1
|
Ganusova EE, Russell MH, Patel S, Seats T, Alexandre G. An Azospirillum brasilense chemoreceptor that mediates nitrate chemotaxis has conditional roles in the colonization of plant roots. Appl Environ Microbiol 2024; 90:e0076024. [PMID: 38775579 PMCID: PMC11218637 DOI: 10.1128/aem.00760-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 06/19/2024] Open
Abstract
Motile plant-associated bacteria use chemotaxis and dedicated chemoreceptors to navigate gradients in their surroundings and to colonize host plant surfaces. Here, we characterize a chemoreceptor that we named Tlp2 in the soil alphaproteobacterium Azospirillum brasilense. We show that the Tlp2 ligand-binding domain is related to the 4-helix bundle family and is conserved in chemoreceptors found in the genomes of many soil- and sediment-dwelling alphaproteobacteria. The promoter of tlp2 is regulated in an NtrC- and RpoN-dependent manner and is most upregulated under conditions of nitrogen fixation or in the presence of nitrate. Using fluorescently tagged Tlp2 (Tlp2-YFP), we show that this chemoreceptor is present in low abundance in chemotaxis-signaling clusters and is prone to degradation. We also obtained evidence that the presence of ammonium rapidly disrupts Tlp2-YFP localization. Behavioral experiments using a strain lacking Tlp2 and variants of Tlp2 lacking conserved arginine residues suggest that Tlp2 mediates chemotaxis in gradients of nitrate and nitrite, with the R159 residue being essential for Tlp2 function. We also provide evidence that Tlp2 is essential for root surface colonization of some plants (teff, red clover, and cowpea) but not others (wheat, sorghum, alfalfa, and pea). These results highlight the selective role of nitrate sensing and chemotaxis in plant root surface colonization and illustrate the relative contribution of chemoreceptors to chemotaxis and root surface colonization.IMPORTANCEBacterial chemotaxis mediates host-microbe associations, including the association of beneficial bacteria with the roots of host plants. Dedicated chemoreceptors specify sensory preferences during chemotaxis. Here, we show that a chemoreceptor mediating chemotaxis to nitrate is important in the beneficial soil bacterium colonization of some but not all plant hosts tested. Nitrate is the preferred nitrogen source for plant nutrition, and plants sense and tightly control nitrate transport, resulting in varying nitrate uptake rates depending on the plant and its physiological state. Nitrate is thus a limiting nutrient in the rhizosphere. Chemotaxis and dedicated chemoreceptors for nitrate likely provide motile bacteria with a competitive advantage to access this nutrient in the rhizosphere.
Collapse
Affiliation(s)
- Elena E. Ganusova
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| | - Matthew H. Russell
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| | - Siddhi Patel
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| | - Terry Seats
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| | - Gladys Alexandre
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Tan PY, Marcos, Liu Y. Modelling bacterial chemotaxis for indirectly binding attractants. J Theor Biol 2020; 487:110120. [PMID: 31857084 DOI: 10.1016/j.jtbi.2019.110120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/09/2019] [Accepted: 12/16/2019] [Indexed: 11/26/2022]
Abstract
In bacterial chemotaxis, chemoattractant molecules may bind either directly or indirectly with receptors within the cell periplasmic space. The indirect binding mechanism, which involves an intermediate periplasmic binding protein, has been reported to increase sensitivity to dilute attractant concentrations as well as range of response. Current mathematical models for bacterial chemotaxis at the population scale do not appear to take the periplasmic binding protein (BP) concentration or the indirect binding mechanics into account. We formulate an indirect binding extension to the existing Rivero equation for chemotactic velocity based on fundamental reversible enzyme kinetics. The formulated indirect binding expression accounts for the periplasmic BP concentration and the dissociation constants for binding between attractant and periplasmic BP, as well as between BP and chemoreceptor. We validate the indirect-binding model using capillary assay simulations of the chemotactic responses of E. coli to the indirectly-binding attractants maltose and AI-2. The predicted response agrees well with experimental data from a number of maltose capillary assay studies conducted in previous literature. The model is also able to achieve good agreement with AI-2 capillary assay data of one study out of two tested. The chemotactic response of E. coli towards AI-2 appears to be of higher complexity due to reports of variable periplasmic BP concentration as well as the low concentration of periplasmic BP relative to the total receptor concentration. Our current model is thus suitable for indirect binding chemotactic response systems with constant periplasmic BP concentration that is significantly larger than the total receptor concentration, such as the response of E. coli towards maltose. Further considerations may be taken into account to model the chemotactic response towards AI-2 with greater accuracy.
Collapse
Affiliation(s)
- Pei Yen Tan
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore
| | - Marcos
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
3
|
Abstract
Docking algorithms have been widely used to elucidate ligand:receptor interactions that are important in biological function. Here, we introduce an in-house developed docking-refinement protocol that combines the following innovative features. (1) The use of multiple short molecular dynamics (MD) docking simulations, with residues within the binding pocket of the receptor unconstrained, so that the binding modes of the ligand in the binding pocket may be exhaustively examined. (2) The initial positioning of the ligand within the binding pocket based on complementary shape, and the use of both harmonic and quartic spherical potentials to constrain the ligand in the binding pocket during multiple short docking simulations. (3) The selection of the most probable binding modes generated by the short docking simulations using interaction energy calculations, as well as the subsequent application of all-atom MD simulations and physical-chemistry based free energy calculations to elucidate the most favorable binding mode of the ligand in complex with the receptor. In this chapter, we provide step-by-step instructions on how to computationally investigate the binding of small-molecule ligands to protein receptors by examining as control and test cases, respectively, the binding of L-serine and R-3,4-dihydroxymandelic acid (R-DHMA) to the Escherichia coli chemoreceptor Tsr. Similar computational strategies can be used for the molecular modeling of a series of ligand:protein receptor interactions.
Collapse
|
4
|
Abstract
Chemoreceptors in bacteria detect a variety of signals and feed this information into chemosensory pathways that represent a major mode of signal transduction. The five chemoreceptors from Escherichia coli have served as traditional models in the study of this protein family. Genome analyses revealed that many bacteria contain much larger numbers of chemoreceptors with broader sensory capabilities. Chemoreceptors differ in topology, sensing mode, cellular location, and, above all, the type of ligand binding domain (LBD). Here, we highlight LBD diversity using well-established and emerging model organisms as well as genomic surveys. Nearly a hundred different types of protein domains that are found in chemoreceptor sequences are known or predicted LBDs, but only a few of them are ubiquitous. LBDs of the same class recognize different ligands, and conversely, the same ligand can be recognized by structurally different LBDs; however, recent studies began to reveal common characteristics in signal-LBD relationships. Although signals can stimulate chemoreceptors in a variety of different ways, diverse LBDs appear to employ a universal transmembrane signaling mechanism. Current and future studies aim to establish relationships between LBD types, the nature of signals that they recognize, and the mechanisms of signal recognition and transduction.
Collapse
|
5
|
Ortega DR, Zhulin IB. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex. PLoS Comput Biol 2016; 12:e1004723. [PMID: 26844549 PMCID: PMC4742279 DOI: 10.1371/journal.pcbi.1004723] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/29/2015] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. Due to the overwhelming complexity and diversity of biological systems, the functional roles of the majority of proteins encoded in sequenced genomes remain unknown or poorly understood. The multi-protein pathway controlling chemotaxis in bacteria and archaea is an example of such complexity and diversity. Chemotaxis pathway in E. coli is one of the best understood signal transduction networks in nature; however, this model organism lacks some of the system components, such as CheV, that are found in many other species. The biological role of CheV is still under avid debate. CheV is an auxiliary component of many chemotaxis systems and is present in important human pathogens, such as Salmonella and Helicobacter, where chemotaxis is being studied as an important virulence trait. Here we established the evolutionary history of the chemotaxis pathway in enterobacteria and combined a computational genomics approach with available structural information to propose a role for CheV. Our results show that CheV in enterics evolved as an adaptor for a specific type of chemoreceptors. Furthermore, we propose that some CheV-associated chemoreceptors might increase the kinase activity above the base level, and in these cases CheV acts as an attenuator.
Collapse
Affiliation(s)
- Davi R. Ortega
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Igor B. Zhulin
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
6
|
Bi S, Lai L. Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci 2015; 72:691-708. [PMID: 25374297 PMCID: PMC11113376 DOI: 10.1007/s00018-014-1770-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/05/2014] [Accepted: 10/23/2014] [Indexed: 01/11/2023]
Abstract
Bacteria use chemotaxis signaling pathways to sense environmental changes. Escherichia coli chemotaxis system represents an ideal model that illustrates fundamental principles of biological signaling processes. Chemoreceptors are crucial signaling proteins that mediate taxis toward a wide range of chemoeffectors. Recently, in deep study of the biochemical and structural features of chemoreceptors, the organization of higher-order clusters in native cells, and the signal transduction mechanisms related to the on-off signal output provides us with general insights to understand how chemotaxis performs high sensitivity, precise adaptation, signal amplification, and wide dynamic range. Along with the increasing knowledge, bacterial chemoreceptors can be engineered to sense novel chemoeffectors, which has extensive applications in therapeutics and industry. Here we mainly review recent advances in the E. coli chemotaxis system involving structure and organization of chemoreceptors, discovery, design, and characterization of chemoeffectors, and signal recognition and transduction mechanisms. Possible strategies for changing the specificity of bacterial chemoreceptors to sense novel chemoeffectors are also discussed.
Collapse
Affiliation(s)
- Shuangyu Bi
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
7
|
Chemoreceptor gene loss and acquisition via horizontal gene transfer in Escherichia coli. J Bacteriol 2013; 195:3596-602. [PMID: 23749975 DOI: 10.1128/jb.00421-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemotaxis allows bacteria to more efficiently colonize optimal microhabitats within their larger environment. Chemotaxis in Escherichia coli is the best-studied model system, and a large number of E. coli strains have been sequenced. The Escherichia/Shigella genus encompasses a great variety of commensal and pathogenic strains, but the role of chemotaxis in their association with the host remains poorly understood. Here we show that the core chemotaxis genes are lost in many, but not all, nonmotile strains but are well preserved in all motile strains. The genes encoding the Tar, Tsr, and Aer chemoreceptors, which mediate chemotaxis to a broad spectrum of chemical and physical cues, are also nearly uniformly conserved in motile strains. In contrast, the clade of extraintestinal pathogenic E. coli strains apparently underwent an ancestral loss of Trg and Tap chemoreceptors, which sense sugars, dipeptides, and pyrimidines. The broad range of time estimated for the loss of these genes (1 to 3 million years ago) corresponds to the appearance of the genus Homo.
Collapse
|
8
|
Rivera-Chávez F, Winter SE, Lopez CA, Xavier MN, Winter MG, Nuccio SP, Russell JM, Laughlin RC, Lawhon SD, Sterzenbach T, Bevins CL, Tsolis RM, Harshey R, Adams LG, Bäumler AJ. Salmonella uses energy taxis to benefit from intestinal inflammation. PLoS Pathog 2013; 9:e1003267. [PMID: 23637594 PMCID: PMC3630101 DOI: 10.1371/journal.ppat.1003267] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 02/08/2013] [Indexed: 01/18/2023] Open
Abstract
Chemotaxis enhances the fitness of Salmonella enterica serotype Typhimurium (S. Typhimurium) during colitis. However, the chemotaxis receptors conferring this fitness advantage and their cognate signals generated during inflammation remain unknown. Here we identify respiratory electron acceptors that are generated in the intestinal lumen as by-products of the host inflammatory response as in vivo signals for methyl-accepting chemotaxis proteins (MCPs). Three MCPs, including Trg, Tsr and Aer, enhanced the fitness of S. Typhimurium in a mouse colitis model. Aer mediated chemotaxis towards electron acceptors (energy taxis) in vitro and required tetrathionate respiration to confer a fitness advantage in vivo. Tsr mediated energy taxis towards nitrate but not towards tetrathionate in vitro and required nitrate respiration to confer a fitness advantage in vivo. These data suggest that the energy taxis receptors Tsr and Aer respond to distinct in vivo signals to confer a fitness advantage upon S. Typhimurium during inflammation by enabling this facultative anaerobic pathogen to seek out favorable spatial niches containing host-derived electron acceptors that boost its luminal growth.
Collapse
Affiliation(s)
- Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Sebastian E. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Christopher A. Lopez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Mariana N. Xavier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Joseph M. Russell
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Richard C. Laughlin
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Torsten Sterzenbach
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Rasika Harshey
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism. J Bacteriol 2011; 193:6597-604. [PMID: 21965561 DOI: 10.1128/jb.05987-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The four transmembrane chemoreceptors of Escherichia coli sense phenol as either an attractant (Tar) or a repellent (Tap, Trg, and Tsr). In this study, we investigated the Tar determinants that mediate its attractant response to phenol and the Tsr determinants that mediate its repellent response to phenol. Tar molecules with lesions in the aspartate-binding pocket of the periplasmic domain, with a foreign periplasmic domain (from Tsr or from several Pseudomonas chemoreceptors), or lacking nearly the entire periplasmic domain still mediated attractant responses to phenol. Similarly, Tar molecules with the cytoplasmic methylation and kinase control domains of Tsr still sensed phenol as an attractant. Additional hybrid receptors with signaling elements from both Tar and Tsr indicated that the transmembrane (TM) helices and HAMP domain determined the sign of the phenol-sensing response. Several amino acid replacements in the HAMP domain of Tsr, particularly attractant-mimic signaling lesions at residue E248, converted Tsr to an attractant sensor of phenol. These findings suggest that phenol may elicit chemotactic responses by diffusing into the cytoplasmic membrane and perturbing the structural stability or position of the TM bundle helices, in conjunction with structural input from the HAMP domain. We conclude that behavioral responses to phenol, and perhaps to temperature, cytoplasmic pH, and glycerol, as well, occur through a general sensing mechanism in chemoreceptors that detects changes in the structural stability or dynamic behavior of a receptor signaling element. The structurally sensitive target for phenol is probably the TM bundle, but other behaviors could target other receptor elements.
Collapse
|
10
|
Different signaling roles of two conserved residues in the cytoplasmic hairpin tip of Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol 2008; 190:8065-74. [PMID: 18931127 DOI: 10.1128/jb.01121-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemoreceptors form ternary signaling complexes with the histidine kinase CheA through the coupling protein CheW. Receptor complexes in turn cluster into cellular arrays that produce highly sensitive responses to chemical stimuli. In Escherichia coli, receptors of different types form mixed trimer-of-dimers signaling teams through the tips of their highly conserved cytoplasmic domains. To explore the possibility that the hairpin loop at the tip of the trimer contact region might promote interactions with CheA or CheW, we constructed and characterized mutant receptors with amino acid replacements at the two nearly invariant hairpin charged residues of Tsr: R388, the most tip-proximal trimer contact residue, and E391, the apex residue of the hairpin turn. Mutant receptors were subjected to in vivo tests for the assembly and function of trimers, ternary complexes, and clusters. All R388 replacements impaired or destroyed Tsr function, apparently through changes in trimer stability or geometry. Large-residue replacements locked R388 mutant ternary complexes in the kinase-off (F, H) or kinase-on (W, Y) signaling state, suggesting that R388 contributes to signaling-related conformational changes in the trimer. In contrast, most E391 mutants retained function and all formed ternary signaling complexes efficiently. Hydrophobic replacements of any size (G, A, P, V, I, L, F, W) caused a novel phenotype in which the mutant receptors produced rapid switching between kinase-on and -off states, indicating that hairpin tip flexibility plays an important role in signal state transitions. These findings demonstrate that the receptor determinants for CheA and CheW binding probably lie outside the hairpin tip of the receptor signaling domain.
Collapse
|
11
|
Amy MT, Virlogeux-Payant I, Bottreau E, Mompart F, Pardon P, Velge P. Precise excision and secondary transposition of TnphoA in non-motile mutants of a Salmonella enterica serovar Enteritidis clinical isolate. FEMS Microbiol Lett 2005; 245:263-9. [PMID: 15837381 DOI: 10.1016/j.femsle.2005.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/09/2005] [Accepted: 03/10/2005] [Indexed: 10/25/2022] Open
Abstract
Mutagenesis with TnphoA has been widely used in many bacteria. Here, we report the excision and secondary transposition of this transposon in three non-motile (fliC, fliF and motB) mutants of Salmonella enterica serovar Enteritidis (S. Enteritidis). Isolation of motile revertants showed that they were kanamycin resistant and conserved a copy of TnphoA in their genome in an insertion site different from the initial one. They also expressed an intact flagella. Characterization of the motile revertant derived from the fliC mutant showed that TnphoA excised precisely from the fliC gene, resulting in an equivalent amount of FliC secreted protein in the revertant compared to that of the wild-type strain. These results show that TnphoA mutants should be used with care and underline the value of using transposon derivatives lacking the transposase gene.
Collapse
Affiliation(s)
- Mai Té Amy
- Institut National de la Recherche Agronomique, Centre de Tours-Nouzilly, Pathologie Infectieuse et Immunologie, 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Chemotaxis transducers are specialized receptors that microorganisms use in order to sense the environment in directing their motility to favorable niches. The Escherichia coli transducers are models for studying the sensory and signaling events at the molecular level. Extensive studies in other organisms and the arrival of genomics has resulted in the accumulation of sequences of many transducer genes, but they are not fully understood. In silico analysis provides some assistance in classification of various transducers from different species and in predicting their function. All transducers contain two structural modules: a conserved C-terminal multidomain module, which is a signature element of the transducer superfamily, and a variable N-terminal module, which is responsible for the diversity within the superfamily. These structural modules have two distinct functions: the conserved C-terminal module is involved in signaling and adaptation, and the N-terminal module is involved in sensing various stimuli. Both C-terminal and N-terminal modules appear to be mobile genetic elements and subjects of duplication and lateral transfer. Although chemotaxis transducers are found exclusively in prokaryotic organisms that have some type of motility (flagellar, gliding or pili-based), several types of domains that are found in their N-terminal modules are also present in signal transduction proteins from eukaryotes, including humans. This indicates that basic principles of sensory transduction are conserved throughout the phylogenetic tree and that the chemotaxis transducer superfamily is a valuable source of novel sensory elements yet to be discovered.
Collapse
Affiliation(s)
- I B Zhulin
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA.
| |
Collapse
|
13
|
Iida A, Teshiba S, Mizobuchi K. Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12. J Bacteriol 1993; 175:5375-83. [PMID: 8396116 PMCID: PMC206592 DOI: 10.1128/jb.175.17.5375-5383.1993] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We isolated a transposon Tn10 insertion mutant of Escherichia coli K-12 which could not grow on MacConkey plates containing D-ribose. Characterization of the mutant revealed that the level of the transketolase activity was reduced to one-third of that of the wild type. The mutation was mapped at 63.5 min on the E. coli genetic map, in which the transketolase gene (tkt) had been mapped. A multicopy suppressor gene which complemented the tkt mutation was cloned on a 7.8-kb PstI fragment. The cloned gene was located at 53 min on the chromosome. Subcloning and sequencing of a 2.7-kb fragment containing the suppressor gene identified an open reading frame encoding a polypeptide of 667 amino acids with a calculated molecular weight of 72,973. Overexpression of the protein and determination of its N-terminal amino acid sequence defined unambiguously the translational start site of the gene. The deduced amino acid sequence showed similarity to sequences of transketolases from Saccharomyces cerevisiae and Rhodobacter sphaeroides. In addition, the level of the transketolase activity increased in strains carrying the gene in multicopy. Therefore, the gene encoding this transketolase was designated tktB and the gene formerly called tkt was renamed tktA. Analysis of the phenotypes of the strains containing tktA, tktB, or tktA tktB mutations indicated that tktA and tktB were responsible for major and minor activities, respectively, of transketolase in E. coli.
Collapse
Affiliation(s)
- A Iida
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Machida, Japan
| | | | | |
Collapse
|
14
|
Hugouvieux-Cotte-Pattat N, Köhler T, Rekik M, Harayama S. Growth-phase-dependent expression of the Pseudomonas putida TOL plasmid pWW0 catabolic genes. J Bacteriol 1990; 172:6651-60. [PMID: 2254244 PMCID: PMC210776 DOI: 10.1128/jb.172.12.6651-6660.1990] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas putida TOL plasmid pWW0 catabolic genes are clustered into two operons. The first, the upper operon, is controlled by the xylR regulatory gene, whereas the second, the meta operon, is controlled by the xylS regulatory gene. The xylS gene itself is subjected to control by xylR. In this study, we show that the TOL catabolic operons were poorly induced in cells growing at the early-exponential-growth phase but strongly induced in cells at late-exponential-growth phase. We constructed fusions of four TOL promoters, Pm (the promoter of the meta operon), Pu (the promoter of the upper operon), Ps (the promoter of the xylS regulatory gene), and Pr (the promoter of the xylR regulatory gene) with lacZ and examined, in Escherichia coli and P. putida, the expression of these promoters in relation to the growth phase. Expression from Pm, Pu, Ps, and Pr was almost constant if the host cells did not carry either xylS or xylR. Similarly, expression of Pm and Pu in P. putida in the absence of XylS and XylR was constant during the growth of the cells. XylS-dependent transcription of Pm and XylR-dependent transcription of Ps and Pu, in contrast, varied with the growth phase. This observation suggested that the interaction of XylS and XylR with target promoters or with RNA polymerases was influenced by the growth phase. The nature of the signal which triggers the growth-phase-dependent regulation was not clear. A change in the oxygen partial pressure was not responsible for the regulation. E. coli mutants defective in relA, crp, and cya exhibited growth-phase-dependent expression of the TOL catabolic genes, indicating that cyclic AMP and relA-dependent synthesis of ppGpp are not involved in this phenomenon.
Collapse
|
15
|
Occurrence of secondary transpositions of Tn5 upon Tn5 mutagenesis inEscherichia coli. Curr Microbiol 1990. [DOI: 10.1007/bf02092168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Harayama S, Rekik M, Wubbolts M, Rose K, Leppik RA, Timmis KN. Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products. J Bacteriol 1989; 171:5048-55. [PMID: 2549010 PMCID: PMC210316 DOI: 10.1128/jb.171.9.5048-5055.1989] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The upper operon of the TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes which transform toluene and xylenes to benzoate and toluates. The genetic organization of the operon was characterized by cloning of the upper operon genes into an expression vector and identification of their products in Escherichia coli maxicells. This analysis showed that the upper operon contains at least five genes in the order of xylC-xylM-xylA-xylB-xylN. Between the promoter of the operon and xylC, there is a 1.7-kilobase-long space of DNA in which no gene function was identified. In contrast, most of the DNA between xylC and xylN consists of coding sequences. The xylC gene encodes the 57-kilodalton benzaldehyde dehydrogenase. The xylM and xylA genes encode 35- and 40-kilodalton polypeptides, respectively, which were shown by genetic complementation tests to be subunits of xylene oxygenase. The structural gene for benzyl alcohol dehydrogenase, xylB, encodes a 40-kilodalton polypeptide. The last gene of this operon is xylN, which synthesizes a 52-kilodalton polypeptide of unknown function.
Collapse
Affiliation(s)
- S Harayama
- Department of Medical Biochemistry, Faculty of Medicine, University of Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Ames P, Parkinson JS. Transmembrane signaling by bacterial chemoreceptors: E. coli transducers with locked signal output. Cell 1988; 55:817-26. [PMID: 3056621 DOI: 10.1016/0092-8674(88)90137-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Methyl-accepting chemotaxis proteins (MCPs) function as transmembrane signalers in bacteria. We isolated and characterized mutants of the E. coli Tsr protein that produce output signals in the absence of overt stimuli and that are refractory to sensory adaptation. The properties of these "locked" transducers indicate that MCP molecules are capable of generating signals that actively augment clockwise and counter-clockwise rotation of the flagellar motors. Transitions between MCP signaling states can be influenced by amino acid replacements in many parts of the molecule, including the methylation sites, at least one of the two membrane-spanning segments, and a linker region connecting the receptor and signaling domains. These findings suggest that transmembrane signaling may involve direct propagation of conformational changes between the periplasmic and cytoplasmic portions of the MCP molecule.
Collapse
Affiliation(s)
- P Ames
- Biology Department, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
18
|
Salch YP, Shaw PD. Isolation and characterization of pathogenicity genes of Pseudomonas syringae pv. tabaci. J Bacteriol 1988; 170:2584-91. [PMID: 2836363 PMCID: PMC211175 DOI: 10.1128/jb.170.6.2584-2591.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas syringae pv. tabaci BR2 produces tabtoxin and causes wildfire disease on tobacco and bean plants. Approximately 2,700 Tn5 insertion mutants of a plasmid-free strain, PTBR 2.024, were generated by using suicide plasmid pGS9. Of these Tn5 mutants, 8 were no longer pathogenic on tobacco plants and 10 showed reduced symptoms. All of the eight nonpathogenic mutants caused typical wildfire disease symptoms on bean plants. Two of the nonpathogenic mutants failed to produce tabtoxin. The eight nonpathogenic mutants have Tn5 insertions into different EcoRI and SalI restriction fragments. The EcoRI fragments containing Tn5 from the eight nonpathogenic mutants were cloned into vector pTZ18R or pLAFR3. A genomic library of the parent strain was constructed in the broad-host-range cosmid pLAFR3. Three different cosmid clones that hybridized to the cloned Tn5-containing fragment from one of the nonpathogenic mutants, PTBR 4.000, were isolated from the genomic library. These clones contained six contiguous EcoRI fragments (a total of 57 kilobases [kb]). A 7.2-kb EcoRI fragment common to all three restored pathogenicity to mutant PTBR 4.000. None of the six EcoRI fragments hybridized to Tn5-containing fragments from the other seven mutants. The 7.2-kb fragment was conserved in P. syringae pv. tabaci and P. syringae pv. angulata, but not in other pathovars or strains. Because the mutants retained pathogenicity on bean plants and because of the conservation of the 7.2-kb EcoRI fragment only in pathovars of tobacco, we suggest that genes on the fragment might be related to host specificity.
Collapse
Affiliation(s)
- Y P Salch
- Department of Plant Pathology, University of Illinois at Urbana-Champaign 61801
| | | |
Collapse
|
19
|
Nowlin DM, Bollinger J, Hazelbauer GL. Site-directed mutations altering methyl-accepting residues of a sensory transducer protein. Proteins 1988; 3:102-12. [PMID: 3041407 DOI: 10.1002/prot.340030205] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Trg protein is one of a family of transducer proteins that mediate chemotactic response in Escherichia coli. Transducers are methyl-accepting proteins that gain or lose methyl esters on specific glutamyl residues during sensory adaptation. In this study, the significance of multiple sites of methylation on transducer proteins was addressed by using oligonucleotide-directed, site-specific mutagenesis to substitute an alanyl residue at each of the five methyl-accepting sites in Trg. The resulting collection of five mutations, each inactivating a single site, was analyzed for effects on covalent modification at the remaining sites on Trg and for the ability of the altered proteins to mediate sensory adaptation. Most of the alanyl substitutions had substantial biochemical effects, enhancing or reducing methyl-accepting activity of other sites, including one case of activation of a site not methylated in wild-type protein. Analysis of the altered proteins provided explanations for many features of the complex pattern of electrophoretic forms exhibited by Trg. The mutant proteins were less efficient than normal Trg in mediating adaptation. Correlation of biochemical and behavioral data indicated that reduction in the number of methyl-accepting sites on the transducer lengthened the time required to reach an adapted state.
Collapse
Affiliation(s)
- D M Nowlin
- Biochemistry/Biophysics Program, Washington State University, Pullman 99164-4660
| | | | | |
Collapse
|
20
|
Sekizaki T, Harayama S, Brazil GM, Timmis KN. Localization of stx, a determinant essential for high-level production of shiga toxin by Shigella dysenteriae serotype 1, near pyrF and generation of stx transposon mutants. Infect Immun 1987; 55:2208-14. [PMID: 3040592 PMCID: PMC260680 DOI: 10.1128/iai.55.9.2208-2214.1987] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hfr strains of Shigella dysenteriae serotype 1 were constructed by transient integration of an RP4 plasmid derivative carrying transposon Tn501 into the Shigella chromosome through Tn501-mediated cointegration. The Hfr strains were mated with Escherichia coli K-12 recipients carrying various auxotrophic markers, and E. coli recombinants which had received prototrophic Shigella genes were selected. Some of the E. coli transconjugants produced high levels of a cytotoxin which was neutralized by both polyclonal and monoclonal anti-Shiga toxin sera. The determinant for Shiga toxin production, designated stx, was first transferred to E. coli K-12 and then mapped by Hfr crosses to the trp-pyrF region located at 30 min on the E. coli chromosome. Bacteriophage P1-mediated transduction analysis of stx gave the following gene order: trp-pyrF-stx. The level of Shiga toxin production in E. coli Stx+ transconjugants and transductants was as high as that of the parental S. dysenteriae 1 strain. Stx- mutants of an Stx+ E. coli transductant were generated by random in vivo insertion mutagenesis with a Tn10 derivative transposon, Tn-mini-kan, followed by P1 cotransduction of the kanamycin resistance and PyrF+ markers into a pyrF Stx+ E. coli K-12 recipient. One stx::Tn-mini-kan transposon mutation was transferred by P1 transduction from this E. coli Stx- mutant to an E. coli K-12 Hfr strain and in turn transferred by conjugation to the original S. dysenteriae 1 strain plus two others. All kanamycin-resistant recombinants of S. dysenteriae 1 had lost their ability to produce high levels of Shiga toxin. A gene that specifies high-level Shiga toxin production is thus located near pyrF on the chromosome of S. dysenteriae 1. Stx- mutants of S. dysenteriae 1 exhibited full virulence in the Serény test.
Collapse
|
21
|
Imae Y, Oosawa K, Mizuno T, Kihara M, Macnab RM. Phenol: a complex chemoeffector in bacterial chemotaxis. J Bacteriol 1987; 169:371-9. [PMID: 3025180 PMCID: PMC211777 DOI: 10.1128/jb.169.1.371-379.1987] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Earlier observations that phenol is a repellent for Salmonella typhimurium but an attractant for Escherichia coli were confirmed. This behavioral difference was found to correlate with a difference in the effect phenol had on receptor methylation levels; it caused net demethylation in S. typhimurium but net methylation in E. coli. On the basis of mutant behavior and measurement of phenol-stimulated methylation, the attractant response of E. coli was shown to be mediated principally by the Tar receptor. In S. typhimurium, two receptors were found to be sensitive to phenol, namely, an unidentified receptor, which mediated the repellent response and showed phenol-stimulated demethylation; and the Tar receptor, which (as with E. coli) mediated the attractant response and showed phenol-stimulated methylation. In wild-type S. typhimurium, the former receptor dominated the Tar receptor, with respect to both behavior and methylation changes. However, when the amount of Tar receptor was artificially increased by the use of Tar-encoding plasmids, S. typhimurium cells exhibited an attractant response to phenol. No protein analogous to the phenol-specific repellent receptor was evident in E. coli, explaining the different behavioral responses of the two species toward phenol.
Collapse
|
22
|
François V, Louarn J, Patte J, Louaran JM. A system for in vivo selection of genomic rearrangements with predetermined endpoints in Escherichia coli using modified Tn10 transposons. Gene 1987; 56:99-108. [PMID: 2824289 DOI: 10.1016/0378-1119(87)90162-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using recombinant DNA techniques, the Tn10-specific tetA gene (coding for tetracycline resistance) has been mutagenized by insertion of a streptomycin-resistance or a kanamycin-resistance gene. The insertions occurred at loci separated by 920 bp. The mutated tetA fragments, respectively designated as Tes (for tetracycline-streptomycin) and Tek (for tetracycline-kanamycin), were subsequently cloned into a phage lambda cIII+cIts857cII+ in replacement of the att lambda region. The two recombinant phages are convenient delivery vehicles which permit the in vivo substitution of the tetA locus of any Tn10 insertion with the Tes or the Tek fragment. The procedure involves two selectable steps: (i) integration of a lambda-Tes (or lambda-Tek) prophage into the Tn10 of interest; (ii) excision of the prophage by a second exchange which leaves the extra resistance gene installed within the Tn10. A major interest of the system is that, once a bacterium carries both Tn10-Tes and Tn10-Tek insertions, a recombination event between the two Tn10 sequences can reconstitute an active tetA gene. This selectable event may be associated with the rearrangement of the sequences surrounding the transposons. This unique property of the "Tes and Tek" system makes it very useful for selection of genomic rearrangements using the Tn10-Tes and Tn10-Tek as predetermined endpoints. The successful isolation of a chromosomal inversion is reported.
Collapse
Affiliation(s)
- V François
- Centre de Biochimie et de Génétique cellulaires du C.N.R.S., Université Paul Sabatier, Toulouse, France
| | | | | | | |
Collapse
|
23
|
Park C, Hazelbauer GL. Mutation plus amplification of a transducer gene disrupts general chemotactic behavior in Escherichia coli. J Bacteriol 1986; 168:1378-83. [PMID: 3096976 PMCID: PMC213649 DOI: 10.1128/jb.168.3.1378-1383.1986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transducers are transmembrane receptor proteins that generate intracellular signals on stimulation and participate in adaptation by appropriate changes in the level of methylation. The transducer mutation trg-21 conferred a Trg- phenotype and defective taxis to galactose and ribose but a normal response to other attractants when present in a single chromosomal copy. Amplification of trg-21 by a multicopy plasmid made host cells generally nonchemotactic. The dominant phenotype resulted from a strong counterclockwise rotational bias of flagellar motors in Che- cells. Apparently, the Trg21 transducer sends a continuous counterclockwise signal to flagella independent of tactic stimulation. It appears that the cell has a homeostatic capacity that is sufficient to compensate for the effect of mutant transducers produced from a single chromosomal copy of trg-21, but the capacity is exceeded in cells that have multiple copies of the gene. The Trg21 protein did not have a significant effect on methylesterase activity, indicating that the two global effects of a stimulated transducer, that is, on flagellar rotation and on modification enzymes, can occur independently. The mutant protein exhibited essentially normal turnover of methyl groups but had a drastic defect in deamidation which thus reduced the number of methyl-accepting sites. The trg-21 mutation substitutes a threonine for Ala-419. This alanine is a conserved residue in all sequenced transducers and is in a region of the carboxy-terminal domain in which homology among the transducers is very high. The Trg21 phenotype implicates this conserved region in the generation of the excitatory signal which is directed at the flagella.
Collapse
|
24
|
Park C, Hazelbauer GL. Mutations specifically affecting ligand interaction of the Trg chemosensory transducer. J Bacteriol 1986; 167:101-9. [PMID: 3087946 PMCID: PMC212847 DOI: 10.1128/jb.167.1.101-109.1986] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Trg transducer mediates chemotactic response to galactose and ribose by interacting, respectively, with sugar-occupied galactose- and ribose-binding proteins. Adaptation is linked to methylation of specific glutamyl residues of the Trg protein. This study characterized two trg mutations that affect interaction with binding protein ligands but do not affect methylation or adaptation. The mutant phenotypes indicated that the steady-state activity of methyl-accepting sites is independent of ligand-binding activity. The mutation trg-8 changed arginine 85 to histidine, and trg-19 changed glycine 151 to aspartate. The locations of the mutational changes provided direct evidence for functioning of the amino-terminal domain of Trg in ligand recognition. Cross-inhibition of tactic sensitivity by the two Trg-linked attractants implies competition for a common site on Trg. However, the single amino acid substitution caused by trg-19 greatly reduced the response to galactose but left unperturbed the response to ribose. Thus Trg must recognize the two sugar-binding proteins at nonidentical sites, and the complementary sites on the respective binding proteins should differ. trg-8 mutants were substantially defective in the response to both galactose and ribose. An increase in cellular content of Trg-8 protein improved the response to galactose but not to ribose. It appears that Trg-8 protein is defective in the generation of the putative conformational change induced by ligand interaction. The asymmetry of the mutational defect implies that functional separation of interaction sites could persist beyond the initial stage of ligand binding.
Collapse
|
25
|
Bartlett DH, Matsumura P. Behavioral responses to chemical cues by bacteria. J Chem Ecol 1986; 12:1071-89. [DOI: 10.1007/bf01638997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1985] [Accepted: 10/23/1985] [Indexed: 10/25/2022]
|
26
|
Abstract
Nonconjugative plasmids can be transferred from an Hfr donor to a recipient by Hfr-mediated conduction. We found that this phenomenon can be employed to obtain a plasmid in which a mutation in a chromosomal gene has been transferred to the copy of that gene contained in the hybrid plasmid.
Collapse
|
27
|
Harayama S, Oguchi T, Iino T. The E. coli K-12 chromosome flanked by two IS10 sequences transposes. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:62-6. [PMID: 6096672 DOI: 10.1007/bf00327923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transposon are commonly found among prokaryotes and usually range up to 20 kilobases. In this study, we were interested to determine whether a larger DNA segment could transpose. We observed that the E. coli K-12 chromosome, 4,000 kilobases in size, when flanked by two IS10 sequences, could transpose to pACYC177 at a frequency of 10(-8) per cell per generation. We suggest that this transposition event occurs independently of the size and without duplication of the entire DNA sequence flanked by the IS10 elements.
Collapse
|
28
|
Jabbar MA, Snyder L. Genetic and physiological studies of an Escherichia coli locus that restricts polynucleotide kinase- and RNA ligase-deficient mutants of bacteriophage T4. J Virol 1984; 51:522-9. [PMID: 6086961 PMCID: PMC254468 DOI: 10.1128/jvi.51.2.522-529.1984] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The RNA ligase and polynucleotide kinase of bacteriophage T4 are nonessential enzymes in most laboratory Escherichia coli strains. However, T4 mutants which do not induce the enzymes are severely restricted in E. coli CTr5X, a strain derived from a clinical E. coli isolate. We have mapped the restricting locus in E. coli CTr5X and have transduced it into other E. coli strains. The restrictive locus seems to be a gene, or genes, unique to CTr5X or to be an altered form of a nonessential gene, since deleting the locus seems to cause loss of the phenotypes. In addition to restricting RNA ligase- and polynucleotide kinase-deficient T4, the locus also restricts bacteriophages lambda and T4 with cytosine DNA. When lambda or T4 with cytosine DNA infect strains with the prr locus, the phage DNA is injected, but phage genes are not expressed and the host cells survive. These phenotypes are unlike anything yet described for a phage-host interaction.
Collapse
|
29
|
Abstract
Mutants in Escherichia coli having defects in one of the methyl-accepting chemotaxis proteins, Tsr protein, which is the chemoreceptor and transducer for L-serine, showed a reduced but similar type of thermoresponse compared with wild-type strains; the cells showed smooth swimming upon temperature increase and tumbling upon temperature decrease. However, when the mutant cells were adapted to attractants such as L-aspartate and maltose, which are specific to another methyl-accepting chemotaxis protein, Tar protein, the direction of the thermoresponse was found to be inverted; a temperature increase induced tumbling and a temperature decrease induced smooth swimming. Consistent with this, the mutant cells showed inverted changes in the methylation level of Tar protein upon temperature changes. Wild-type strains but not Tar protein-deficient mutants exhibited the inverted thermoresponse when the cells were simultaneously adapted to L-aspartate and L-serine, indicating that Tar protein has a key role in the inversion of the thermoresponse. Thus, besides Tsr protein, Tar protein has a certain role in thermoreception. A simple model for thermoreception and inversion of the thermoresponse is also discussed.
Collapse
|
30
|
Harayama S, Oguchi T, Iino T. Does Tn10 transpose via the cointegrate molecule? MOLECULAR & GENERAL GENETICS : MGG 1984; 194:444-50. [PMID: 6330501 DOI: 10.1007/bf00425556] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has been well established that Tn3 and its relatives transpose from one replicon to another by two successive reactions: formation of the cointegrate molecule and resolution from it. Whether or not the 9300 base pair tetracycline resistance transposon Tn10 transposes in the same manner as Tn3 was investigated by two methods. In the first method, lambda 55, a lambda phage carrying Tn10 was lysogenized in an Escherichia coli strain carrying a Tn10 insertion; the phage has a deletion in attP, hence it was lysogenized in a Tn10 sequence in the E. coli chromosome by reciprocal recombination. The chromosomal structure in these lysogens is equivalent to the Tn10-mediated cointegrate molecule of lambda and the E. coli chromosomal DNA. The stability of the cointegrate molecule was examined by measuring the rate of excision of lambda from the host chromosome, and was found to be stable, especially in a Rec- strain. Because of this stability, the cointegrate molecule should be accumulated if Tn10 transposes via the cointegrate molecule. Then, we examined the configuration of products made by transposition of Tn10 from lambda 55 to the E. coli chromosome. The cointegrate molecule was found in products of Tn10 transposition in a Rec+ strain at a frequency of 5% per Tn10 transposition, but this molecule could not be found in a Rec- strain. Since transposition of Tn10 was recA-independent, absence of the cointegrate molecule formed in a RecA- strain strongly suggested that the cointegrate molecule is not an obligatory intermediate of transposition of Tn10.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
31
|
Iida A, Harayama S, Iino T, Hazelbauer GL. Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12. J Bacteriol 1984; 158:674-82. [PMID: 6327617 PMCID: PMC215482 DOI: 10.1128/jb.158.2.674-682.1984] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We isolated spontaneous and transposon insertion mutants of Escherichia coli K-12 that were specifically defective in utilization or in high-affinity transport of D-ribose (or in both). Cotransduction studies located all of the mutations near ilv, at the same position as previously identified mutations causing defects in ribokinase ( rbsK ) or ribose transport ( rbsP ). Plasmids that complemented the rbs mutations were isolated from the collection of ColE1 hybrid plasmids constructed by Clarke and Carbon. Analysis of those plasmids as well as of fragments cloned into pBR322 and pACYC184 allowed definition of the rbs region. Products of rbs genes were identified by examination of the proteins produced in minicells containing various rbs plasmids. We identified four rbs genes: rbsB , which codes for the 29-kilodalton ribose-binding protein; rbsK , which codes for the 34-kilodalton ribokinase ; rbsA , which codes for a 50-kilodalton protein required for high-affinity transport; and rbsC , which codes for a 27-kilodalton protein likely to be a transport system component. Our studies showed that these genes are transcribed from a common promoter in the order rbsA rbsC rbsB rbsK . It appears that the high-affinity transport system for ribose consists of the three components, ribose-binding protein, the 50-kilodalton RbsA protein, and the 27-kilodalton RbsC protein, although a fourth, unidentified component could exist. Mutants defective in this transport system, but normal for ribokinase , are able to grow normally on high concentrations of the sugar, indicating that there is at least a second, low-affinity transport system for ribose in E. coli K-12.
Collapse
|
32
|
Oosawa K, Imae Y. Demethylation of methyl-accepting chemotaxis proteins in Escherichia coli induced by the repellents glycerol and ethylene glycol. J Bacteriol 1984; 157:576-81. [PMID: 6363388 PMCID: PMC215285 DOI: 10.1128/jb.157.2.576-581.1984] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The addition of glycerol or ethylene glycol caused not only severe tumbling but also a drastic decrease in the methylation level of methyl-accepting chemotaxis proteins (MCPs) in Escherichia coli. Experiments with various mutants having defects in their MCPs showed that the demethylation occurred in all three kinds of MCPs, MCPI, II, and III. The addition of an attractant to the glycerol- or ethylene glycol-treated cells resulted in a distinct increase in the methylation level of the relevant MCP, indicating that glycerol and ethylene glycol do not directly damage the methylation-demethylation system in the cell. The time courses of adaptation and MCP demethylation upon addition of these repellents were consistent with each other. Furthermore, both the response time and the extent of MCP demethylation were increased in parallel with increasing concentrations of glycerol or ethylene glycol. These results indicate that the adaptation to these repellents is performed by the demethylation of MCPs. Thus, glycerol and ethylene glycol are novel repellents, which utilize not just one but all three kinds of MCPs for both information processing and adaptation.
Collapse
|
33
|
de Bruijn FJ, Lupski JR. The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids--a review. Gene 1984; 27:131-49. [PMID: 6327463 DOI: 10.1016/0378-1119(84)90135-5] [Citation(s) in RCA: 335] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The properties of transposon Tn5 that render it useful for in vivo mutagenesis of cloned DNA sequences are reviewed. Transposition frequency, insertional specificity, polarity and stability of Tn5 insertion mutations are among the topics discussed. Examples are cited from the published literature which illustrate the applications of Tn5 mutagenesis to the analysis of cloned prokaryotic and eukaryotic genes. A methods section is included which outlines precisely how to carry out transposon Tn5 mutagenesis analysis of cloned DNA segments.
Collapse
|
34
|
Oosawa K, Imae Y. Glycerol and ethylene glycol: members of a new class of repellents of Escherichia coli chemotaxis. J Bacteriol 1983; 154:104-12. [PMID: 6339465 PMCID: PMC217436 DOI: 10.1128/jb.154.1.104-112.1983] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By using the chemical-in-plug method, we found that glycerol and ethylene glycol caused negative chemotaxis in wild-type cells of Escherichia coli; the threshold concentration was about 10(-3) M for both chemicals. As with other known repellents, the addition of glycerol or ethylene glycol induced a brief tumble response in wild-type cells but not in generally nonchemotactic mutants. Experiments with mutants defective in various methyl-accepting chemotaxis proteins (MCPs) revealed that the presence of any one of three kinds of MCPs (MCP I, MCP II, or MCP III) was necessary to give a tumble response to these repellents. Consistently, it was found that the methylation-demethylation system of MCPs was involved in the adaptation of the cells to these repellents. The effect of glycerol or ethylene glycol was not enhanced by lowering the pH of the medium, and glycerol did not alter the membrane potential of the cells. All of these results suggest that glycerol and ethylene glycol are members of a new class of repellents which produce a tumble response in the cells by perturbing the MCPs in the membrane.
Collapse
|
35
|
Henson JM, Kuempel PL. The use of transposon insertion zdc-235::Tn10 (min 32) to clone and delete DNA from the terminus region of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1983; 189:506-12. [PMID: 6306397 DOI: 10.1007/bf00325918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transposon zdc-235::Tn10 is inserted at min 32 on the genetic map of Escherichia coli, and we have used this transposon to clone 14 kb of DNA that flanks this insertion. The site of insertion of the transposon, and the restriction map of the cloned DNA, correspond well with the predictions of the Bouché restriction map for the terminus region (Bouché 1982). The zdc-235::Tn10 insertion, along with the zdd-230::Tn9 insertion, was used to obtain deletions of the region that has been cloned. Strains lacking a minimum of 14 kb, and more likely a minimum of 40 kb of DNA, showed no alteration of growth or cell morphology.
Collapse
|
36
|
Hazelbauer GL, Harayama S. Sensory transduction in bacterial chemotaxis. INTERNATIONAL REVIEW OF CYTOLOGY 1983; 81:33-70. [PMID: 6307914 DOI: 10.1016/s0074-7696(08)62334-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Harayama S, Engström P, Wolf-Watz H, Iino T, Hazelbauer GL. Cloning of trg, a gene for a sensory transducer in Escherichia coli. J Bacteriol 1982; 152:372-83. [PMID: 6749811 PMCID: PMC221422 DOI: 10.1128/jb.152.1.372-383.1982] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Clones of trg, a gene which codes for a chemotactic transducer, were isolated linked to ColE1 and pBR322 vectors. Studies with the hybrid plasmids demonstrated unequivocally that trg is the structural gene for methyl-accepting chemotaxis protein III. The Trg protein was found to be structurally complex, electrophoresing as a series of seven bands on high-resolution sodium dodecyl sulfate-polyacrylamide gels. The multiplicity of bands is a function of the activity of cheR, which codes for a methyltransferase, and of cheB, which codes for a demethylase. It appears that Trg, a quantitatively minor transducer, resembles the two major transducer proteins, Tsr and Tar, in that all three are multiply methylated and also multiply modified in a second way which requires an active cheB gene. However, preliminary analysis of the Trg protein indicated that it is significantly less related structurally to the Tsr or Tar protein than those two transducers are to each other. This implies that the features of multiple methylation and cheB-dependent modification are likely to be critical for the common physiological functions in chemotactic excitation and adaptation performed by all three transducers.
Collapse
|
38
|
Harayama S, Hazelbauer GL. A gene coding for a periplasmic protein is located near the locus for termination of chromosome replication in Escherichia coli. J Bacteriol 1982; 151:1391-6. [PMID: 7050089 PMCID: PMC220419 DOI: 10.1128/jb.151.3.1391-1396.1982] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hybrid plasmids carrying trg, the genetic locus in closest proximity to terC, coded for several polypeptides in addition to the Trg protein. Polypeptides of 59,000 and 61,000 apparent molecular weight were the most prominent products synthesized in minicells containing the hybrid plasmids. Analysis of the effects of deletions generated by a restriction endonuclease identified a region of DNA immediately adjacent to trg as the putative gene coding for the two polypeptides. Studies with whole cells and minicells showed that the 59,000-dalton polypeptide is a periplasmic protein. Analysis by limited proteolysis indicated that the two polypeptides are related, and a number of observations support the notion that the 61,000-dalton protein is a precursor form of the 59,000-dalton mature exported protein. The identification and characterization of a protein, in addition to Trg, which is produced by a gene in close proximity to terC emphasizes the fact that the region does contain intact and active genes.
Collapse
|
39
|
Bitner RM, Kuempel PL. P1 transduction mapping of the trg locus in rac+ and rac strains of Escherichia coli K-12. J Bacteriol 1982; 149:529-33. [PMID: 6276359 PMCID: PMC216538 DOI: 10.1128/jb.149.2.529-533.1982] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The trg locus, which had been located at min 31 in the cotransduction gap in the terminus region of the chromosome of Escherichia coli, has been mapped by transduction with bacteriophage P1. This locus exhibited no cotransduction with fnr when rac+ strains were used. If rac strains were used, which removed approximately 27 kilobase pairs of DNA, trg and fnr exhibited 8.2% cotransduction. Although this mapping of trg at min 31.1 considerably reduces the size of the cotransduction gap, trg exhibited no cotransduction with a Tn10 insertion located on the other side of the gap at min 34.2.
Collapse
|
40
|
Bouché JP, Gélugne JP, Louarn J, Louarn JM, Kaiser K. Relationships between the physical and genetic maps of a 470 x 10(3) base-pair region around the terminus of Escherichia coli K12 DNA replication. J Mol Biol 1982; 154:21-32. [PMID: 6281437 DOI: 10.1016/0022-2836(82)90414-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Fouts KE, Barbour SD. Insertion of transposons through the major cotransduction gap of Escherichia coli K-12. J Bacteriol 1982; 149:106-13. [PMID: 6274840 PMCID: PMC216597 DOI: 10.1128/jb.149.1.106-113.1982] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The major cotransduction gap of the Escherichia coli chromosome extends from mini 31 to 34. We have inserted transposons through this gap which, by sequential transduction, link sbcA (min 29.8) with manA (min 35.7) and thus eliminate the gap. These results indicate that the length of DNA in the region, as measured by transduction, is not significantly different from the length obtained by conjugational time of entry. Since this segment of the E. coli chromosome has few known genes, these transposon insertions will be useful for genetic manipulations in the region of the gap. We describe the usefulness of these markers for rapidly mapping mutations which may be isolated in the region from min 27 to 37.
Collapse
|
42
|
Bitner RM, Kuempel PL. P1 transduction map spanning the replication terminus of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1981; 184:208-12. [PMID: 6276692 DOI: 10.1007/bf00272906] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The region of the E. coli chromosome that contains the replication terminus has not previously been spanned by P1 cotransduction. We have used Tn5, Tn9 and Tn10 transposons inserted in this region as genetic markers, and have constructed a genetic map that extends from fnr (min 29.3) to manA (min 35.7). The relevant transposons that have been mapped in this region and which are described in this report are trg-1::Tn5 (min 31.1), zdc-235::Tn10 (min 32.3), zdd-230::Tn9 (min 33.3), and zde-234::Tn10 (min 34.2). The size of this region as determined by P1 cotransduction is very similar to previous estimates obtained by bacterial conjugation.
Collapse
|
43
|
Harayama S, Tsuda M, Iino T. Tn1 insertion mutagenesis in Escherichia coli K-12 using a temperature-sensitive mutant of plasmid RP4. MOLECULAR & GENERAL GENETICS : MGG 1981; 184:52-5. [PMID: 6278248 DOI: 10.1007/bf00271194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A method for Tn1 insertion mutagenesis in Escherichia coli has been developed using pTH10, a mutant plasmid of RP4 temperature-sensitive for maintenance. The mutagenesis involves three steps. Firstly, from strains carrying pTH10 showing resistance to the antibiotics kanamycin, tetracycline, and ampicillin at 30 degrees C but not at 42 degrees C, clones are isolated resistant to kanamycin at 42 degrees C. Such temperature-independent, drug resistant clones probably carry pTH10 integrated into the host chromosome. Secondly, they are cultivated at 30 degrees C. At this temperature segregants carrying pTH10, which has been excised from the host chromosome, accumulate. Thirdly, to cure such segregants of autonomous pTH10, they are cultivated at 42 degrees C. By these procedures, clones free of pTH10, but carrying Tn1 insertions on the host chromosome, were obtained. About 3% of the clones carrying Tn1 insertions were auxotrophic. Distribution of auxotrophic mutations was not random, indicating the existence of preferential integration sites of Tn1 on the host chromosome. The frequency of precise excision of Tn1 was less than 10(-10). The pTH10 plasmid has a wide host range among Gram-negative bacteria and thus may serve as a excellent vector for insertion mutagenesis of Tn1 in many Gram-negative bacterial species.
Collapse
|
44
|
Diderichsen B. Improved mapping of ksgB and integration of transposons near relB and terC in Escherichia coli. J Bacteriol 1981; 146:409-11. [PMID: 6260745 PMCID: PMC217098 DOI: 10.1128/jb.146.1.409-411.1981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tn5 transposons were integrated near relB at 34.2 min. ksgB was mapped at 36.4 min, 2 min from its previously assumed position.
Collapse
|
45
|
Palva ET, Liljeström P, Harayama S. Cosmid cloning and transposon mutagenesis in Salmonella typhimurium using phage lambda vehicles. MOLECULAR & GENERAL GENETICS : MGG 1981; 181:153-7. [PMID: 6268936 DOI: 10.1007/bf00268420] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have constructed a strain of Salmonella typhimurium which contains the malB region from Escherichia coli and carries the bacteriophage lambda receptor protein in its outer membrane. Phage lambda adsorbs to this strain but cannot grow, thus providing a very useful system for transposon mutagenesis of S. typhimurium using lambda vehicles carrying transposons. This system can also be used for cosmid cloning.
Collapse
|
46
|
Harayama S, Tsuda M, Iino T. High frequency mobilization of the chromosome of Escherichia coli by a mutant of plasmid RP4 temperature-sensitive for maintenance. MOLECULAR & GENERAL GENETICS : MGG 1980; 180:47-56. [PMID: 6255296 DOI: 10.1007/bf00267351] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two mutants of plasmid RP4 temperature-sensitive for maintenance were isolated and one of them (pTH 10) was extensively studied. Cells carrying pTH10 showed temperature-sensitive drug resistance from which we isolated a number of temperature-independent derivatives. Almost all of them were Hfrs donating chromosomal genes to recipient bidirectionally from different points of origin. The Hfrs may be formed in two steps: (1) the transposon (Tn 1) carried by pTH 10 translocates into the host chromosome, and (2) pTH 10 is integrated in the host chromosome by reciprocal recombination between the TN 1 s, one situated on pTH 10 and another on the host chromosome. That temperature-independent drug resistance selects for this type of derivative, was supported by the following observations: (1) Hfrs thus obtained were usually unstable and segregated at high frequency 'revertants' showing temperature-sensitive drug resistance when they were cultivated at 30 degrees C. (2) The 'revertants' cured of pTH 10 were still ampicillin resistant, indicating existence of Tn 1 inserted in the host chromosome. (3) Tn 1 insertions found in these derivatives mapped in the vicinity of points of origin of the original Hfrs. (4) When new Hfrs were constructed by: (a) transduction with Plkc on Tn 1 insertions found in derivatives of Hfrs, (b) introduction of pTH 10 into the transductants,and (c) isolation of clones of temperature-independent drug resistance from such pTH 10 carrying stains, they had similar characteristics to the original Hfrs from which Tn 1 insertions were derived. Possibilities for genetic manupulation using pTH 10 in a wide range of Gram-negative bacteria are discussed.
Collapse
|
47
|
|
48
|
Hazelbauer GL, Engström P. Parallel pathways for transduction of chemotactic signals in Escherichia coli. Nature 1980; 283:98-100. [PMID: 6985714 DOI: 10.1038/283098a0] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Koman A, Harayama S, Hazelbauer GL. Relation of chemotactic response to the amount of receptor: evidence for different efficiencies of signal transduction. J Bacteriol 1979; 138:739-47. [PMID: 378935 PMCID: PMC218099 DOI: 10.1128/jb.138.3.739-747.1979] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We determined the content of galactose-glucose-, maltose-, and ribose-binding proteins in cells of Escherichia coli K-12 grown in a variety of media and also measured the respective transport and chemotactic activities that depend on those binding proteins. Correlation of the level of induction of a particular binding protein with the extent of tactic activity mediated by that protein indicates that the magnitude of the tactic response to a particular stimulating compound is a direct function of the number of receptors per cell. In contrast, comparison of the magnitudes of response to substances recognized by independent receptors indicates that some stimulus-receptor complexes are more effective in eliciting tactic responses than are others. Thus, the magnitude of response to any particular stimulating compound is a function both of the number of receptors per cell and of the effectiveness of the stimulus-receptor complex. Considerations of available information about the tactic response to maltose suggest that the effectiveness of a stimulus-receptor complex is related to the transducer with which the receptor interacts. The tar product appears to be a relatively effective transducer of the signals it accepts from receptors for aspartate, alpha-methylaspartate, and maltose, whereas the trg product appears to be a relatively ineffective transducer of signals it accepts from receptors for galactose and ribose.
Collapse
|
50
|
Hazelbauer GL, Harayama S. Mutants in transmission of chemotactic signals from two independent receptors of E. coli. Cell 1979; 16:617-25. [PMID: 378395 DOI: 10.1016/0092-8674(79)90035-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have characterized chemotactic mutants of E. coli that appear to be defective in a common linkage of two independent receptors to the central chemotactic components. The mutants do not respond to gradients of ribose or galactose and thus are called trg (taxis to ribose and galactose), after Ordal and Adler (1974b). These trg mutants are indistinguishable from their parent in tactic response to other attractants, swimming pattern, growth rates, and transport of ribose and galactose. The mutant cells contain the usual amounts of ribose and galactose receptors, and those proteins function normally in their other role, transport of their respective ligands. The mutations, generated by insertion of translocatable drug-resistance elements (transposons)8 are located near 31 min on the map of the E. coli chromosome, a locus far removed from the genes coding for the ribose and galactose receptors. Trg mutants do not resemble either specific receptor mutants or che mutants. The nature of the requirement for the trg product in the response to ribose and galactose is not defined, but evidence for interference of tactic signals from the ribose and galactose receptors (Strange and Koshland, 1976) supports the idea that the product functions directly in the transmission of tactic signals from the two receptors to the flagella.
Collapse
|