1
|
Cahoon AB, Qureshi AA. Leaderless mRNAs are circularized in Chlamydomonas reinhardtii mitochondria. Curr Genet 2018; 64:1321-1333. [DOI: 10.1007/s00294-018-0848-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/28/2022]
|
2
|
Horizontal transfer and gene conversion as an important driving force in shaping the landscape of mitochondrial introns. G3-GENES GENOMES GENETICS 2014; 4:605-12. [PMID: 24515269 PMCID: PMC4059233 DOI: 10.1534/g3.113.009910] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Group I introns are highly dynamic and mobile, featuring extensive presence-absence variation and widespread horizontal transfer. Group I introns can invade intron-lacking alleles via intron homing powered by their own encoded homing endonuclease gene (HEG) after horizontal transfer or via reverse splicing through an RNA intermediate. After successful invasion, the intron and HEG are subject to degeneration and sequential loss. It remains unclear whether these mechanisms can fully address the high dynamics and mobility of group I introns. Here, we found that HEGs undergo a fast gain-and-loss turnover comparable with introns in the yeast mitochondrial 21S-rRNA gene, which is unexpected, as the intron and HEG are generally believed to move together as a unit. We further observed extensively mosaic sequences in both the introns and HEGs, and evidence of gene conversion between HEG-containing and HEG-lacking introns. Our findings suggest horizontal transfer and gene conversion can accelerate HEG/intron degeneration and loss, or rescue and propagate HEG/introns, and ultimately result in high HEG/intron turnover rate. Given that up to 25% of the yeast mitochondrial genome is composed of introns and most mitochondrial introns are group I introns, horizontal transfer and gene conversion could have served as an important mechanism in introducing mitochondrial intron diversity, promoting intron mobility and consequently shaping mitochondrial genome architecture.
Collapse
|
3
|
Hu Z, Fan Z, Zhao Z, Chen J, Li J. Stable expression of antibiotic-resistant gene ble from Streptoalloteichus hindustanus in the mitochondria of Chlamydomonas reinhardtii. PLoS One 2012; 7:e35542. [PMID: 22530046 PMCID: PMC3328454 DOI: 10.1371/journal.pone.0035542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial expression of exogenous antibiotic resistance genes has not been demonstrated successfully to date, which has limited the development of antibiotic resistance genes as selectable markers for mitochondrial site-directed transformation in Chlamydomonas reinhardtii. In this work, the plasmid pBSLPNCB was constructed by inserting the gene ble of Streptoalloteichus hindustanus (Sh ble), encoding a small (14-kilodalton) protective protein into the site between TERMINVREP-Left repeats and the cob gene in a fragment of mitochondrial DNA (mtDNA) of C. reinhardtii. The fusion DNA-construct, which contained TERMINVREP-Left, Sh ble, cob, and partial nd4 sequence, were introduced into the mitochondria of the respiratory deficient dum-1 mutant CC-2654 of C. reinhardtii by biolistic particle delivery system. A large number of transformants were obtained after eight weeks in the dark. Subsequent subculture of the transformants on the selection TAP media containing 3 ìg/mL Zeomycin for 12 months resulted in genetically modified transgenic algae MT-Bs. Sequencing and Southern analyses on the mitochondrial genome of the different MT-B lines revealed that Sh ble gene had been integrated into the mitochondrial genome of C. reinhardtii. Both Western blot, using the anti-BLE monoclonal antibody, and Zeomycin tolerance analysis confirmed the presence of BLE protein in the transgenic algal cells. It indicates that the Sh ble gene can be stably expressed in the mitochondria of C. reinhardtii.
Collapse
Affiliation(s)
- Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, People's Republic of China.
| | | | | | | | | |
Collapse
|
4
|
Successful expression of heterologous egfp gene in the mitochondria of a photosynthetic eukaryote Chlamydomonas reinhardtii. Mitochondrion 2011; 11:716-21. [DOI: 10.1016/j.mito.2011.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 04/21/2011] [Accepted: 05/25/2011] [Indexed: 12/21/2022]
|
5
|
Milbury CA, Lee JC, Cannone JJ, Gaffney PM, Gutell RR. Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes. BMC Genomics 2010; 11:485. [PMID: 20813041 PMCID: PMC2996981 DOI: 10.1186/1471-2164-11-485] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 09/02/2010] [Indexed: 12/03/2022] Open
Abstract
Background Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA) genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. Results In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. Conclusions Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.
Collapse
Affiliation(s)
- Coren A Milbury
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, USA.
| | | | | | | | | |
Collapse
|
6
|
Nucleotide diversity in the mitochondrial and nuclear compartments of Chlamydomonas reinhardtii: investigating the origins of genome architecture. BMC Evol Biol 2008; 8:156. [PMID: 18495022 PMCID: PMC2412866 DOI: 10.1186/1471-2148-8-156] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/21/2008] [Indexed: 12/03/2022] Open
Abstract
Background The magnitude of intronic and intergenic DNA can vary substantially both within and among evolutionary lineages; however, the forces responsible for this disparity in genome compactness are conjectural. One explanation, termed the mutational-burden hypothesis, posits that genome compactness is primarily driven by two nonadaptive processes: mutation and random genetic drift – the effects of which can be discerned by measuring the nucleotide diversity at silent sites (πsilent), defined as noncoding sites and the synonymous sites of protein-coding regions. The mutational-burden hypothesis holds that πsilent is negatively correlated to genome compactness. We used the model organism Chlamydomonas reinhardtii, which has a streamlined, coding-dense mitochondrial genome and an noncompact, intron-rich nuclear genome, to investigate the mutational-burden hypothesis. For measuring πsilent we sequenced the complete mitochondrial genome and portions of 7 nuclear genes from 7 geographical isolates of C. reinhardtii. Results We found significantly more nucleotide diversity in the nuclear compartment of C. reinhardtii than in the mitochondrial compartment: net values of πsilent for the nuclear and mitochondrial genomes were 32 × 10-3 and 8.5 × 10-3, respectively; and when insertions and deletions (indels) are factored in, these values become 49 × 10-3 for the nuclear DNA and 11 × 10-3 for the mitochondrial DNA (mtDNA). Furthermore, our investigations of C. reinhardtii revealed 4 previously undiscovered mitochondrial introns, one of which contains a fragment of the large-subunit (LSU) rRNA gene and another of which is found in a region of the LSU-rRNA gene not previously reported (for any taxon) to contain introns. Conclusion At first glance our results are in opposition to the mutational-burden hypothesis: πsilent was approximately 4 times greater in the nuclear compartment of C. reinhardtii relative to the mitochondrial compartment. However, when we consider the encumbrance of noncoding DNA in each of these C. reinhardtii compartments, we conclude that introns in the mtDNA impose a greater burden than those in the nuclear DNA and suggest that the same may be true for the intergenic regions. Overall, we cannot reject the mutational-burden hypothesis and feel that more data on nucleotide diversity from green algae and other protists are needed.
Collapse
|
7
|
Abstract
The mitochondrial genomes of the Chlorophyta exhibit significant diversity with respect to gene content and genome compactness; however, quantitative data on the rates of nucleotide substitution in mitochondrial DNA, which might help explain the origin of this diversity, are lacking. To gain insight into the evolutionary forces responsible for mitochondrial genome diversification, we sequenced to near completion the mitochondrial genome of the chlorophyte Chlamydomonas incerta, estimated the evolutionary divergence between Chlamydomonas reinhardtii and C. incerta mitochondrial protein-coding genes and rRNA-coding regions, and compared the relative evolutionary rates in mitochondrial and nuclear genes. Synonymous and nonsynonymous substitution rates do not differ significantly between the mitochondrial and nuclear protein-coding genes. The mitochondrial rRNA-coding regions, however, are evolving much faster than their nuclear counterparts, and this difference might be explained by relaxed functional constraints on the mitochondrial translational apparatus due to the small number of proteins synthesized in Chlamydomonas mitochondria. Substitution rates at synonymous sites in a nonstandard mitochondrial gene (rtl) and at intronic and synonymous sites in nuclear genes expressed at low levels suggest that the mutation rate is similar in these two genetic compartments. Potential evolutionary forces shaping mitochondrial genome evolution in Chlamydomonas are discussed.
Collapse
Affiliation(s)
- Cristina E Popescu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
| | | |
Collapse
|
8
|
Kurokawa S, Yamasaki T, Komatsu T, Watanabe KI, Ohama T. Degenerated recognition property of a mitochondrial homing enzyme in the unicellular green alga Chlamydomonas smithii. PLANT MOLECULAR BIOLOGY 2006; 62:141-50. [PMID: 16900320 DOI: 10.1007/s11103-006-9009-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 04/24/2006] [Indexed: 05/11/2023]
Abstract
Target sequence cleavage is the essential step for intron invasion into an intronless allele. DNA cleavage at a specific site is performed by an endonuclease, termed a homing enzyme, which is encoded by an open reading frame within the intron. The recognition properties of them have only been analyzed in vitro, using purified, recombinant homing enzyme and various mutated DNA substrates, but it is unclear whether the homing enzyme behaves similarly in vivo. To answer this question, we determined the recognition properties of I-CsmI in vivo. I-CsmI is a homing enzyme encoded by the open reading frame of the alpha-group I-intron, located in the mitochondrial apocytochrome b gene of the green alga Chlamydomonas smithii. The in vivo recognition properties of it were determined as the frequency of intron invasion into a mutated target site. For this purpose, we utilized hybrid diploid cells developed by crossing alpha-intron-plus C. smithii to intron-minus C. reinhardtii containing mutated target sequences. The intron invasion frequency was much higher than the expected from the in vitro cleavage frequency of the respective mutated substrates. Even the substrates that had very little cleavage in the in vitro experiment were efficiently invaded in vivo, and were accompanied by a large degree of coconversion. Considering the ease of the homing enzyme invading into various mutated target sequences, we propose that the principle bottleneck for lateral intron transmission is not the sequence specificity of the homing enzyme, but instead is limited by the rare occurrence of inter-specific cell fusion.
Collapse
Affiliation(s)
- Sayuri Kurokawa
- Graduate School of Engineering, Department of Environmental Systems Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi 782-8502, Japan
| | | | | | | | | |
Collapse
|
9
|
Kurokawa S, Bessho Y, Higashijima K, Shirouzu M, Yokoyama S, Watanabe KI, Ohama T. Adaptation of intronic homing endonuclease for successful horizontal transmission. FEBS J 2005; 272:2487-96. [PMID: 15885098 DOI: 10.1111/j.1742-4658.2005.04669.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Group I introns are thought to be self-propagating mobile elements, and are distributed over a wide range of organisms through horizontal transmission. Intron invasion is initiated through cleavage of a target DNA by a homing endonuclease encoded in an open reading frame (ORF) found within the intron. The intron is likely of no benefit to the host cell and is not maintained over time, leading to the accumulation of mutations after intron invasion. Therefore, regular invasional transmission of the intron to a new species at least once before its degeneration is likely essential for its evolutionary long-term existence. In many cases, the target is in a protein-coding region which is well conserved among organisms, but contains ambiguity at the third nucleotide position of the codon. Consequently, the homing endonuclease might be adapted to overcome sequence polymorphisms at the target site. To address whether codon degeneracy affects horizontal transmission, we investigated the recognition properties of a homing enzyme, I-CsmI, that is encoded in the intronic ORF of a group I intron located in the mitochondrial COB gene of the unicellular green alga Chlamydomonas smithii. We successfully expressed and purified three types of N-terminally truncated I-CsmI polypeptides, and assayed the efficiency of cleavage for 81 substrates containing single nucleotide substitutions. We found a slight but significant tendency that I-CsmI cleaves substrates containing a silent or tolerated amino acid change more efficiently than nonsilent or nontolerated ones. The published recognition properties of I-SpomI, I-ScaI, and I-SceII were reconsidered from this point of view, and we detected proficient adaptation of I-SpomI, I-ScaI, and I-SceII for target site sequence degeneracy. Based on the results described above, we propose that intronic homing enzymes are adapted to cleave sequences that might appear at the target region in various species, however, such adaptation becomes less prominent in proportion to the time elapsed after intron invasion into a new host.
Collapse
Affiliation(s)
- Sayuri Kurokawa
- Graduate School of Engineering, Department of Environmental Systems Engineering, Kochi University of Technology (KUT), Kochi, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Yamasaki T, Kurokawa S, Watanabe KI, Ikuta K, Ohama T. Shared molecular characteristics of successfully transformed mitochondrial genomes in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2005; 58:515-27. [PMID: 16021336 DOI: 10.1007/s11103-005-7081-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 05/10/2005] [Indexed: 05/03/2023]
Abstract
Three types of respiratory deficient mitochondrial strains have been reported in Chlamydomonas reinhardtii: a deficiency due to (i) two base substitutions causing an amino acid change in the apocytochrome b (COB) gene (i.e., strain named dum-15), (ii) one base deletion in the COXI gene (dum-19), or (iii) a large deletion extending from the left terminus of the genome to somewhere in the COB gene (dum-1, -14, and -16). We found that these respiratory deficient strains of C. reinhardtii can be divided into two groups: strains that are constantly transformable and those could not be transformed in our experiments. All transformable mitochondrial strains were limited to the type that has a large deletion in the left arm of the genome. For these mitochondria, transformation was successful not only with purified intact mitochondrial genomes but also with DNA-constructs containing the compensating regions. In comparison, mitochondria of all the non-transformable strains have both of their genome termini intact, leading us to speculate that mitochondria lacking their left genome terminus have unstable genomes and might have a higher potential for recombination. Analysis of mitochondrial gene organization in the resulting respiratory active transformants was performed by DNA sequencing and restriction enzyme digestion. Such analysis showed that homologous recombination occurred at various regions between the mitochondrial genome and the artificial DNA-constructs. Further analysis by Southern hybridization showed that the wild-type genome rapidly replaces the respiratory deficient monomer and dimer mitochondrial genomes, while the E. coli vector region of the artificial DNA-construct likely does not remain in the mitochondria.
Collapse
Affiliation(s)
- Tomohito Yamasaki
- Graduate School of Engineering, Department of Environmental Systems Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi, Japan
| | | | | | | | | |
Collapse
|
11
|
Aono N, Shimizu T, Inoue T, Shiraishi H. Palindromic repetitive elements in the mitochondrial genome of Volvox. FEBS Lett 2002; 521:95-9. [PMID: 12067734 DOI: 10.1016/s0014-5793(02)02832-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Group I introns were found in the cob and cox I genes of Volvox carteri. These introns contain tandem arrays of short palindromic sequences that are related to each other. Inspection of other regions in the mtDNA revealed that similar palindromic repetitive sequences are dispersed in the non-protein coding regions of the mitochondrial genome. Analysis of the group I intron in the cob gene of another member of Volvocaceae, Volvox aureus, has shown that its sequence is highly homologous to its counterpart in V. carteri with the exception of a cluster of palindromic sequences not found in V. carteri. This indicates that the palindromic clusters were inserted into the introns after divergence of the two species, presumably due to frequent insertions of the palindromic elements during evolution of the Volvocaceae. Possible involvement of the palindromic repetitive elements in the molecular evolution of functional RNAs is discussed.
Collapse
Affiliation(s)
- Naoki Aono
- Graduate School of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
12
|
Ehara M, Watanabe KI, Ohama T. Distribution of cognates of group II introns detected in mitochondrial cox1 genes of a diatom and a haptophyte. Gene 2000; 256:157-67. [PMID: 11054545 DOI: 10.1016/s0378-1119(00)00359-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We identified group IIA introns that contain an open reading frame (ORF) in the mitochondrial cytochrome oxidase subunit I (cox1) genes of yellow algae, a diatom Thalassiosira (Th.) nordenskioeldii CCMP 992 collected from the east coast of USA, and a haptophyte Pavlova (Pa.) lutheri CCMP 1325 collected from Finland. Cognate introns of CCMP 1325 were detected in all Pa. lutheri strains investigated, which were collected from various oceans. In contrast, the intron was absent from closely related species belonging to the same genus Pavlova. This was also the case for the group II intron detected in a diatom Th. nordenskioeldii CCMP 992. The group II intron of CCMP 992 was located at the corresponding site to the group IIA intron found in Pylaiella (synonym, Pilayella) littoralis. The deduced secondary structures of these introns, one of which is from a diatom and the other from a brown alga, were virtually identical. In contrast, the haptophyte group II intron was inserted at a novel locus, and shares no particularly high sequence homology with any intron known to date. The phylogenetic tree based on the intronic ORF domain was not congruent with that based on the cox1 exon. The most prominent property of the intronic ORF tree was that introns located at homologous sites made robust pair clades irrespective of the phylogenetic relationships of the organisms. This suggests that mitochondrial group II introns often invade intronless alleles across the species barrier with site specificity. Homology analysis of the haptophyte intronic ORF suggested that it comprises three domains: reverse transcriptase (RT), RNA maturase (Ma), and H-N-H endonuclease. However, the intronic ORF of the diatom contains the Ma domain but is apparently missing the H-N-H domain, and its RT domain is most probably partly or completely lacking in function.
Collapse
Affiliation(s)
- M Ehara
- Department of Biology, Faculty of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043, Osaka, Japan
| | | | | |
Collapse
|
13
|
Pérez-Martínez X, Vazquez-Acevedo M, Tolkunova E, Funes S, Claros MG, Davidson E, King MP, González-Halphen D. Unusual location of a mitochondrial gene. Subunit III of cytochrome C oxidase is encoded in the nucleus of Chlamydomonad algae. J Biol Chem 2000; 275:30144-52. [PMID: 10899162 DOI: 10.1074/jbc.m003940200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The algae of the family Chlamydomonadaceae lack the gene cox3 that encodes subunit III of cytochrome c oxidase in their mitochondrial genomes. This observation has raised the question of whether this subunit is present in cytochrome c oxidase or whether the corresponding gene is located in the nucleus. Cytochrome c oxidase was isolated from the colorless chlamydomonad Polytomella spp., and the existence of subunit III was established by immunoblotting analysis with an antibody directed against Saccharomyces cerevisiae subunit III. Based partly upon the N-terminal sequence of this subunit, oligodeoxynucleotides were designed and used for polymerase chain reaction amplification, and the resulting product was used to screen a cDNA library of Chlamydomonas reinhardtii. The complete sequences of the cox3 cDNAs from Polytomella spp. and C. reinhardtii are reported. Evidence is provided that the genes for cox3 are encoded by nuclear DNA, and the predicted polypeptides exhibit diminished physical constraints for import as compared with mitochondrial-DNA encoded homologs. This indicates that transfer of this gene to the nucleus occurred before Polytomella diverged from the photosynthetic Chlamydomonas lineage and that this transfer may have occurred in all chlamydomonad algae.
Collapse
Affiliation(s)
- X Pérez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, 04510
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rosewich UL, Kistler HC. Role of Horizontal Gene Transfer in the Evolution of Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:325-363. [PMID: 11701846 DOI: 10.1146/annurev.phyto.38.1.325] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although evidence for horizontal gene transfer (HGT) in eukaryotes remains largely anecdotal, literature on HGT in fungi suggests that it may have been more important in the evolution of fungi than in other eukaryotes. Still, HGT in fungi has not been widely accepted because the mechanisms by which it may occur are unknown, because it is usually not directly observed but rather implied as an outcome, and because there are often equally plausible alternative explanations. Despite these reservations, HGT has been justifiably invoked for a variety of sequences including plasmids, introns, transposons, genes, gene clusters, and even whole chromosomes. In some instances HGT has also been confirmed under experimental conditions. It is this ability to address the phenomenon in an experimental setting that makes fungi well suited as model systems in which to study the mechanisms and consequences of HGT in eukaryotic organisms.
Collapse
Affiliation(s)
- U Liane Rosewich
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| | - H Corby Kistler
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| |
Collapse
|
15
|
Nedelcu AM, Lee RW, Lemieux C, Gray MW, Burger G. The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res 2000; 10:819-31. [PMID: 10854413 PMCID: PMC310893 DOI: 10.1101/gr.10.6.819] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/1999] [Accepted: 03/29/2000] [Indexed: 11/24/2022]
Abstract
Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced-derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced-derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae.
Collapse
Affiliation(s)
- A M Nedelcu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada.
| | | | | | | | | |
Collapse
|
16
|
Antaramian A, Funes S, Vázquez-acevedo M, Atteia A, Coria R, González-Halphen D. Two unusual amino acid substitutions in cytochrome b of the colorless alga Polytomella spp.: correlation with the atypical spectral properties of the bH heme. Arch Biochem Biophys 1998; 354:206-14. [PMID: 9637728 DOI: 10.1006/abbi.1998.0680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dithionite-reduced spectra of the purified bc1 complexes from the colorless alga Polytomella spp. and the closely related green alga Chlamydomonas reinhardtii were compared. The spectrum of the bc1 complex from C. reinhardtii showed a profile similar to those of the bc1 complexes from other species. In contrast, the bc1 complex from Polytomella spp. exhibits a double-peak spectrum in the alpha-band region, where the absorption bands of cytochrome c1 and cytochrome b are completely resolved. To further understand the molecular basis of these spectroscopic differences, the mitochondrial gene encoding cytochrome b of Polytomella spp. was cloned, sequenced, and compared with that of C. reinhardtii. The Polytomella spp. cytochrome b gene is 1113 bp long and does not contain introns. The deduced protein sequence exhibits 56% identity and 68% similarity with the cytochrome b of C. reinhardtii, and in a phylogenetic analysis it clearly affiliated with the b-type cytochromes of C. reinhardtii and C. smithii. A comparison of the primary sequences of the Polytomella spp. cytochrome b with other b-type cytochromes, and its analysis based on the structure featuring eight transmembrane stretches, allowed the identification of a tyrosine in position 114, which substitutes for a tryptophan present in all mitochondrial b-type cytochromes sequenced to date. In addition, the primary sequence of the cytochrome b from Polytomella spp. has a serine at position 36, instead of a nonpolar residue (alanine or leucine) found in all other species. In the proposed model for cytochrome b, both residues Tyr114 and Ser36 are in close proximity to the high-potential bH heme. The above data suggest that the polar residues Y114 and S36, each one by itself or in combination, may interact with heme bH of Polytomella spp. and, thus, may be responsible for the unique spectroscopic characteristics of cytochrome b.
Collapse
Affiliation(s)
- A Antaramian
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, D.F., 04510, Mexico
| | | | | | | | | | | |
Collapse
|
17
|
Watanabe KI, Ehara M, Inagaki Y, Ohama T. Distinctive origins of group I introns found in the COXI genes of three gree algae. Gene 1998; 213:1-7. [PMID: 9714606 DOI: 10.1016/s0378-1119(98)00235-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Upon surveying the cytochrome c oxidase subunit I (COXI) gene of green algae, we found group I introns in three species of algae, Chlorella vulgaris (Cv), Scenedesmus quadricauda (Sq) and Protosiphon botryoides (Pb). The comparative analysis of these nucleotide sequences and their secondary structures revealed that the introns of Cv, Sq, and Pb belong to groups IB1, ID, and IB2, respectively. Each of the three introns contained an open reading frame (ORF) that showed a similarity to the sequence of the LAGLIDADG endonuclease family. However, each of the intronic ORFs in Sq and Pb had a discontinuity in the middle of' the sequences coding for the LAGLIDADG endonuclease. Either of the two ORFs could be restored to a sequence homologous to the LAGLIDADG endonuclease by the insertion of a nucleotide in the appropriate position. In Sq, a putative pseudo-knot structure was detected in the intronic ORF This suggests the occurrence of a ribosomal frameshift in the translation of the ORF. because such pseudo-knot structures are common in viral ORFs employing a (-1) ribosomal frameshift. In the phylogenetic tree that was inferred from the amino acid sequences of algal and non-algal intronic ORFs, the three algal ORFs did not make a cluster, but were scattered throughout the tree. In addition. each of the three algal ORFs showed a close relationship to the ORFs of non-algal introns that were inserted at the corresponding site of the COX] gene, suggesting distinctive origins of the three algal introns via independent horizontal transfers.
Collapse
Affiliation(s)
- K I Watanabe
- Department of Biology, Faculty of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
18
|
Abstract
Homing endonucleases are rare-cutting enzymes encoded by introns and inteins. They have striking structural and functional properties that distinguish them from restriction enzymes. Nomenclature conventions analogous to those for restriction enzymes have been developed for the homing endonucleases. Recent progress in understanding the structure and function of the four families of homing enzymes is reviewed. Of particular interest are the first reported structures of homing endonucleases of the LAGLIDADG family. The exploitation of the homing enzymes in genome analysis and recombination research is also summarized. Finally, the evolution of homing endonucleases is considered, both at the structure-function level and in terms of their persistence in widely divergent biological systems.
Collapse
Affiliation(s)
- M Belfort
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, PO Box 22002, Albany, New York 12201-2002, USA.
| | | |
Collapse
|
19
|
Boynton JE, Gillham NW. Genetics and transformation of mitochondria in the green alga Chlamydomonas. Methods Enzymol 1996; 264:279-96. [PMID: 8965701 DOI: 10.1016/s0076-6879(96)64027-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J E Boynton
- Department of Botany, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
20
|
Colin M, Dorthu MP, Duby F, Remacle C, Dinant M, Wolwertz MR, Duyckaerts C, Sluse F, Matagne RF. Mutations affecting the mitochondrial genes encoding the cytochrome oxidase subunit I and apocytochrome b of Chlamydomonas reinhardtii. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:179-84. [PMID: 7500939 DOI: 10.1007/bf00290364] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondrial mutants of the green alga Chlamydomonas reinhardtii that are inactivated in the cytochrome pathway of respiration have previously been isolated. Despite the fact that the alternative oxidase pathway is still active the mutants have lost the capacity to grow heterotrophically (dark + acetate) and display reduced growth under mixotrophic conditions (light + acetate). In crosses between wild-type and mutant cells, the meiotic progeny only inherit the character transmitted by the mt- parent, which indicates that the mutations are located in the 15.8 kb linear mitochondrial genome. Two new mutants (dum-18 and dum-19) have now been isolated and characterized genetically, biochemically and at the molecular level. In addition, two previously isolated mutants (dum-11 and dum-15) were characterized in more detail. dum-11 contains two types of deleted mitochondrial DNA molecules: 15.1 kb monomers lacking the subterminal part of the genome, downstream of codon 147 of the apocytochrome b (COB) gene, and dimers resulting from head-to-head fusion of asymmetrically deleted monomers (15.1 and 9.5 kb DNA molecules, respectively). As in the wild type, the three other mutants contain only 15.8 kb mitochondrial DNA molecules. dum-15 is mutated at codon 140 of the COB gene, a serine (TCT) being changed into a tyrosine (TAC). dum-18 and dum-19 both inactivate cytochrome c oxidase, as a result of frameshift mutations (addition or deletion of 1 bp) at codons 145 and 152, respectively, of the COX1 gene encoding subunit I of cytochrome c oxidase. In a total of ten respiratory deficient mitochondrial mutants characterized thus far, only mutations located in COB or COX1 have been isolated.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Colin
- Departement de Botanique, Université de Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Côté MJ, Turmel M. In vitro self-splicing reactions of chloroplast and mitochondrial group-I introns in Chlamydomonas eugametos and Chlamydomonas moewusii. Curr Genet 1995; 27:177-83. [PMID: 7788721 DOI: 10.1007/bf00313432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The self-splicing activity of nine chloroplast group-I introns (CeLSU.1 to CeLSU.6, CepsbC.1, CepsbC.2 and CmpsaB.1) and of one mitochondrial group-I intron (CmmtLSU.1) from the interfertile green algae Chlamydomonas eugametos and C. moewusii was examined using RNA templates produced by in vitro transcription of cloned DNA sequences. All introns, with the exception of the mobile intron CeLSU.5 encoding the site-specific I-CeuI endonuclease, were found to catalyze their own splicing in the absence of proteins. The introns that proved to be the best substrates under the conditions employed are CeLSU.1, CeLSU.3, CeLSU.4, CepsbC.1 and CmmtLSU.1. The implications of our results for the origin and spread of group-I introns in the organellar genomes of green algae are discussed.
Collapse
Affiliation(s)
- M J Côté
- Département de biochimie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | | |
Collapse
|
22
|
Sharma M, Hinton DM. Purification and characterization of the SegA protein of bacteriophage T4, an endonuclease related to proteins encoded by group I introns. J Bacteriol 1994; 176:6439-48. [PMID: 7961394 PMCID: PMC196996 DOI: 10.1128/jb.176.21.6439-6448.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although not encoded by an intron, the bacteriophage T4 SegA protein shares common amino acid motifs with a family of proteins found within mobile group I introns present in fungi and phage. Each of these intron-encoded proteins is thought to initiate the homing of its own intron by cleaving the intronless DNA at or near the site of insertion. Previously, we have found that SegA also cleaves DNA. In this report, we have purified the SegA protein and characterized this endonuclease activity extensively. SegA protein cleaved circular and linear plasmids, DNA containing unmodified cytosines, and wild-type T4 DNA containing hydroxymethylated, glucosylated cytosines. In all cases, certain sites on the DNA were highly preferred for cleavage, but with increasing protein concentration or time of incubation, cleavage occurred at many sites. SegA cleaving activity was stimulated by the presence of ATP or ATP gamma S. Sequence analysis of three highly preferred cleavage sites did not reveal a simple consensus sequence, suggesting that even among highly preferred sites, SegA tolerates many different sequences. A T4 segA amber mutant that we constructed had no phenotype, and PCR analyses indicated that several T-even-related phages lack the segA gene. Taken together, our results show that SegA is an endonuclease with a hierarchy of site specificity, and these results are consistent with the insertion of segA DNA into the T4 genome some time after the divergence of the closely consistent with the insertion of segA DNA into the T4 genome some time after the divergence of the closely related T-even phages.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacteriophage T4/enzymology
- Bacteriophage T4/genetics
- Base Sequence
- Cloning, Molecular
- DNA, Viral/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/isolation & purification
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Endonucleases/genetics
- Endonucleases/isolation & purification
- Endonucleases/metabolism
- Genome, Viral
- Introns/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Substrate Specificity
- T-Phages/genetics
- Viral Proteins
Collapse
Affiliation(s)
- M Sharma
- Section on Nucleic Acid Biochemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
23
|
Abstract
Endonucleases encoded by mobile group I introns are highly specific DNases that induce a double-strand break near the site to which the intron moves. I-PpoI from the acellular slime mold Physarum polycephalum mediates the mobility of intron 3 (Pp LSU 3) in the extrachromosomal nuclear ribosomal DNA of this organism. We showed previously that cleavage by I-PpoI creates a four-base staggered cut near the point of intron insertion. We have now characterized several further properties of the endonuclease. As determined by deletion analysis, the minimal target site recognized by I-PopI was a sequence of 13 to 15 bp spanning the cleavage site. The purified protein behaved as a globular dimer in sedimentation and gel filtration. In gel mobility shift assays in the presence of EDTA, I-PpoI formed a stable and specific complex with DNA, dissociating with a half-life of 45 min. By footprinting and interference assays with methidiumpropyl-EDTA-iron(II), I-PpoI contacted a 22- to 24-bp stretch of DNA. The endonuclease protected most of the purines found in both the major and minor grooves of the DNA helix from modification by dimethyl sulfate (DMS). However, the reactivity to DMS was enhanced at some purines, suggesting that binding leads to a conformational change in the DNA. The pattern of DMS protection differed fundamentally in the two partially symmetrical halves of the recognition sequence.
Collapse
|
24
|
Ellison EL, Vogt VM. Interaction of the intron-encoded mobility endonuclease I-PpoI with its target site. Mol Cell Biol 1993; 13:7531-9. [PMID: 8246971 PMCID: PMC364825 DOI: 10.1128/mcb.13.12.7531-7539.1993] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Endonucleases encoded by mobile group I introns are highly specific DNases that induce a double-strand break near the site to which the intron moves. I-PpoI from the acellular slime mold Physarum polycephalum mediates the mobility of intron 3 (Pp LSU 3) in the extrachromosomal nuclear ribosomal DNA of this organism. We showed previously that cleavage by I-PpoI creates a four-base staggered cut near the point of intron insertion. We have now characterized several further properties of the endonuclease. As determined by deletion analysis, the minimal target site recognized by I-PopI was a sequence of 13 to 15 bp spanning the cleavage site. The purified protein behaved as a globular dimer in sedimentation and gel filtration. In gel mobility shift assays in the presence of EDTA, I-PpoI formed a stable and specific complex with DNA, dissociating with a half-life of 45 min. By footprinting and interference assays with methidiumpropyl-EDTA-iron(II), I-PpoI contacted a 22- to 24-bp stretch of DNA. The endonuclease protected most of the purines found in both the major and minor grooves of the DNA helix from modification by dimethyl sulfate (DMS). However, the reactivity to DMS was enhanced at some purines, suggesting that binding leads to a conformational change in the DNA. The pattern of DMS protection differed fundamentally in the two partially symmetrical halves of the recognition sequence.
Collapse
Affiliation(s)
- E L Ellison
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
25
|
Côté V, Mercier JP, Lemieux C, Turmel M. The single group-I intron in the chloroplast rrnL gene of Chlamydomonas humicola encodes a site-specific DNA endonuclease (I-ChuI). Gene X 1993; 129:69-76. [PMID: 8335261 DOI: 10.1016/0378-1119(93)90697-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The single group-I intron (ChLSU.1) in the chloroplast (cp) large subunit rRNA-encoding gene (rrnL) of the green alga Chlamydomonas humicola is located at a position at which no introns have previously been characterized in other systems. In the present study, the nucleotide (nt) sequence of this 1118-bp intron was found to contain an internal open reading frame (ORF) that potentially encodes a basic protein of 218 amino acid residues. The putative C. humicola protein features two copies of the LAGLI-DADG motif and is part of the family of intron-encoded proteins comprising the endonucleases (ENases), I-SceI, I-SceIV and I-CsmI. Expression of the ChLSU.1 intron ORF in vitro in the presence of a 260-bp DNA fragment containing the exon 1-2 junction of an intronless version of the C. humicola rrnL resulted in specific cleavage of the DNA fragment very close to the intron insertion site. This novel intron-encoded ENase, designated I-ChuI, was also shown to generate a staggered cut with 4-nt (CTCG) 3'-OH overhangs 2 bp downstream from the intron insertion site.
Collapse
Affiliation(s)
- V Côté
- Département de biochimie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
26
|
Dalgaard JZ, Garrett RA, Belfort M. A site-specific endonuclease encoded by a typical archaeal intron. Proc Natl Acad Sci U S A 1993; 90:5414-7. [PMID: 8390663 PMCID: PMC46730 DOI: 10.1073/pnas.90.12.5414] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The protein encoded by the archaeal intron in the 23S rRNA gene of the hyperthermophile Desulfurococcus mobilis is a double-strand DNase that, like group I intron homing endonucleases, is capable of cleaving an intronless allele of the gene. This enzyme, I-Dmo I, is unusual among the intron endonucleases in that it is thermostable and is expressed only from linear and cyclized intron species and not from the precursor RNA. However, in analogy to its eukaryotic counterparts, but unlike the bacteriophage enzymes, I-Dmo I makes a staggered double-strand cut that generates 4-nt 3' extensions. Additionally, although the archaeal and group I introns have entirely different structural properties and splicing pathways, I-Dmo I shares sequence similarity, in the form of the LAGLI-DADG motif, with group I intron endonucleases of eukaryotes. These observations support the independent evolutionary origin of endonucleases and intron core elements and are consistent with the invasive potential of endonuclease genes.
Collapse
Affiliation(s)
- J Z Dalgaard
- Molecular Genetics Program, Wadsworth Center for Laboratories, New York State Department of Health, Albany 12201-0509
| | | | | |
Collapse
|
27
|
Remacle C, Matagne RF. Transmission, recombination and conversion of mitochondrial markers in relation to the mobility of a group I intron in Chlamydomonas. Curr Genet 1993; 23:518-25. [PMID: 8319312 DOI: 10.1007/bf00312645] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mitochondrial DNA transmission has been analyzed in diploids produced from sexual crosses or artificial fusions between Chlamydomonas strains which differ by several genetic markers: a group I intron (Cs cob. 1 or alpha intron), three restriction sites (Nh, Nc and H markers) located 0.5-5 kb from the insertion site of the intron, and a MUD2 point mutation (27 bp from the insertion site) conferring resistance to myxothiazol. Recombination between mitochondrial markers is a general property of all crosses and fusions analyzed. In crosses between two intron-containing (alpha+) strains or two intron-less (alpha-) strains, the transmission is preferentially paternal (mt-), with a preponderance depending on the nature of the parental genomes. In crosses between alpha+ and alpha- strains, the conversion of intron-less molecules intron+ is frequent when the alpha+ parent is maternal (mt+) and nearly absolute when the alpha+ parent is paternal (mt-). In 94% of cases, the conversion is accompanied by the co-conversion of the MUD2 marker. In both crosses and artificial fusions, the conversion of alpha- into alpha+ also influences the transmission of the more distant Nh, Nc and H markers. It is hypothesized that the more frequent transmission of the genome containing the intron results from the elimination of alpha- molecules, as a result of a double-strand cut which is induced by an endonuclease encoded by the intron.
Collapse
Affiliation(s)
- C Remacle
- Department of Botany, University of Liège, Sart Tilman, Belgium
| | | |
Collapse
|
28
|
Wolff G, Burger G, Lang BF, Kück U. Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns. Nucleic Acids Res 1993; 21:719-26. [PMID: 7680126 PMCID: PMC309174 DOI: 10.1093/nar/21.3.719] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mitochondrial DNA from the colourless alga Prototheca wickerhamii contains two mosaic genes as was revealed from complete sequencing of the circular extranuclear genome. The genes for the large subunit of the ribosomal RNA (LSUrRNA) as well as for subunit I of the cytochrome oxidase (coxI) carry two and three intronic sequences respectively. On the basis of their canonical nucleotide sequences they can be classified as group I introns. Phylogenetic comparisons of the coxI protein sequences allow us to conclude that the P.wickerhamii mtDNA is much closer related to higher plant mtDNAs than to those of the chlorophyte alga C.reinhardtii. The comparison of the intron sequences revealed several unusual features: (1) The P.wickerhamii introns are structurally related to mitochondrial introns from various ascomycetous fungi. (2) Phylogenetic analyses indicate a close relationship between fungal and algal intronic sequences. (3) The P. wickerhamii introns are located at positions within the structural genes which can be considered as preferred intron insertion sites in homologous mitochondrial genes from fungi or liverwort. In all cases, the sequences adjacent to the insertion sites are very well conserved over large evolutionary distances. Our finding of highly similar introns in fungi and algae is consistent with the idea that introns have already been present in the bacterial ancestors of present day mitochondria and evolved concomitantly with the organelles.
Collapse
Affiliation(s)
- G Wolff
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
29
|
Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu MP, Matagne RF. Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:235-44. [PMID: 8437570 DOI: 10.1007/bf00277118] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The respiratory deficient dum-1 mutant of Chlamydomonas reinhardtii fails to grow in the dark because of a terminal 1.5 kb deletion in the linear 15.8 kb mitochondrial genome, which affects the apocytochrome b (CYB) gene. In contrast to the wild type where only mitochondrial genomes of monomer length are observed, the dum-1 genomes are present as a mixture of monomer and dimer length molecules. The mutant dimers appear to result from head-to-head fusions of two deleted molecules. Furthermore, mitochondrial genomes of dum-1 were also found to be unstable, with the extent of the deletion varying among single cell clones from the original mutant population. The dum-1 mutant also segregates, at a frequency of ca. 4% per generation, lethal minute colonies in which the original deletion now extends at least into the adjacent gene encoding subunit four of NAD dehydrogenase (ND4). We have used the dum-1 mutant as a recipient to demonstrate stable mitochondrial transformation in C. reinhardtii employing the biolistic method. After 4 to 8 weeks dark incubation, a total of 22 respiratory competent colonies were isolated from plates of dum-1 cells bombarded with C. reinhardtii mitochondrial DNA (frequency 7.3 x 10(-7)) and a single colony was isolated from plates bombarded with C. smithii mitochondrial DNA (frequency 0.8 x 10(-7)). No colonies were seen on control plates (frequency < 0.96 x 10(-9)). All transformants grew normally in the dark on acetate media; 22 transformants were homoplasmic for the wild-type mitochondrial genome typical of the C. reinhardtii donor. The single transformant obtained from the C. smithii donor had a recombinant mitochondrial genome containing the donor CYB gene and the diagnostic HpaI and XbaI restriction sites in the gene encoding subunit I of cytochrome oxidase (COI) from the C. reinhardtii recipient. The characteristic deletion fragments of the dum-1 recipient were not detected in any of the transformants.
Collapse
|
30
|
Marshall P, Lemieux C. The I-CeuI endonuclease recognizes a sequence of 19 base pairs and preferentially cleaves the coding strand of the Chlamydomonas moewusii chloroplast large subunit rRNA gene. Nucleic Acids Res 1992; 20:6401-7. [PMID: 1475201 PMCID: PMC334533 DOI: 10.1093/nar/20.23.6401] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The I-CeuI endonuclease is a member of the growing family of homing endonucleases that catalyse mobility of group I introns by making a double-strand break at the homing site of these introns in cognate intronless alleles during genetic crosses. In a previous study, we have shown that a short DNA fragment of 26 bp, encompassing the homing site of the fifth intron in the Chlamydomonas eugametos chloroplast large subunit rRNA gene (Ce LSU.5), was sufficient for I-CeuI recognition and cleavage. Here, we report the recognition sequence of the I-CeuI endonuclease, as determined by random mutagenesis of nucleotide positions adjacent to the I-CeuI cleavage site. Single-base substitutions that completely abolish endonuclease activity delimit a 15-bp sequence whereas those that reduce the cleavage rate define a 19-bp sequence that extends from position -7 to position +12 with respect to the Ce LSU.5 intron insertion site. As the other homing endonucleases that have been studied so far, the I-CeuI endonuclease recognizes a non-symmetric degenerate sequence. The top strand of the recognition sequence is preferred for I-CeuI cleavage and the bottom strand most likely determines the rate of double-strand breaks.
Collapse
Affiliation(s)
- P Marshall
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | | |
Collapse
|
31
|
Ruoff B, Johansen S, Vogt VM. Characterization of the self-splicing products of a mobile intron from the nuclear rDNA of Physarum polycephalum. Nucleic Acids Res 1992; 20:5899-906. [PMID: 1461722 PMCID: PMC334452 DOI: 10.1093/nar/20.22.5899] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have characterized the splicing products formed in vitro from RNA derived from the mobile group I intron in the nuclear rDNA of Physarum polycephalum, Pp LSU 3. This intron is a close relative of the well known Tetrahymena intron Tt LSU 1, being inserted at exactly the same position in the rDNA and sharing about 90% sequence identity with Tt LSU 1 in the conserved elements characteristic of the catalytic core of all group I introns. However, Pp LSU 3 differs from Tt LSU 1 in that it encodes a site-specific endonuclease, which mediates the homing of the intron to unoccupied target sites. The endonuclease, I-Ppo, would appear to be a unique example of a protein encoded by an RNA polymerase I transcript. To gain clues to the splicing products formed in vivo, and to the nature of the messenger RNA for I-Ppo, we subjected Pp LSU 3 RNA to standard self-splicing conditions in vitro, and then analyzed the products by size, by northern blotting, and by primer extension. The results show two novel features. First, in addition to the expected 5' splice site, there is an alternative 5' splice site in the upstream exon, just preceding the first codon of the I-Ppo open reading frame. Second, at the position corresponding to the major circularization site in Tt LSU 1 there is an internal processing site, leading to the efficient separation of two halves of the excised intron, the 5' half encoding I-Ppo and 3' half containing the ribozyme. Surprisingly, this cleavage appears not to be due to circularization followed by hydrolytic opening of the circle, but rather to G addition. The formation of these products in vitro suggests how the messenger RNA for the I-Ppo endonuclease may be generated in vivo.
Collapse
Affiliation(s)
- B Ruoff
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| | | | | |
Collapse
|
32
|
Sharma M, Ellis RL, Hinton DM. Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc Natl Acad Sci U S A 1992; 89:6658-62. [PMID: 1631169 PMCID: PMC49561 DOI: 10.1073/pnas.89.14.6658] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The bacteriophage T4 segA gene lies in a genetically unmapped region between the gene beta gt (beta-glucosyltransferase) and uvsX (recombination protein) and encodes a protein of 221 amino acids. We have found that the first 100 amino acids of the SegA protein are highly similar to the N termini of four other predicted T4 proteins, also of unknown function. Together these five proteins, SegA-E (similar to endonucleases of group I introns), contain regions of similarity to the endonuclease I-Tev I, which is encoded by the mobile group I intron of the T4 td gene, and to putative endonucleases of group I introns present in the mitochondria of Neurospora crassa, Podospora anserina, and Saccharomyces douglasii. Intron-encoded endonucleases are required for the movement (homing) of the intron DNA into an intronless gene, cutting at or near the site of intron insertion. Our in vitro assays indicate that SegA, like I-Tev I, is a Mg(2+)-dependent DNA endonuclease that has preferred sites for cutting. Unlike the I-Tev I gene, however, there is no evidence that segA (or the other seg genes) resides within introns. Thus, it is possible that segA encodes an endonuclease that is involved in the movement of the endonuclease-encoding DNA rather than in the homing of an intron.
Collapse
Affiliation(s)
- M Sharma
- Section on Nucleic Acid Biochemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
33
|
Séraphin B, Faye G, Hatat D, Jacq C. The yeast mitochondrial intron aI5 alpha: associated endonuclease activity and in vivo mobility. Gene 1992; 113:1-8. [PMID: 1314207 DOI: 10.1016/0378-1119(92)90663-a] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
By analyzing crosses between yeast strains carrying different combinations of mitochondrial (mt) introns, we have shown that the aI5 alpha intron is mobile in vivo. Furthermore, we have observed that the mobility of intron aI5 alpha is affected by both the nuclear and mt genotypes. We have also detected a restriction endonuclease (ENase) activity that cleaves intronless mt genomes close to the aI5 alpha intron insertion site and thus might be involved in intron mobility. This is further supported by the fact that this ENase activity is only detected in a strain containing the aI5 alpha intron. Furthermore, similar to other ENases encoded by mobile mt introns of yeast, the ENase generates a cut with a four-base 3'-OH overhang. Thus, intron aI5 alpha represents a characteristic member of the family of mobile group-I introns.
Collapse
Affiliation(s)
- B Séraphin
- Institut Curie, Centre Universitaire, Orsay, France
| | | | | | | |
Collapse
|
34
|
Denovan-Wright EM, Lee RW. Comparative analysis of the mitochondrial genomes of Chlamydomonas eugametos and Chlamydomonas moewusii. Curr Genet 1992; 21:197-202. [PMID: 1563044 DOI: 10.1007/bf00336841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report the cloning and physical mapping of the mitochondrial genome of Chlamydomonas eugametos together with a comparison of the overall sequence structure of this DNA with the mitochondrial genome of Chlamydomonas moewusii, its closely related and interfertile relative. The C. eugametos mitochondrial DNA (mtDNA) has a 24 kb circular map and is thus 2 kb larger than the 22 kb circular mitochondrial genome of C. moewusii. Restriction mapping and heterologous, fragment hybridization experiments indicate that the C. eugametos and C. moewusii mtDNAs are colinear. Nine cross-hybridizing restriction fragments common to the C. eugametos and C. moewusii mtDNAs, and spanning the entirely of these genomes, show length differences between homologous fragments which vary from 0.1 to 2.3 kb. A 600 bp subfragment of C. moewusii mtDNA, within one of these conserved fragments, showed no hybridization with the C. eugametos mtDNA. Of the 73 restriction sites identified in the C. eugametos and C. moewusii mtDNAs, five are specific to C. moewusii, eight are specific to C. eugametos and 30 are common to both species. Hybridization experiments with gene probes derived from protein-coding and ribosomal RNA-coding regions of wheat and Chlamydomonas reinhardtii mtDNAs support the view that the small and large subunit ribosomal RNA-coding regions of the C. eugametos and C. moewusii mtDNAs are interrupted and interspersed with each other and with protein-coding regions, as are the ribosomal RNA-coding regions of C. reinhardtii mtDNA; however, the specific arrangement of these coding elements in the C. eugametos and C. moewusii mtDNAs appears different from that of C. reinhardtii mtDNA.
Collapse
Affiliation(s)
- E M Denovan-Wright
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
35
|
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
36
|
|
37
|
Lee RW, Dumas C, Lemieux C, Turmel M. Cloning and characterization of the Chlamydomonas moewusii mitochondrial genome. MOLECULAR & GENERAL GENETICS : MGG 1991; 231:53-8. [PMID: 1753945 DOI: 10.1007/bf00293821] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report that the mitochondrial genome of Chlamydomonas moewusii has a 22 kb circular map and thus contrasts with the mitochondrial genome of Chlamydomonas reinhardtii, which is linear and about 6 kb shorter. Overlapping restriction fragments spanning over 90% of the C. moewusii mitochondrial DNA (mtDNA) were identified in a clone bank constructed using a Sau3AI partial digest of a C. moewusii DNA fraction enriched for mtDNA by preparative CsCl density gradient centrifugation. Overlapping Sau3AI clones were identified by a chromosome walk initiated with a clone of C. moewusii mtDNA. The mtDNA map was completed by Southern blot analysis of the C. moewusii mtDNA fraction using isolated mtDNA clones. Regions that hybridized to C. reinhardtii or wheat mitochondrial gene probes for subunit I of cytochrome oxidase (cox1), apocytochrome b (cob), three subunits of NADH dehydrogenase (nad1, nad2 and nad5) and the small and the large ribosomal RNAs (rrnS and rrnL, respectively) were localized on the C. moewusii mtDNA map by Southern blot analysis. The results show that the order of genes in the mitochondrial genome of C. moewusii is completely rearranged relative to that of C. reinhardtii.
Collapse
Affiliation(s)
- R W Lee
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
38
|
Abstract
Mitochondria possess a small set of genes that are essential for respiratory function. This review highlights recent advances in our understanding of mitochondrial gene organization and expression. These studies illustrate a remarkable diversity among eukaryotic lineages and an impressive complexity of events needed to achieve nuclear-mitochondrial harmony.
Collapse
Affiliation(s)
- L Bonen
- Department of Biology, University of Ottawa, Canada
| |
Collapse
|
39
|
Marshall P, Lemieux C. Cleavage pattern of the homing endonuclease encoded by the fifth intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos. Gene 1991; 104:241-5. [PMID: 1916294 DOI: 10.1016/0378-1119(91)90256-b] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The fifth group-I intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos (CeLSU.5) is mobile during interspecific crosses between C. eugametos and Chlamydomonas moewusii. Like the six other mobile introns that have been well characterized so far, CeLSU.5 contains a long open reading frame (ceuIR) coding for a site-specific endonuclease (I-CeuI) that cleaves the C. moewusii intronless gene in the vicinity of the intron-insertion site. This stimulates gap repair and mediates efficient transfer of the intron at its cognate site. By expressing the ceuIR gene in the Escherichia coli vectors pKK233-2 and pTRC-99A, we recently demonstrated that the endonuclease is highly toxic to E. coli [Gauthier et al., Curr. Genet. 19 (1991) 43-47]. To eliminate this problem and characterize the cleavage pattern and recognition sequence of the I-CeuI endonuclease, we have expressed the ceuIR gene in E. coli under the control of a bacteriophage T7 promoter in a tightly regulated M13 system, and developed an in vitro system to assay partially purified I-CeuI activity. This allowed us to determine that I-CeuI recognizes a sequence of less than 26 bp centered around the insertion site and produces a staggered cut 5 bp downstream from this site, yielding 4-nucleotide (CTAA), 3'-OH overhangs.
Collapse
Affiliation(s)
- P Marshall
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | | |
Collapse
|
40
|
Beckers MC, Munaut C, Minet A, Matagne RF. The fate of mitochondrial DNAs of mt+ and mt- origin in gametes and zygotes of Chlamydomonas. Curr Genet 1991; 20:239-43. [PMID: 1934130 DOI: 10.1007/bf00326238] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to study the mechanism responsible for the uniparental transmission of the mitochondrial genome in crosses between Chlamydomonas reinhardtii and C. smithii, we have analyzed the fate of mitochondrial DNA during gametogenesis, zygospore differentiation and sporulation by hybridization experiments. Both mt+ and mt- gametes contain the same amount of mitochondrial DNA and the two parental genomes persist for several days in the zygotes. The DNA of mt+ origin is slowly eliminated during the period of zygote maturation. Light is required for total elimination of mt+ mitochondrial DNA in the zygospores. Using appropriate restriction enzymes, we have been unable to detect methylation of the mitochondrial DNA during gametogenesis or zygospore formation. The possibility that the mt+ mitochondria themselves are specifically eliminated in the course of zygote maturation is discussed.
Collapse
Affiliation(s)
- M C Beckers
- Département de Botanique (B22), Université de Liège, Belgique
| | | | | | | |
Collapse
|
41
|
Tian GL, Michel F, Macadre C, Slonimski PP, Lazowska J. Incipient mitochondrial evolution in yeasts. II. The complete sequence of the gene coding for cytochrome b in Saccharomyces douglasii reveals the presence of both new and conserved introns and discloses major differences in the fixation of mutations in evolution. J Mol Biol 1991; 218:747-60. [PMID: 1708831 DOI: 10.1016/0022-2836(91)90263-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have determined the complete sequence of the mitochondrial gene coding for cytochrome b in Saccharomyces douglasii. The gene is 6310 base-pairs long and is interrupted by four introns. The first one (1311 base-pairs) belongs to the group ID of secondary structure, contains a fragment open reading frame with a characteristic GIY ... YIG motif, is absent from Saccharomyces cerevisiae and is inserted in the same site in which introns 1 and 2 are inserted in Neurospora crassa and Podospora anserina, respectively. The next three S. douglasii introns are homologous to the first three introns of S. cerevisiae, are inserted at the same positions and display various degrees of similarity ranging from an almost complete identity (intron 2 and 4) to a moderate one (intron 3). We have compared secondary structures of intron RNAs, and nucleotide and amino acid sequences of cytochrome b exons and intron open reading frames in the two Saccharomyces species. The rules that govern fixation of mutations in exon and intron open reading frames are different: the relative proportion of mutations occurring in synonymous codons is low in some introns and high in exons. The overall frequency of mutations in cytochrome b exons is much smaller than in nuclear genes of yeasts, contrary to what has been found in vertebrates, where mitochondrial mutations are more frequent. The divergence of the cytochrome b gene is modular: various parts of the gene have changed with a different mode and tempo of evolution.
Collapse
Affiliation(s)
- G L Tian
- Centre de Génétique Moléculaire du C.N.R.S., Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
42
|
Michel F, Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 1990; 216:585-610. [PMID: 2258934 DOI: 10.1016/0022-2836(90)90386-z] [Citation(s) in RCA: 914] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alignment of the 87 available sequences of group I self-splicing introns reveals numerous instances of covariation between distant sites. Some of these covariations cannot be ascribed to historical coincidences or the known secondary structure of group I introns, and are, therefore, best explained as reflecting tertiary contacts. With the help of stereochemical modelling, we have taken advantage of these novel interactions to derive a three-dimensional model of the conserved core of group I introns. Two noteworthy features of that model are its extreme compactness and the fact that all of the most evolutionarily conserved residues happen to converge around the two helices that constitute the substrate of the core ribozyme and the site that binds the guanosine cofactor necessary for self-splicing. Specific functional implications are discussed, both with regard to the way the substrate helices are recognized by the core and possible rearrangements of the introns during the self-splicing process. Concerning potential long-range interactions, emphasis is put on the possible recognition of two consecutive purines in the minor groove of a helix by a GAAA or related terminal loop.
Collapse
Affiliation(s)
- F Michel
- Centre de Génétique Moléculaire du CNRS, Laboratoire associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | |
Collapse
|
43
|
Michaelis G, Vahrenholz C, Pratje E. Mitochondrial DNA of Chlamydomonas reinhardtii: the gene for apocytochrome b and the complete functional map of the 15.8 kb DNA. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:211-6. [PMID: 2250648 DOI: 10.1007/bf00265056] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have sequenced the termini of the mitochondrial genome of Chlamydomonas reinhardtii and now present the DNA sequence of the gene for apocytochrome b. This gene is the thirteenth gene of the linear 15.8 kb DNA and appears to be the last one of the mt genome. The deduced protein sequence of 381 amino acid residues shows 56%, 48.6% and 48% identity with the apocytochrome b proteins of maize, Drosophila yakuba and mouse, respectively. RNA analysis reveals a transcript of about 1250 nucleotides. It is now possible to present the complete protein-coding capacity, the pattern of codon utilization for all eight protein genes, and the complete functional map of the mitochondrial 15.8 kb DNA of C. reinhardtii. One surprising feature is the absence of mitochondrial genes for ATPase and subunits II and III of cytochrome oxidase. No more than three tRNA genes appear to be present on the 15.8 kb mitochondrial DNA.
Collapse
Affiliation(s)
- G Michaelis
- Botanisches Institut der Universität Düsseldorf, Federal Republic of Germany
| | | | | |
Collapse
|
44
|
Remacle C, Bovie C, Michel-Wolwertz MR, Loppes R, Matagne RF. Mitochondrial genome transmission in Chlamydomonas diploids obtained by sexual crosses and artificial fusions: role of the mating type and of a 1 kb intron. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:180-4. [PMID: 2250646 DOI: 10.1007/bf00265051] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The linear mitochondrial DNAs of the two infertile algal species Chlamydomonas smithii and C. reinhardtii are co-linear with the exception of a 1 kb intron (alpha intron) located in the cytochrome b gene of C. smithii. C. smithii also possesses an additional HpaI restriction site (H marker) located in the COXI gene, about 5 kb from the intron. In reciprocal crosses, C. smithii (H+ alpha +) x C. reinhardtii (H- alpha -), the alpha intron is transmitted to all diploid progeny, whereas the H marker is frequently transmitted either biparentally or paternally depending on whether the C. smithii parent is maternal (mt+) or paternal (mt-). In diploids resulting from artificial fusion between vegetative cells, the absolute transmission of alpha is accompanied by the frequent transmission of the H+ marker, irrespective of the mating type of the parental strains. Finally, in reciprocal crosses between C. smithii (H+ alpha +) and recombinant H- alpha + clones, the transmission of the H marker is predominantly paternal or biparental. These results allow us to conclude that (1) the alpha intron behaves as a group I intron whose unidirectional conversion influences the transmission of the H marker; and (2) the mt- paternal mitochondrial genome is transmitted more often than the mt+. The mating type has no effect in diploids obtained by artificial fusion.
Collapse
Affiliation(s)
- C Remacle
- Department of Botany, University of Liège, Belgium
| | | | | | | | | |
Collapse
|