1
|
Mukhopadhyay J, Hausner G. Organellar Introns in Fungi, Algae, and Plants. Cells 2021; 10:cells10082001. [PMID: 34440770 PMCID: PMC8393795 DOI: 10.3390/cells10082001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.
Collapse
MESH Headings
- Evolution, Molecular
- Gene Expression Regulation, Fungal
- Gene Expression Regulation, Plant
- Genome, Fungal
- Genome, Plant
- Introns
- Organelles/genetics
- Organelles/metabolism
- RNA Splicing
- RNA Stability
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
|
2
|
Hausner G, Hafez M, Edgell DR. Bacterial group I introns: mobile RNA catalysts. Mob DNA 2014; 5:8. [PMID: 24612670 PMCID: PMC3984707 DOI: 10.1186/1759-8753-5-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/24/2014] [Indexed: 12/02/2022] Open
Abstract
Group I introns are intervening sequences that have invaded tRNA, rRNA and protein coding genes in bacteria and their phages. The ability of group I introns to self-splice from their host transcripts, by acting as ribozymes, potentially renders their insertion into genes phenotypically neutral. Some group I introns are mobile genetic elements due to encoded homing endonuclease genes that function in DNA-based mobility pathways to promote spread to intronless alleles. Group I introns have a limited distribution among bacteria and the current assumption is that they are benign selfish elements, although some introns and homing endonucleases are a source of genetic novelty as they have been co-opted by host genomes to provide regulatory functions. Questions regarding the origin and maintenance of group I introns among the bacteria and phages are also addressed.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2 N2, Canada
| | - Mohamed Hafez
- Department of Biochemistry, Faculty of Medicine, University of Montreal, Montréal, QC H3C 3 J7, Canada
- Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
3
|
Abstract
Buried within the genomes of many microorganisms are genetic elements that encode rare-cutting homing endonucleases that assist in the mobility of the elements that encode them, such as the self-splicing group I and II introns and in some cases inteins. There are several different families of homing endonucleases and their ability to initiate and target specific sequences for lateral transfers makes them attractive reagents for gene targeting. Homing endonucleases have been applied in promoting DNA modification or genome editing such as gene repair or "gene knockouts". This review examines the categories of homing endonucleases that have been described so far and their possible applications to biotechnology. Strategies to engineer homing endonucleases to alter target site specificities will also be addressed. Alternatives to homing endonucleases such as zinc finger nucleases, transcription activator-like effector nucleases, triplex forming oligonucleotide nucleases, and targetrons are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
4
|
Knight JA. New antibiotic resistance Loci in the ribosomal region of yeast mitochondrial DNA. Genetics 2010; 94:69-92. [PMID: 17248997 PMCID: PMC1214138 DOI: 10.1093/genetics/94.1.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A large number of mitochondrial antibiotic-resistant mutants have been isolated following mutagenesis with manganese. These include several different phenotypic classes of mutants, as distinguished by cross-resistance patterns, that have been found to be allelic at cap1 or ery1; some have been found to be heteroallelic.--Seven chloramphenicol-resistant mutants have been identified that are nonallelic by recombination tests with the three loci (cap1, spi1 and ery1) previously identified in the ribosomal region. Four of these are allelic with each other and define a new locus, cap3; two others are allelic and define another new locus, cap2; the seventh maps at yet a different locus, cap4. One new spiramycin-resistant mutant has been identified that defines still another new locus, spi2. A variety of genetic techniques have been used to map these loci within the ribosomal region of the mitochondrial genome.-Manganese has been shown to be effective in inducing the mutation from omega(-) to omega(n) in many mutants that experience a simultaneous mutation at the closely linked cap1 locus. The omega(n) mutation has also been described in the cap4 mutant, and this locus has been shown to be more closely linked to omega than cap1 is to omega.
Collapse
Affiliation(s)
- J A Knight
- Department of Genetics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
5
|
Troulinaki K, Tavernarakis N. Neurodegenerative conditions associated with ageing: a molecular interplay? Mech Ageing Dev 2005; 126:23-33. [PMID: 15610759 DOI: 10.1016/j.mad.2004.09.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ageing process precipitates dramatic alterations in the physiology of all organisms, including reduced cellular function, compromised resistance to stress and pathological agents, and increased likelihood of developing age-related diseases. Among the most characteristic pathologies associated with old age are numerous late-onset neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. In addition to stroke, which also inflicts loss of neuronal cells, these conditions account for ever-increasing debilitation among the elderly. Recent studies in model organisms such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, which offer the prowess of sophisticated genetic approaches, have uncovered significant, novel aspects of the molecular mechanisms that underlie both neurodegeneration and the ageing process. These advances hold promise that the intimate link between the aged state and the manifestation of several neurodegenerative diseases will be deciphered. Here, we discuss the mechanisms by which ageing interfaces with, and influences, the progression of neurodegeneration.
Collapse
Affiliation(s)
- Kostoula Troulinaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, P.O. Box 1527, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
6
|
Okamoto K, Perlman PS, Butow RA. The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J Cell Biol 1998; 142:613-23. [PMID: 9700153 PMCID: PMC2148178 DOI: 10.1083/jcb.142.3.613] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Green fluorescent protein (GFP) was used to tag proteins of the mitochondrial matrix, inner, and outer membranes to examine their sorting patterns relative to mtDNA in zygotes of synchronously mated yeast cells in rho+ x rho0 crosses. When transiently expressed in one of the haploid parents, each of the marker proteins distributes throughout the fused mitochondrial reticulum of the zygote before equilibration of mtDNA, although the membrane markers equilibrate slower than the matrix marker. A GFP-tagged form of Abf2p, a mtDNA binding protein required for faithful transmission of rho+ mtDNA in vegetatively growing cells, colocalizes with mtDNA in situ. In zygotes of a rho+ x rho+ cross, in which there is little mixing of parental mtDNAs, Abf2p-GFP prelabeled in one parent rapidly equilibrates to most or all of the mtDNA, showing that the mtDNA compartment is accessible to exchange of proteins. In rho+ x rho0 crosses, mtDNA is preferentially transmitted to the medial diploid bud, whereas mitochondrial GFP marker proteins distribute throughout the zygote and the bud. In zygotes lacking Abf2p, mtDNA sorting is delayed and preferential sorting is reduced. These findings argue for the existence of a segregation apparatus that directs mtDNA to the emerging bud.
Collapse
Affiliation(s)
- K Okamoto
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9148, USA
| | | | | |
Collapse
|
7
|
Shaw LC, Lewin AS. The Cbp2 protein stimulates the splicing of the omega intron of yeast mitochondria. Nucleic Acids Res 1997; 25:1597-604. [PMID: 9092668 PMCID: PMC146636 DOI: 10.1093/nar/25.8.1597] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Cbp2 protein is encoded in the nucleus and is required for the splicing of the terminal intron of the mitochondrial COB gene in Saccharomyces cerevisiae . Using a yeast strain that lacks this intron but contains a related group I intron in the precursor of the large ribosomal RNA, we have determined that Cbp2 protein is also required for the normal accumulation of 21S ribosomal RNA in vivo . Such strains bearing a deletion of the CBP2 gene adapt slowly to growth in glycerol/ethanol media implying a defect in derepression. At physiologic concentrations of magnesium, Cbp2 stimulates the splicing of the ribosomal RNA intron in vitro . Nevertheless, Cbp2 is not essential for splicing of this intron in mitochondria nor is it required in vitro at magnesium concentrations >5 mM. A similar intron exists in the large ribosomal RNA (LSU) gene of Saccharomyces douglasii . This intron does need Cbp2 for catalytic activity in physiologic magnesium. Similarities between the LSU introns and COB intron 5 suggest that Cbp2 may recognize conserved elements of the these two introns, and protein-induced UV crosslinks occur in similar sites in the substrate and catalytic domains of the RNA precursors.
Collapse
Affiliation(s)
- L C Shaw
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Box 100266, Gainesville, FL 32610, USA
| | | |
Collapse
|
8
|
Abstract
Group I introns form a structural and functional group of introns with widespread but irregular distribution among very diverse organisms and genetic systems. Evidence is now accumulating that several group I introns are mobile genetic elements with properties similar to those originally described for the omega system of Saccharomyces cerevisiae: mobile group I introns encode sequence-specific double-strand (ds) endoDNases, which recognize and cleave intronless genes to insert a copy of the intron by a ds-break repair mechanism. This mechanism results in: the efficient propagation of group I introns into their cognate sites; their maintenance at the site against spontaneous loss; and, perhaps, their transposition to different sites. The spontaneous loss of group I introns occurs with low frequency by an RNA-mediated mechanism. This mechanism eliminates introns defective for mobility and/or for RNA splicing. Mechanisms of intron acquisition and intron loss must create an equilibrium, which explains the irregular distribution of group I introns in various genetic systems. Furthermore, the observed distribution also predicts that horizontal transfer of intron sequences must occur between unrelated species, using vectors yet to be discovered.
Collapse
Affiliation(s)
- B Dujon
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Heude M. The induction of rho- mutants by UV or gamma-rays is independent of the nuclear recombinational repair pathway in Saccharomyces cerevisiae. Mutat Res 1988; 194:151-63. [PMID: 3045532 DOI: 10.1016/0167-8817(88)90017-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In order to discover whether the nuclear recombinational repair pathway also acts on lesions induced in mitochondrial DNA (mtDNA), the possible role of the RAD50, -51, -52, -55 and -56 genes on the induction of rho- mutants by radiations was studied. Such induction appeared to be independent of this pathway. Nevertheless, an efficient induction of respiration-deficient mutants was observed in gamma-irradiated rad52 diploids. We demonstrate that these mutants do not result from a lack of mtDNA repair, but from chromosome losses induced by gamma-rays. Such an impairment of the respiratory ability of diploids by chromosome losses was effectively observed in the aneuploid progeny of unirradiated RAD+ cdc6 diploids incubated at the restrictive temperature.
Collapse
Affiliation(s)
- M Heude
- Institut Curie-Biologie, Centre Universitaire, Orsay, France
| |
Collapse
|
10
|
Colleaux L, D'Auriol L, Galibert F, Dujon B. Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci U S A 1988; 85:6022-6. [PMID: 2842757 PMCID: PMC281897 DOI: 10.1073/pnas.85.16.6022] [Citation(s) in RCA: 218] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The optional group I intron of the mitochondrial 21S rRNA gene of Saccharomyces cerevisiae contains a 235-codon-long open reading frame the translation product of which (the omega transposase) catalyzes the formation of a double-strand break within the intron-minus (omega-) copies of the same gene. Purified omega transposase generates in vitro a 4-base-pair staggered cut with 3' hydroxyl overhangs at the exact position where the intron eventually inserts in the gene. Using randomly mutagenized synthetic oligonucleotides, single-base mutants were produced at 21 positions around the cleavage site. Experiments with these oligonucleotides show that the recognition site extends over an 18-base pair-long sequence within which minimal sequence degeneracy is tolerated. The intron-encoded omega transposase is, therefore, one of the most specific restriction endonucleases known to date.
Collapse
Affiliation(s)
- L Colleaux
- Département de Biologie Moléculaire, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
11
|
Unidirectional gene conversions in the chloroplast of Chlamydomonas interspecific hybrids. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf00322443] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Wolf K, Del Giudice L. The variable mitochondrial genome of ascomycetes: organization, mutational alterations, and expression. ADVANCES IN GENETICS 1988; 25:185-308. [PMID: 3057820 DOI: 10.1016/s0065-2660(08)60460-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- K Wolf
- Institut für Genetik und Mikrobiologie, Universität München, Munich, Federal Republic of Germany
| | | |
Collapse
|
13
|
Physical mapping of differences between the chloroplast DNAs of the interfertile algae Chlamydomonas eugametos and Chlamydomonas moewusii. Curr Genet 1987. [DOI: 10.1007/bf00384618] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Affiliation(s)
- A Danchin
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
Colleaux L, d'Auriol L, Betermier M, Cottarel G, Jacquier A, Galibert F, Dujon B. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 1986; 44:521-33. [PMID: 3004738 DOI: 10.1016/0092-8674(86)90262-x] [Citation(s) in RCA: 201] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The intron of the mitochondrial 21S rRNA gene of Saccharomyces cerevisiae (r1 intron) possesses a 235 codon long internal open reading frame (r1 ORF) whose translation product determines the duplicative transposition of that intron during crosses between intron-plus strains (omega+) and intron-minus ones (omega-). Using site-directed mutagenesis, we have constructed a universal code equivalent of the r1 ORF that, under appropriate promoter control, allows the overexpression in E. coli of a protein identical to the mitochondrial intron encoded "transposase". This protein exhibits a double strand endonuclease activity specific for the omega- site. This finding demonstrates, for the first time, the enzymatic activity of an intron encoded protein whose function is to promote the spreading of that intron by generating double strand breaks at a specific sequence within a gene.
Collapse
|
16
|
Dujon B, Colleaux L, Jacquier A, Michel F, Monteilhet C. Mitochondrial introns as mobile genetic elements: the role of intron-encoded proteins. BASIC LIFE SCIENCES 1986; 40:5-27. [PMID: 3032144 DOI: 10.1007/978-1-4684-5251-8_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introns of organelle genes share distinctive RNA secondary structures that allow their classification into two known families. These structures are believed to play an essential role in splicing, and members of both structural classes have recently been shown to perform self-splicing reactions in vitro. In lower eukaryotes, many structured introns also contain long internal open reading frames (ORFs), which are able to code for hydrophilic proteins. Several properties of self-splicing structured introns suggest that they resemble mobile genetic elements, even though no actual transposition event involving these introns has yet been found. We report here on the characterization of two intron-encoded proteins that strongly support this attractive idea. First, we show that the class I intron of the 21S ribosomal RNA (rRNA) gene of Saccharomyces cerevisiae omega+ strains (rl intron) encodes a specific transposase. This protein has been partially purified from Escherichia coli cells that overexpress it from an artificial universal code equivalent to the rl intronic ORF. The omega transposase shows a double-strand endonuclease activity in vitro. This activity creates a 4-bp staggered cut with 3' OH overhangs within a specific sequence of the 21S rRNA gene of omega- strains. It is precisely within this sequence that the rl intron inserts by a duplicative transposition. Second, we report on the synthesis, in E. coli, of a putative reverse transcriptase encoded by the class II intron of the cytochrome b gene of Schizosaccharomyces pombe. This synthesis was obtained from E. coli expression vectors, using the class II intronic ORF linked to an artificial initiator sequence. As further support of the idea that structured introns are mobile, we show, from a systematic screening of introns in various yeast species, that the rl intron has transposed into the ATPase subunit 9 gene of Kluyveromyces fragilis. Structural features observed at the new intron homing site may be relevant to the transposition event.
Collapse
|
17
|
Zinn AR, Butow RA. Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: kinetics and the involvement of a double-strand break. Cell 1985; 40:887-95. [PMID: 3886160 DOI: 10.1016/0092-8674(85)90348-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A 1.1 kb intron containing an open reading frame (ORF) in one allele (omega+) of the yeast mitochondrial 21S rRNA gene is nearly quantitatively inserted in crosses into a 21S rRNA allele lacking that intron (omega-). We have determined that this nonreciprocal exchange initiates soon after cells fuse to form zygotes and is complete by 10-16 hr after mating. We have discovered a unique in vivo double-strand cut in omega- mitochondrial DNA (mtDNA) at or near the site of intron insertion that is implicated in the process. Markers flanking the intron insertion site are coconverted with frequencies inversely proportional to their distance from that site. There is no net conversion of omega- to omega+ in crosses between petites retaining these alleles, nor do we observe the unique double-strand cut in the mtDNA from zygotes of such crosses. The data suggest that a translation product of the intron ORF is required for the double-strand cut and nonreciprocal recombination at omega.
Collapse
|
18
|
|
19
|
Abstract
We have compiled the available primary structural data for the mitochondrial genome of Saccharomyces cerevisiae and have estimated the size of the remaining gaps, which represent 12-13% of the genome. The lengths of sequenced regions and of gaps lead to a new assessment of genome sizes; these range (in round figures) from 85 000 bp for the long genomes, to 78 000 bp for the short genomes, to 74 000 bp for the supershort genome of Saccharomyces carlsbergensis. These values are 8-11% higher than those previously estimated from restriction fragments. Interstrain differences concern not only facultative intervening sequences (introns) and mini-inserts, but also insertions/deletions in intergenic sequences. The primary structure appears to be extremely conserved in genes and ori sequences, and highly conserved in intergenic sequences. Since coding sequences represent at most 33-35% of the genome, at least two thirds of the genome are formed by noncoding and yet highly conserved sequences. The G + C level of genes or exon is 25%, and that of intronic open reading frames (ORFs) 22%; increasingly lower values are shown by intronic closed reading frames (CRFs), 20%, ori sequences, 19%, intergenic ORFs, 17.5% and intergenic sequences, 15%.
Collapse
|
20
|
Backer JS, Birky CW. The origin of mutant cells: mechanisms by which Saccharomyces cerevisiae produces cells homoplasmic for new mitochondrial mutations. Curr Genet 1985; 9:627-40. [PMID: 3916732 DOI: 10.1007/bf00449815] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Haploid yeast cells have about 50 copies of the mitochondrial genome, and a mutational event is unlikely to affect more than one of these at a time. This raises the question of how such cells, or their progeny, become fixed (homoplasmic) for the mutant alele. We have tested the roles of six hypothetical mechanisms in producing erythromycin-resistant mutant cells: (i) random partitioning of mitochondrial genomes at cell division; (ii) intracellular selection for mtDNA molecules of one genotype; (iii) intracellular random drift of mitochondrial allele frequencies; (iv) intercellular selection for cells of a particular mitochondrial genotype; (v) induction of mitochondrial gene mutations by the antibiotic used to select mutants; and (vi) reduction in the number of mitochondrial genomes per cell by the antibiotic. Our experiments indicate that intracellular selection plays the major role in producing erythromycin-resistant mutant cells in the presence of the antibiotic. In the absence of the antibiotic, the combined effects of random drift and random partitioning are most important in determining the fate of new mutations, most of which are lost rather than fixed. Our experiments provide no evidence for mutation induction or ploidy reduction by erythromycin.
Collapse
Affiliation(s)
- J S Backer
- Department of Medicine, University of Chicago, IL 60637
| | | |
Collapse
|
21
|
The mitochondrial DNA of the yeast Hansenula petersonii: genome organization and mosaic genes. Curr Genet 1984; 8:449-55. [DOI: 10.1007/bf00433911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1984] [Indexed: 10/26/2022]
|
22
|
Knight JA, Wedeen CJ, Hughes KA. Nuclear suppressors of mitochondrial chloramphenicol resistance in Baker's yeast: their use for the isolation of novel mutants. Curr Genet 1984; 8:121-6. [DOI: 10.1007/bf00420230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1983] [Indexed: 10/26/2022]
|
23
|
Jacquier A, Dujon B. The intron of the mitochondrial 21S rRNA gene: distribution in different yeast species and sequence comparison between Kluyveromyces thermotolerans and Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1983; 192:487-99. [PMID: 6361491 DOI: 10.1007/bf00392195] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have screened numerous different yeast species for the presence of sequences homologous to the intron of the mitochondrial 21S rRNA gene of Saccharomyces cerevisiae (intron r1) and found them in all Kluyveromyces species, some of the Saccharomyces species and none of the other yeasts tested. We have determined the nucleotide sequence of the r1-intron in K. thermotolerans and compared it with that of S. cerevisiae. The two introns are inserted at the same position within the 21S rRNA gene. They contain homologous internal open reading frames (ORFs) initiated at the same AUG codon which can be aligned over their entire length. Several silent multi-substitutions indicate that these intronic ORFs represent selectively conserved functional genes. Other intron segments, on the contrary, reveal short blocks of extensive homology separated by non-homologous stretches and/or additions-deletions. Comparison of our two yeast r1-introns with equivalent introns of N. crassa and A. nidulans mitochondria reveals that introns with very similar RNA secondary structures can accommodate different types of ORFs.
Collapse
|
24
|
|
25
|
Murphy TM. Analysis of distributions of mutants in clones of plant-cell aggregates. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1982; 61:367-372. [PMID: 24270499 DOI: 10.1007/bf00272859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/1981] [Accepted: 11/10/1981] [Indexed: 06/02/2023]
Abstract
The organization of plant cells (or any other genetic elements, such as organelles) into aggregates modifies the expected distribution of mutants in clones. The reason for the modification, and its effect on the use of the Luria-Delbrück fluctuation test, are discussed. The Luria-Delbriick test was used to show that the trait for chlorate resistance in cultured rose-cell aggregates appeared spontaneously and in the absence of chlorate ion.
Collapse
Affiliation(s)
- T M Murphy
- Department of Botany, University of California, Davis, Calif., USA
| |
Collapse
|
26
|
Second-site antibiotic resistance mutations in the ribosomal region of yeast mitochondrial DNA. Curr Genet 1982; 5:21-7. [DOI: 10.1007/bf00445736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1982] [Indexed: 10/26/2022]
|
27
|
Putrament A, Ejchart A. Mitochondrial mutagenesis in Saccharomyces cerevisiae: the origin of mit- mutants. Genet Res (Camb) 1981; 38:267-79. [PMID: 7037544 DOI: 10.1017/s0016672300020607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
SUMMARYYeast cells contain many copies of mitochondrial (mit) genomes. The question we tried to answer was howmit−mutations occurring in one genome as a result of mutagenic treatment might yield homoplasmic mutant cells. Three processes were considered. First, that these cells originate by segregation of mutant and standard alleles during cell division. Secondly, that they originate through intracellular selection, for which cell division is not required. Thirdly, that recombination involving the mutant and standard alleles is non-reciprocal and unidirectionalmit+→mit−so that the mutant allele is spread into the entire population of mitochondrial genomes within a cell, thus making it homoplasmicmit−. The results indicate that the first process, although efficiently producing homoplasmic cells from heteroplasmic zygotes (for review see Birky, 1978), seems to play only a minor, if any, role in producing homoplasmic mutant progenies from mutagenized cells. The most important is the second process, that is, intracellular selection occurring in cells which have one or a few genomes carryingmit−mutations, while the remaining genomes are irreversibly damaged. The third process, unidirectionalmit+→mit−conversion, does not seem to play any part.
Collapse
|
28
|
Bos JL. Fine structure of the 21S ribosomal RNA region on yeast mitochondrial DNA. IV. Characterization of the omega neutral allele. MOLECULAR & GENERAL GENETICS : MGG 1981; 181:420-3. [PMID: 7022126 DOI: 10.1007/bf00428730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The omega locus controls the polarity of recombination and transmission of genetic markers in the 21S ribosomal RNA region in yeast mtDNA. Polarity is observed in crosses between omega+ and omega- strains. These two strains differ by the presence of an intervening sequence in the 21S ribosomal RNA gene of omega+ strains. Mutations of the omega- allele, omega neutral (omegan), can eliminate the polarity effect. We have made DNA:RNA hybrids containing ribosomal RNA from an omegan strain and mtDNA from Saccharomyces carlsbergensis (identical to omega- in the nucleotide sequence of the omega region). These hybrids contain no mismatch at the omega region detectable by digestion with S1 nuclease. We conclude that omegan differs from omega- only in a point mutation or analogous small alteration and that the omegan mutation can result either in a Cr phenotype (omeganCr) or in the phenotypic suppression of pre-existing Cr mutations (omegenCs). All results can be explained by a model which postulates interaction in the ribosome between the Cr and omegan regions of the ribosomal RNA and interference of the omegan mutation with splicing of the precursor ribosomal RNA in omega+ strains. The mechanism of omega-directed polarity is discussed.
Collapse
|
29
|
Dujon B. Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the omega and rib-1 loci. Cell 1980; 20:185-97. [PMID: 6156002 DOI: 10.1016/0092-8674(80)90246-9] [Citation(s) in RCA: 329] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The complete nucleotide sequence has been determined for the intron, its junctions and the flanking exon regions of the 21S rRNA gene in three genetically characterized strains differing by their omega alleles (omega+, omega- and omega n) and by their chloramphenicol-resistant mutations at the rib-1 locus. Comparison of these DNA sequences shows that: --omega+ differs from omega- and omega n by the presence of the intron (1143 bp), as well as by a second and unexpected mini-insert (66 bp) located 156 bp upstream within the exon, whose nature and functions are still unknown but whose striking palindromic structure may suggest a mitochondrial transposable element. --The two mutations C321R and C323R correspond to two different monosubstitutions, 56 bp apart in the omega- and omega n strains but separated by the intron in the omega+ strains. In relation to previous genetic results, a model is discussed assuming that the interactions of two different regions or genetic loci determine the chloramphenicol resistance, one of which contains the omega n mutations. --A long uninterrupted coding sequence able to specify a 235 amino acid polypeptide exists within the intron. This remarkable observation gives new insight into the origin of the mitochondrial introns and raises the question of the possible functions of intron-encoded polypeptides. Finally, sequence comparisons with evolutionarily distant organisms, showing that different rRNA introns are inserted at different positions of an otherwise highly conserved region of the gene, suggest a recent insertion of these introns and a mechanism for splicing after the assembly of the large ribosomal subunit.
Collapse
|
30
|
Construction of isomitochondrial and isonuclear strains for recombinational analysis of mitochondrial loci in S. cerevisiae. Genet Res (Camb) 1980. [DOI: 10.1017/s0016672300014075] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYIn the mitochondrial and nuclear genetic background of the 777-3A strain (op1, ade1, α) a set of strains with different nutritional requirements and mating types, carrying the op1 mutation versus its wild-type OP1 allele was constructed. This makes possible the use of strains with the same genetic background in recombinational analysis of mitochondrial loci.
Collapse
|
31
|
Michel F, Grandchamp C, Dujon B. Genetic and physical characterization of a segment of yeast mitochondrial DNA involved in the control of genetic recombination. Biochimie 1980; 61:985-1010. [PMID: 394766 DOI: 10.1016/s0300-9084(80)80254-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic recombination between the 3 RIB (ribosomal) loci of yeast mitochondrial DNA is under the control of a mitochondrial locus named omega (with alleles omega+ and omega-) which is tightly linked to the RIBI locus. We have attempted to elucidate the molecular mechanisms(s) involved by using rho- mutants with similar (RIBI+ RIB2+ RIB3(0) genotype but different recombination properties in rho- x rho+ crosses. These were obtained through pedigree analysis and their mitochondrial DNAs were mapped on a high resolution physical map of the RIB section that had been built by analysis of thermal denaturation profiles and electron microscopy of partially denatured molecules. By comparison of physical and genetic data it can be shown that possession of the omega+ allele by the rho- cell is not sufficient for its expression in crosses, some additional DNA segments(s) in the ribosomal region being needed. This result and several features of the rho+ x rho- crosses are discussed in the light of current concepts in mitochondrial genetics of yeast and the recently discovered fact that omega+ and omega- strains differ by the presence of a 1000 base pairs insertion in the former.
Collapse
|
32
|
Bolotin-Fukuhara M. Mitochondrial and nuclear mutations that affect the biogenesis of the mitochondrial ribosomes of yeast. I. Genetics. MOLECULAR & GENERAL GENETICS : MGG 1979; 177:39-46. [PMID: 395414 DOI: 10.1007/bf00267251] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have isolated about five hundred temperature-sensitive mutants specific for the mitochondrial functions. Their growth on glycerol is defective at 36 degrees C and/or 20 degrees C. While most of the mutations were nuclearly inherited, about thirty were found to be of mitochondrial origin. 1) Four mitochondrial mutations (three cryosensitive, one thermosensitive) were localized close to chloramphenicol and erythromycin resistance loci of the mitochondrial DNA, that is in the region coding for the 23 S ribosomal RNA. One of the mutation interfered with the expression of the chloramphenicol resistance gene. 2) A dozen nuclear mutations were isolated from a strain which is labelled with mitochondrial drug resistance markers (chloramphenicol, erythromycin, and paromomycin). Among the temperature sensitive respiratory deficient mutants, we have selected the mutations that supress the resistant phenotypes. We describe two non allelic such mutations, one being cryosensitive, the other thermosensitive. Both supress the expression of the mitochondrial chloramphenicol resistance gene. The temperature sensitive growth on glycerol and the modified antibiotic phenotype segregated together as a single recessive mutation. A biochemical study of these mutants is presented in a joint paper, confirming their presumed ribosomal nature.
Collapse
|
33
|
Devenish RJ, Hall RM, Linnane AW, Lukins HB. Biogenesis of mitochondria. 52. Deletions in petite strains occurring in the mitochondrial gene for the 21 S ribosomal RNA, that affect the properties of mitochondrial recombination. MOLECULAR & GENERAL GENETICS : MGG 1979; 174:297-305. [PMID: 384169 DOI: 10.1007/bf00267803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Atchison BA, Choo KB, Devenish RJ, Linnane AW, Nagley P. Biogenesis of mitochondria. 53. Physical map of genetic loci in the 21S ribosomal RNA region of mitochondrial DNA in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1979; 174:307-16. [PMID: 384170 DOI: 10.1007/bf00267804] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Ejchart A, Putrament A. Mitochondrial mutagenesis in Saccharomyces cerevisiae. I. Ultraviolet radiation. Mutat Res 1979; 60:173-80. [PMID: 379626 DOI: 10.1016/0027-5107(79)90181-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UV efficiently induces mutations in mitDNA , conferring resistance to erythromycin. Mitochondrial chloramphenicol-resistant mutants are probably also induced by UV, but almost 90% of mutants with such phenotype are non-mitochondrial; therefore it is possible to estimate accurately the frequences of the induced presumptive mitochondrial capr mutations.
Collapse
|
36
|
Wurtz EA, Sears BB, Rabert DK, Shepherd HS, Gillham NW, Boynton JE. A specific increase in chloroplast gene mutations following growth of Chlamydomonas in 5-fluorodeoxyuridine. MOLECULAR & GENERAL GENETICS : MGG 1979; 170:235-42. [PMID: 156870 DOI: 10.1007/bf00267056] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Heyting C, Menke HH. Fine structure of the 21S ribosomal RNA region on yeast mitochondrial DNA. III. Physical location of mitochondrial genetic markers and the molecular nature of omega. MOLECULAR & GENERAL GENETICS : MGG 1979; 168:279-91. [PMID: 374989 DOI: 10.1007/bf00271498] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. We have determined the physical location of mitochondrial genetic markers in the 21S region of yeast mtDNA by genetic analysis of petite mutants whose mtDNA has been physically mapped on the wild-type mtDNA. 2. The order of loci, determined in this study, is in agreement with the order deduced from recombination analysis and coretention analysis except for the position of omega+: we conclude that omega+ is located between C321 (RIB-1) and E514 (RIB-3). 3. The marker E514 (RIB-3) has been localized on a DNA segment of 3800 bp, and the markers E354, E553 and cs23 (RIB-2) on a DNA segment of 1100 base pairs; both these segments overlap the 21S rRNA cistron. The marker C321 (RIB-1) has been localized within a segment of 240 bp which also overlaps the 21S rRNA cistron, and we infer on the basis of indirect evidence that this marker lies within this cistron. 4. In all our rho+ as well as rho- strains there is a one-to-one correlation between the omega+ phenotype, the ability to transmit the omega+ allele and the presence of a mtDNA segment of about 1000 bp long, located between sequences specifying RIB-3 and sequences corresponding to the loci RIB-1 and RIB-2. This segment may be inserted at this same position into omega- mtDNA by recombination. 5. The role which the different allelic forms of omega may play in the polarity of recombination is discussed.
Collapse
|
38
|
Faye G, Dennebouy N, Kujawa C, Jacq C. Inserted sequence in the mitochondrial 23S ribosomal RNA gene of the yeast Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1979; 168:101-9. [PMID: 372737 DOI: 10.1007/bf00267939] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The sequence organization of the yeast mit-DNA region carrying the large ribosomal RNA gene and the polar locus omega was examined. Hybridization studies using rho- deletion mutants and electron microscopy of the heteroduplexes formed between 23S rRNA and the appropriate restriction fragments, lead to the conclusion that the 23S rRNA1 gene of the omega+ strains is split by an insertion sequence of 1,000-1,100 bp. In contrast, no detactable insertion was found in the 23S rRNA gene of the omega- strains. The size and the location of the insert found in the 23S rRNA gene of the omega+ strains appear to be identical to those of the sequence delta which had previously been found to characterize the difference (at the omega locus) between the mitDNA of the wild type strains carrying the omega+ or omega- alleles (Jacq et al., 1977).
Collapse
|
39
|
Van Winkle-Swift KP, Birky CW. The non-reciprocality of organelle gene recombination in Chlamydomonas reinhardtii and Saccharomyces cerevisiae: some new observations and a restatement of some old problems. MOLECULAR & GENERAL GENETICS : MGG 1978; 166:193-209. [PMID: 370545 DOI: 10.1007/bf00285922] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organelle recombinant genotype frequencies, derived from analysis of individual mitotic zygote clones of Chlamydomonas reinhardtii and Saccharomyces cerevisiae, were subjected to two types of statistical tests in an attempt to detect the occurrence of reciprocal recombination: (i) calculation of correlation coefficients for the frequencies of two recombinant genotypes (reciprocal or non-reciprocal pairs) within individual zygote clones, and (ii) application of the chi-square test for independence to the frequencies of zygotes yielding one or the other, neither, or both of a given recombinant pair. Applying test (i), the strongest correlations are found for non-reciprocal rather than reciprocal pairs. When the data are analyzed by method (ii), some reciprocal as well as non-reciprocal pairs appear to be produced concurrently in zygote clones. However, such deviations from independence are greatest for non-reciprocal pairs. These tests yield comparable results for yeast mitochondrial and Chlamydomonas chloroplast gene recombination, and provide no convincing evidence for reciprocal genetic exchange. Explanations for the observed lack of reciprocality are discussed with reference both to our present understanding of the molecular events responsible for genetic recombination, and to the problems which may be unique to the analysis of organelle gene recombination.
Collapse
|
40
|
Subík J, Takácsová G, Kovác L. Intramitochondrial ATP and cell functions. I. Growing yeast cells depleted of intramitochondrial ATP are losing mitochondrial genes. MOLECULAR & GENERAL GENETICS : MGG 1978; 166:103-16. [PMID: 368566 DOI: 10.1007/bf00379735] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Bos JL, Heyting C, Borst P, Arnberg AC, Van Bruggen EF. An insert in the single gene for the large ribosomal RNA in yeast mitochondrial DNA. Nature 1978; 275:336-8. [PMID: 357991 DOI: 10.1038/275336a0] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Lewin A, Morimoto R, Rabinowitz M. Restriction enzyme analysis of mitochondrial DNAs of petite mutants of yeast: classification of petites, and deletion mapping of mitochondrial genes. MOLECULAR & GENERAL GENETICS : MGG 1978; 163:257-75. [PMID: 355853 DOI: 10.1007/bf00271955] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have analyzed the restriction digest patterns of the mitochondrial DNA from 41 cytoplasmic petite strains of Saccharomyces cerevisiae, that have been extensively characterized with respect to genetic markers. Each mitochondrial DNA was digested with seven restriction endonucleases (EcoRI, HPaI, HindIII, BamHI, HhaI, SalI, and PstI) which together make 41 cuts in grande mitochondrial DNA and for which we have derived fragment maps. The petite mitochondrial DNAs were also analyzed with HpaII, HaeIII, and AluI, each of which makes more than 80 cleavages in grande mitochondrial DNA. On the basis of the restriction patterns observed (i.e., only one fragment migrating differently from grande for a single deletion, and more than one for multiple deletions) and by comparing petite and grande mitochondrial DNA restriction maps, the petite clones could be classified into two main groups: (1) petites representing a single deletion of grande mitochondrial DNA and (2) petites containing multiple deletions of the grande mitochondrial DNA resulting in rearranged sequences. Single deletion petites may retain a large portion of the grande mitochondrial genome or may be of low kinetic cimplexity. Many petites which are scored as single continuous deletions by genetic criteria were later demonstrated to be internally deleted by restriction endonuclease analysis. Heterogeneous sequences, manifested by the presence of sub-stoichiometric amounts of some restriction fragments, may accompany the single or multiple deletions. Single deletions with heterogeneous sequences remain useful for mapping if the low concentration sequences represent a subset of the stoichiometric bands. Using a group of petites which retain single continuous regions of the grande mitochondrial DNA, we have physically mapped antibiotic resistance and mit- markers to regions of the grande restriction map as follows: C (99.3--1.4 map units)--OXI-1 (2.5--15.7)--OXI-2 (18.5--25)--P (28.1--34.2)--OXI-3 (32.2--61.2--OII (60--62)--COB (64.6--80.8--0I (80.4--85.7)--E (95--98.9).
Collapse
|
43
|
Linnane AW, Nagley P. Mitochondrial genetics in perspective: the derivation of a genetic and physical map of the yeast mitochondrial genome. Plasmid 1978; 1:324-45. [PMID: 372968 DOI: 10.1016/0147-619x(78)90049-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Kruszewska A, Szcześniak B. Janus green resistance in Saccharomyces cerevisiae: interaction of nuclear and cytoplasmic factors. MOLECULAR & GENERAL GENETICS : MGG 1978; 160:171-81. [PMID: 349352 DOI: 10.1007/bf00267479] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Janus green B was found to be a specific inhibitor of mitochondrial function in yeast. This is consistent with the Janus green specificity in supravital staining of mitochondria. A mutant of S. Cerevisiae resistant to Janus green B was isolated. It shows cross resistance to oligomycin, ethidium bromide and a weak resistance to chlormaphenicol. The mutant was found to be sensitive to cycloheximide and erythromycin. Genetic analysis of this mutant showed that mitochondrial genes are not involved in the determination of Janus Green resistance. Tetrad analysis suggested that two more more nuclear genes are concerned, but many unusal genetic features suggestive of the involvement of a cytoplasmic element remain to be explained.
Collapse
|
45
|
Adoutte A, Doussiere J. Physiological consequences of mitochondrial antibiotic-resistant mutations in Paramecium. ACTA ACUST UNITED AC 1978. [DOI: 10.1007/bf00274182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
|
47
|
Seitz G, Wolf K, Kaudewitz F. Extrachromosomal inheritance in Schizosaccharomyces pombe. IV. Isolation and genetic characterization of mutants resistant to chloramphenicol and erythromycin using the mutator properties of mutant anar-8. MOLECULAR & GENERAL GENETICS : MGG 1977; 155:339-46. [PMID: 600263 DOI: 10.1007/bf00272814] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spontaneous chloramphenicol (capr)- and erythromycin (eryr)-resistant mutants were isolated from strain ade7-50 h- and the antimycin-resistant mutant anar-8 ade 7-50 h- of Schizosaccharomyces pombe (Sch. p.). By mitotic segregation analysis all 154 capr- and 120 eryr-mutants derived from ade 7-50 h- proved to be recessive chromosomal, whereas all 108 capr- and 200 eryr-mutants originating from anar-8 were extrachromosomally inherited. The rate of spontaneous capr- and eryr-mutants was about hundredfold in anar-8 compared to ade 7-50 h-. Growth of capr- and eryr-mutants was not inhibited by chloramphenicol or erythromycin, respectively, in glucose-medium and only slightly in glycerol-medium at concentrations which completely inhibited anar-8. By mitotic segregation-, tetrad-, and mitotic haploidization-analysis the extrachromosomal inheritance of mutants derived from anar-8 was established. Segregational patterns of capr- and eryr-determinants during mitosis, meiosis, and mitotic haploidization of diploids are discussed.
Collapse
|
48
|
Bechmann H, Krüger M, Böker E, Bandlow W, Schweyen RJ, Kaudewitz F. On the formation of rho- petites in yeast. II. Effects of mutation tsm-8 on mitochondrial functions and rho-factor stability in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1977; 155:41-51. [PMID: 337116 DOI: 10.1007/bf00268559] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. In non-fermentable substrates growth of mutant tsm-8 cells of Saccharomyces cerevisiae is restricted to about one generation after shift from 23 to 35 degrees C. Non-permissive conditions (35 degrees C, glycerol) cause a gradual decrease in respiration to about 20% of the activity at permissive temperature 23 degrees C). 2. Anaerobically grown and glucose-repressed mutant cells exhibit a decreased adaptation rate of mitochondrial functions to aerobic growth and non-fermentative growth, even at 23 degrees C, as revealed by determination of respiratory rates and mitochondrial protein synthesis. 3. At 35 degrees C, rho+ cells of mutant tsm-8 are converted to p- cells within 6-8 generations of growth, in all fermentable substrates tested. Drugs or antibiotics as nalidixic acid, acriflavin, chloramphenicol and erythromycin, bongkrecic acid, antimycin and FCCP, as well as anaerobiosis, have little or no influence on this kinetics. A heat shock does not yield rho- petites to a significant extent. 4. Reversion of tsm-8 cells to wild type function, which occurs spontaneously with a frequency of 10(-8), is found to be due to a mitochondrial mutational event.
Collapse
|
49
|
Subík J, Kovácová V, Takáscová G. Mucidin resistance in yeast. Isolation, characterization and genetic analysis of nuclear and mitochondrial mucidin-resistant mutants of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 73:275-86. [PMID: 138589 DOI: 10.1111/j.1432-1033.1977.tb11317.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutants of Saccharomyces cerevisiae resistant to the antibiotic mucidin, a specific inhibitor of electron transport between cytochrome b and c, were isolated and divided into three phenotypic groups, as follows. Class 1 mutants were cross-resistant to a variety of mitochondrial inhibitors and exhibited no resistance at the mitochondrial level. Class 2 mutants were specifically resistant to mucidin exhibiting resistance also at the level of isolated mitochondria. Biochemical studies indicated that the mucidin resistance in class 2 mutants involved a modification of mucidin binding of inhibitory sites on the mitochondrial inner membrane without a significance change in the sensitivity of mitochondrial oxygen uptake to antimycin A, 2-heptyl-4-hydroxyquinoline-N-oxide, and 2,3-dimercaptopropanol. Class 3 was represented by a mutant which showed a high degree of resistance to mucidin and was cross-resistant to a variety of mitochondrial inhibitors at the cellular level but exhibited only a resistance to mucidin at the mitochondrial level. Genetic analysis of mucidin-resistant mutants revealed the presence of both nuclear and mitochondrial genes determining mucidin resistance/sensitivity in yeast. Resistance to mucidin in class 1 mutants was due to a single-gene nuclear recessive mutation (mucPR) whereas that in class 2 mutants was caused by mutations of mitochondrial genes. Resistance in class 3 mutant was determined both by single-gene nuclear and mitochondrial mutations. In the mitochondrial mutants the mucidin resistance segregated mitotically and the resistance determinant was lost upon induction of petite mutation by ethidium bromide. Allelism tests indicated that the mucidin resistance mutations fell into two genetic loci (MUC1 and MUC2) which were apparently not closely linked in the mitochondrial genome. Recombination studies showed that the two mitochondrial mucidin loci were not allelic with other mitochondrial loci RIB1, RIB2 and OLI1. An extremely high mucidin resistance at the cellular level was shown to arise from synergistic interaction of the nuclear gene mucPR and the mitochondrial mucidin-resistance gene (MR) in a cell. The results suggest that at least two mitochondrial gene products, responsible for mucidin resistance/sensitivity in yeast, take part in the formation of the cytochrome bc1 region of the mitochondrial respiratory chain.
Collapse
|
50
|
Nagley P, Sriprakash KS, Linnane AW. Structure, synthesis and genetics of yeast mitochondrial DNA. Adv Microb Physiol 1977; 16:157-277. [PMID: 343546 DOI: 10.1016/s0065-2911(08)60049-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|