the bacterial nodulation signals, termed Nod factors. The observed similarity of chitin deacetylase to the B. stearothermophilus gene product suggests that this gene encodes a polysaccharide deacetylase.
Collapse
Affiliation(s)
- D Kafetzopoulos
- Institute of Molecular Biology and Biotechnology, Crete, Greece
| | | | | | | |
Collapse
|
46
|
Meinhardt LW, Krishnan HB, Balatti PA, Pueppke SG. Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Mol Microbiol 1993; 9:17-29. [PMID: 8412662 DOI: 10.1111/j.1365-2958.1993.tb01665.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rhizobium fredii strain USDA257 produces nitrogen-fixing nodules on primitive soybean cultivars such as Peking but fails to nodulate agronomically improved cultivars such as McCall. Transposon-mutant 257DH4 has two new phenotypes: it nodulates McCall, and its ability to do so is sensitive to the presence of parental strain USDA257, i.e. it is subject to competitive nodulation blocking. We have isolated a cosmid containing DNA that corresponds to the site of transposon insertion in 257DH4 and have localized Tn5 on an 8.0 kb EcoRI fragment. The 5596 bp DNA sequence that surrounds the insertion site contains seven open reading frames. Five of these, designated nolBTU, ORF4, and nolV, are closely spaced and of the same polarity. nolW and nolX are of the opposite polarity. The initiation codon for nolW lies 155 bp upstream from that of nolB, and its is separated from nolX by 281 bp. The predicted NolT and NolW proteins have putative membrane-spanning regions. The N-terminus of the hypothetical NolW protein also has limited homology to NodH of Rhizobium meliloti, but none of the deduced protein sequences has significant homology to known nodulation gene products. Site-directed mutagenesis with mudII1734 confirms that inactivation of nolB, nolT, nolU, nolV, nolW, or nolX extends host range for nodulation to McCall soybean. This phenotype could not be genetically dissected from sensitivity to competitive nodulation blocking. Expression of nolBTU and nolX is induced as much as 30-fold by flavonoid signal molecules, even though these genes lack nod-box promoters. Histochemical staining of McCall roots inoculated with nolB-, nolU-, or nolX-lacZ fusions verifies that these genes are expressed continuously from preinfection to the stage of the functional nodule. Although a nolU-ORF4-nolV clone hybridizes to a single 8.0 kb EcoRI fragment from 10 strains of R. fredii and broad-host-range Rhizobium sp. NGR234, hybridizing sequences are not detectable in other rhizobia.
Collapse
Affiliation(s)
- L W Meinhardt
- Department of Plant Pathology, University of Missouri, Columbia 65211
| | | | | | | |
Collapse
|
47
|
Geelen D, Mergaert P, Geremia RA, Goormachtig S, Van Montagu M, Holsters M. Identification of nodSUIJ genes in Nod locus 1 of Azorhizobium caulinodans: evidence that nodS encodes a methyltransferase involved in Nod factor modification. Mol Microbiol 1993; 9:145-54. [PMID: 8412659 DOI: 10.1111/j.1365-2958.1993.tb01676.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Azorhizobium caulinodans strain ORS571 nodulation genes nodSUIJ were located downstream from nodABC. Complementation data and transcriptional analysis suggest that nodABCSUIJ form a single operon. Mutants with Tn5 insertions in the genes nodS, nodU, and nodJ were delayed in nodulation of Sesbania rostrata roots and stems. The NodS amino acid sequences of ORS571, Bradyrhizobium japonicum, and Rhizobium sp. strain NGR234, contain a consensus with similarity to S-adenosylmethionine (SAM)-utilizing methyltransferases. A naringenin-inducible nodS-dependent protein of approximately 25 kDa could be cross-linked to radiolabelled SAM. By applying L-[methyl-3H]-methionine in vivo, Nod factors of ORS571, known to be N-methylated, could be labelled in wild type and nodU mutants but not in nodS mutants. Therefore, we propose that NodS is a SAM-utilizing methyltransferase involved in Nod factor synthesis.
Collapse
Affiliation(s)
- D Geelen
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Mergaert P, Van Montagu M, Promé JC, Holsters M. Three unusual modifications, a D-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS571. Proc Natl Acad Sci U S A 1993; 90:1551-5. [PMID: 8434016 PMCID: PMC45912 DOI: 10.1073/pnas.90.4.1551] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Azorhizobium caulinodans strain ORS571 is a symbiont of the tropical legume Sesbania rostrata. Upon nod gene induction with naringenin, strain ORS571 secretes into the culture medium Nod factors that morphologically change the host plant--in particular, deformed root hairs (Hai/Had) and meristematic foci are formed at the basis of lateral roots. The latter infrequently develop further into nodule-like structures. The azorhizobial Nod factors are chitin tetramers or pentamers, N-acylated at the nonreducing-end glucosamine with either vaccenic acid (C18:1) or stearic acid (C18:0). They, thus, resemble the previously described Nod factors from (brady)rhizobia. The backbone lipooligosaccharide is substituted with unusual modifications, presumably involved in host-specificity determination. There is a D-arabinose branch on the reducing end and an N-methyl and O-carbamoyl substitution on the nonreducing end of the oligosaccharide chain. The previously identified nod gene nolK may be involved in the synthesis of a D-arabinose derivative. The nodS gene product is probably responsible for the N-methylation of Nod factors.
Collapse
Affiliation(s)
- P Mergaert
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
49
|
Abstract
This review focuses on the functions of nodulation (nod) genes in the interaction between rhizobia and legumes. The nod genes are the key bacterial determinants of the signal exchange between the two symbiotic partners. The product of the nodD gene is a transcriptional activator protein that functions as receptor for a flavonoid plant compound. This signaling induces the expression of a set of nod genes that produces several related Nod factors, substituted lipooligosaccharides. The Nod factors are then excreted and serve as signals sent from the bacterium to the plant. The plant responds with the development of a root nodule. The plant-derived flavonoid, as well as the rhizobial signal, must have distinct chemical structures which guarantee that only matching partners are brought together.
Collapse
Affiliation(s)
- M Göttfert
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule Zürich, Switzerland
| |
Collapse
|
50
|
Abstract
Initial stages in the Rhizobium-legume symbiosis can be thought of as a reciprocal molecular conversation: transmission of a gene inducer from legume host to bacterium, with ensuing bacterial synthesis of a morphogen that is transmitted to the plant, switching the developmental fate of the legume root. These signal molecules have a key role in determining bacterium-host specificity and the purified Nod factor compounds provide useful new tools to probe plant cell function.
Collapse
Affiliation(s)
- R F Fisher
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|