1
|
Koh ES, Kim GH, Chung S. Intrarenal Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors on Tubuloglomerular Feedback and Natriuresis. Endocrinol Metab (Seoul) 2023; 38:359-372. [PMID: 37482684 PMCID: PMC10475968 DOI: 10.3803/enm.2023.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
When sodium-glucose cotransporter-2 (SGLT2) inhibitors were first introduced a decade ago, no one expected them to have substantial effects beyond their known glucose-lowering effects, until the emergence of evidence of their robust renal and cardiovascular benefits showing that they could attenuate progression of kidney disease, irrespective of diabetes, as well as prevent the development of acute kidney injury. Still, the precise and elaborate mechanisms underlying the major organ protection of SGLT2 inhibitors remain unclear. SGLT2 inhibitors inhibit the reabsorption of sodium and glucose in the proximal tubule of the kidney and then recovers tubuloglomerular feedback, whereby SGLT2 inhibitors reduce glomerular hyperfiltration. This simple demonstration of their beneficial effects has perplexed experts in seeking more plausible and as yet undisclosed explanations for the whole effects of SGLT2 inhibitors, including metabolism reprogramming and the modulation of hypoxia, inflammation, and oxidative stress. Given that the renal benefits of SGLT2 inhibitors in patients with kidney disease but without diabetes were comparable to those seen in patients with diabetes, it may be reasonable to keep the emphasis on their hemodynamic actions. In this context, the aim of the present review is to provide a comprehensive overview of renal hemodynamics in individuals with diabetes who are treated with SGLT2 inhibitors, with a focus on natriuresis associated with the regulation of tubuloglomerular feedback and potential aquaresis. Throughout the discussion of alterations in renal sodium and water transports, particular attention will be given to the potential enhancement of adenosine and its receptors following SGLT2 inhibition.
Collapse
Affiliation(s)
- Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gheun-Ho Kim
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 2020; 16:317-336. [PMID: 32152499 DOI: 10.1038/s41581-020-0256-y] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Kidney size and glomerular filtration rate (GFR) often increase with the onset of diabetes, and elevated GFR is a risk factor for the development of diabetic kidney disease. Hyperfiltration mainly occurs in response to signals passed from the tubule to the glomerulus: high levels of glucose in the glomerular filtrate drive increased reabsorption of glucose and sodium by the sodium-glucose cotransporters SGLT2 and SGLT1 in the proximal tubule. Passive reabsorption of chloride and water also increases. The overall capacity for proximal reabsorption is augmented by growth of the proximal tubule, which (alongside sodium-glucose cotransport) further limits urinary glucose loss. Hyperreabsorption of sodium and chloride induces tubuloglomerular feedback from the macula densa to increase GFR. In addition, sodium-glucose cotransport by SGLT1 on macula densa cells triggers the production of nitric oxide, which also contributes to glomerular hyperfiltration. Although hyperfiltration restores sodium and chloride excretion it imposes added physical stress on the filtration barrier and increases the oxygen demand to drive reabsorption. Tubular growth is associated with the development of a senescence-like molecular signature that sets the stage for inflammation and fibrosis. SGLT2 inhibitors attenuate the proximal reabsorption of sodium and glucose, normalize tubuloglomerular feedback signals and mitigate hyperfiltration. This tubule-centred model of diabetic kidney physiology predicts the salutary effect of SGLT2 inhibitors on hard renal outcomes, as shown in large-scale clinical trials.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA. .,Department of Pharmacology, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| | - Scott C Thomson
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
3
|
Yang GK, Har RLH, Lytvyn Y, Yip P, Cherney DZI. Renal hyperfiltration is associated with glucose-dependent changes in fractional excretion of sodium in patients with uncomplicated type 1 diabetes. Diabetes Care 2014; 37:2774-81. [PMID: 25011944 DOI: 10.2337/dc14-0798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Renal hyperfiltration is a common abnormality associated with diabetic nephropathy in patients with type 1 diabetes (T1D). In animal models, increased proximal tubular sodium reabsorption results in decreased distal sodium delivery, tubuloglomerular feedback activation, afferent vasodilatation, and hyperfiltration. The role of tubular factors is less well understood in humans. The aim of the current study was therefore to compare the fractional sodium excretion (FENa) in hyperfiltering (T1D-H) versus normofiltering (T1D-N) patients and healthy control (HC) subjects, as well as the role of ambient hyperglycemia on FENa. RESEARCH DESIGN AND METHODS Blood pressure, renal function (inulin for glomerular filtration rate [GFR], and paraaminohippurate for effective renal plasma flow), FENa, and circulating neurohormones were measured in T1D-H (n = 28, GFR ≥135 mL/min/1.73 m(2)), T1D-N (n = 30), and HC (n = 35) subjects during clamped euglycemia. Studies were repeated in a subset of patients during clamped hyperglycemia. RESULTS During clamped euglycemia, T1D-H exhibited lower FENa than T1D-N and HC subjects (0.64 ± 0.06% vs. 0.91 ± 0.12% and 0.90 ± 0.10%, P < 0.05). During clamped hyperglycemia, FENa increased (Δ + 0.88 ± 0.22% vs. Δ + 0.02 ± 0.21%; between-group effect, P = 0.01) significantly in T1D-H, whereas FENa did not change in T1D-N. When treated as continuous variables, elevated GFR values were associated with hyperglycemia-induced increases in FENa (R(2) = 0.20, P = 0.007). CONCLUSIONS Patients with uncomplicated T1D-H exhibit lower FENa under euglycemic conditions, which may help to identify patients with hyperfiltration outside of a controlled laboratory setting. Increased FENa in T1D-H but not T1D-N under clamped hyperglycemic conditions suggests that the mechanisms responsible for increased sodium reabsorption leading to hyperfiltration can be saturated.
Collapse
Affiliation(s)
- Gary K Yang
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ronnie L H Har
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Yuliya Lytvyn
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Paul Yip
- University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1009-22. [PMID: 21228342 DOI: 10.1152/ajpregu.00809.2010] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved in the early changes of the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. This review focuses on the proximal tubule in the early diabetic kidney, particularly on its exposure and response to high glucose levels, albuminuria, and other factors in the diabetic glomerular filtrate, the hyperreabsorption of glucose, the unique molecular signature of the tubular growth phenotype, including aspects of senescence, and the resulting cellular and functional consequences. The latter includes the local release of proinflammatory chemokines and changes in proximal tubular salt and fluid reabsorption, which form the basis for the strong tubular control of glomerular filtration in the early diabetic kidney, including glomerular hyperfiltration and odd responses like the salt paradox. Importantly, these early proximal tubular changes can set the stage for oxidative stress, inflammation, hypoxia, and tubulointerstitial fibrosis, and thereby for the progression of diabetic renal disease.
Collapse
Affiliation(s)
- Volker Vallon
- Depts. of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
5
|
Satriano J, Mansoury H, Deng A, Sharma K, Vallon V, Blantz RC, Thomson SC. Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes. Am J Physiol Cell Physiol 2010; 299:C374-80. [PMID: 20505038 PMCID: PMC2928628 DOI: 10.1152/ajpcell.00096.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/25/2010] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy is the commonest cause of end-stage renal disease. Inordinate kidney growth and glomerular hyperfiltration at the very early stages of diabetes are putative antecedents to this disease. The kidney is the only organ that grows larger with the onset of diabetes mellitus, yet there remains confusion about the mechanism and significance of this growth. Here we show that kidney proximal tubule cells in culture transition to senescence in response to oxidative stress. We further determine the temporal expression of G(1) phase cell cycle components in rat kidney cortex at days 4 and 10 of streptozotocin diabetes to evaluate changes in this growth response. In diabetic rats we observe increases in kidney weight-to-body weight ratios correlating with increases in expression of the growth-related proteins in the kidney at day 4 after induction of diabetes. However, at day 10 we find a decrease in this profile in diabetic animals coincident with increased cyclin-dependent kinase inhibitor expressions. We observe no change in caspase-3 expression in the diabetic kidneys at these early time points; however, diabetic animals demonstrate reduced kidney connexin 43 and increased plasminogen activator inhibitor-1 expressions and increased senescence-associated beta-galactosidase activity in cortical tubules. In summary, diabetic kidneys exhibit an early temporal induction of growth phase components followed by their suppression concurrent with the induction of cyclin-dependent kinase inhibitors and markers of senescence. These data delineate a phenotypic change in cortical tubules early in the pathogenesis of diabetes that may contribute to further downstream complications of the disease.
Collapse
Affiliation(s)
- Joseph Satriano
- Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Vallon V, Schroth J, Satriano J, Blantz RC, Thomson SC, Rieg T. Adenosine A(1) receptors determine glomerular hyperfiltration and the salt paradox in early streptozotocin diabetes mellitus. Nephron Clin Pract 2009; 111:p30-8. [PMID: 19276628 DOI: 10.1159/000208211] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/01/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In early type 1 diabetes mellitus, changes in proximal reabsorption influence glomerular filtration rate (GFR) through tubuloglomerular feedback (TGF). Due to TGF, a primary increase in proximal reabsorption causes early diabetic hyperfiltration, while a heightened sensitivity of the proximal tubule to dietary salt leads to the so-called salt paradox, where a change in dietary salt causes a reciprocal change in GFR ('tubulocentric principle'). Here, experiments were performed in adenosine A(1) receptor knockout mice (A(1)R-/-), which lack an immediate TGF response, to determine whether A(1)Rs are essential for early diabetic hyperfiltration and the salt paradox. METHODS GFR was measured by inulin disappearance in conscious A(1)R-/- and wild-type (WT) mice after 4 weeks of streptozotocin diabetes on a control NaCl diet (1%), and measurements were repeated after 6 days of equilibration on a low-NaCl (0.1%) or a high-NaCl (4%) diet. RESULTS A(1)R-/- and WT were similar with respect to blood glucose, dietary intakes and body weight changes on a given diet. Diabetic hyperfiltration occurred in WT, but was blunted in A(1)R-/-. A reciprocal relationship between GFR and dietary salt was found in WT diabetics, but not A(1)R-/- diabetics or nondiabetics of either strain. CONCLUSION A(1)Rs determine glomerular hyperfiltration and the salt paradox in early diabetes, which is consistent with the tubulocentric principle.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, San Diego, Calif., USA.
| | | | | | | | | | | |
Collapse
|
7
|
Vallon V, Blantz R, Thomson S. The salt paradox and its possible implications in managing hypertensive diabetic patients. Curr Hypertens Rep 2005; 7:141-7. [PMID: 15748540 DOI: 10.1007/s11906-005-0089-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is one of the leading causes of end-stage renal disease. The pathogenesis of diabetic nephropathy is still poorly understood, but glomerular injury has been ascribed, at least in part, to glomerular hyperfiltration, which occurs early in the course of diabetes mellitus. Therefore, a better understanding of the early dysfunctions observed in the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. In this review, we discuss the pathophysiology for the paradoxical relationship between dietary salt and glomerular filtration rate observed in early diabetes mellitus and possible implications in managing diabetic patients.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego & VASDHS, 3350 La Jolla Village Drive (9151), San Diego, CA 92161, USA.
| | | | | |
Collapse
|
8
|
Pollock CA, Field MJ, Bostrom TE, Dyne M, Gyory AZ, Cockayne DJ. Proximal tubular cell sodium concentration in early diabetic nephropathy assessed by electron microprobe analysis. Pflugers Arch 1991; 418:14-7. [PMID: 1645862 DOI: 10.1007/bf00370446] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electron microprobe X-ray analysis techniques were employed in order to assess the changes that occur in proximal tubular cell sodium concentration during the hyperfiltration phase of early diabetes mellitus induced by streptozotocin in Sprague Dawley rats. Intracellular rubidium accumulation following intravenous infusion of rubidium chloride was used as a marker of basolateral Na/K-ATPase activity. The diabetic animals studied had a significantly higher glomerular filtration rate compared with controls [1.44 +/- 0.07 vs. 1.00 +/- 0.07 ml min-1 (100 g body weight)-1; mean +/- SEM, P less than 0.001]. Intracellular Na concentration was significantly higher in diabetic animals (19.5 +/- 0.6 vs. 17.8 +/- 0.4 mmol/kg wet weight; P less than 0.01). Concurrent measurement of Rb demonstrated significantly higher intracellular accumulation in the proximal tubules of diabetic animals compared with control (7.9 +/- 0.5 vs. 5.5 +/- 0.5 mmol/kg wet weight; P less than 0.001). These results indicate that proximal tubular Na/K-ATPase activity is enhanced in the hyperfiltration phase of diabetes mellitus. Since, however, intracellular Na concentration is increased under these conditions, it may be inferred that apical Na entry into proximal tubular cells is stimulated beyond the rate of basal exit during the initial development of hyperfiltration. The reasons for these alterations in cellular Na transport are unclear but similar changes have been implicated in the pathogenesis of cell growth.
Collapse
Affiliation(s)
- C A Pollock
- Department of Medicine, University of Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Skøtt P, Mathiesen ER, Hommel E, Gall MA, Bruun NE, Parving HH. The increased proximal tubular reabsorption of sodium and water is maintained in long-term insulin-dependent diabetics with early nephropathy. Scand J Clin Lab Invest 1989; 49:419-25. [PMID: 2595238 DOI: 10.1080/00365518909089116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proximal tubular reabsorption of sodium and water was investigated in long-term insulin-dependent diabetic patients with normoalbuminuria (group I, n = 19), microalbuminuria (group II, n = 39), diabetic nephropathy (group III, n = 12) and in 13 healthy age-matched subjects. Glomerular filtration rate was measured with the single injection, 51Cr-EDTA technique. The fluid flow rate out of the proximal tubules was assessed by the renal lithium clearance. Although glomerular filtration rate was significantly elevated in the diabetic patients (Group I: 122 +/- 16, Group II: 121 +/- 18, Group III: 110 +/- 17, CONTROLS: 105 +/- 13 ml/min X 1.73 m2), lithium clearance was similar in the four groups (Group I: 19 +/- 6, Group II: 22 +/- 7, Group III: 19 +/- 5, CONTROLS: 23 +/- 4 ml/min X 1.73 m2). Both absolute and fractional proximal reabsorption of sodium and water was enhanced in diabetes. Indices of distal tubular function did not differ between controls and patients with insulin-dependent diabetes. Sodium clearance was about the same in the four groups. Our study suggests that the enhanced proximal reabsorption of sodium and water in insulin-dependent diabetic patients is still observed despite the presence of incipient or overt diabetic nephropathy.
Collapse
Affiliation(s)
- P Skøtt
- Hvidøre Hospital, Klampenborg, Denmark
| | | | | | | | | | | |
Collapse
|