1
|
Togninalli M, Ho ATV, Madl CM, Holbrook CA, Wang YX, Magnusson KEG, Kirillova A, Chang A, Blau HM. Machine learning-based classification of dual fluorescence signals reveals muscle stem cell fate transitions in response to regenerative niche factors. NPJ Regen Med 2023; 8:4. [PMID: 36639373 PMCID: PMC9839750 DOI: 10.1038/s41536-023-00277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The proper regulation of muscle stem cell (MuSC) fate by cues from the niche is essential for regeneration of skeletal muscle. How pro-regenerative niche factors control the dynamics of MuSC fate decisions remains unknown due to limitations of population-level endpoint assays. To address this knowledge gap, we developed a dual fluorescence imaging time lapse (Dual-FLIT) microscopy approach that leverages machine learning classification strategies to track single cell fate decisions with high temporal resolution. Using two fluorescent reporters that read out maintenance of stemness and myogenic commitment, we constructed detailed lineage trees for individual MuSCs and their progeny, classifying each division event as symmetric self-renewing, asymmetric, or symmetric committed. Our analysis reveals that treatment with the lipid metabolite, prostaglandin E2 (PGE2), accelerates the rate of MuSC proliferation over time, while biasing division events toward symmetric self-renewal. In contrast, the IL6 family member, Oncostatin M (OSM), decreases the proliferation rate after the first generation, while blocking myogenic commitment. These insights into the dynamics of MuSC regulation by niche cues were uniquely enabled by our Dual-FLIT approach. We anticipate that similar binary live cell readouts derived from Dual-FLIT will markedly expand our understanding of how niche factors control tissue regeneration in real time.
Collapse
Affiliation(s)
- Matteo Togninalli
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Andrew T V Ho
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Functional and Adaptive Biology - UMR 8251 CNRS, Université Paris Cité, 75013, Paris, France
| | - Christopher M Madl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Colin A Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Center for Genetic Disorders and Aging, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Klas E G Magnusson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Signal Processing, ACCESS Linnaeus Centre, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Anna Kirillova
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Andrew Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA.
| |
Collapse
|
2
|
Meng J, Muntoni F, Morgan J. CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability. Stem Cell Res 2018; 30:43-52. [PMID: 29783100 PMCID: PMC6048760 DOI: 10.1016/j.scr.2018.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. The myogenicity of CD133+ cells from Duchenne muscular dystrophy skeletal muscle is compromised. Duchenne muscular dystrophy CD133+ cells regenerate skeletal muscle less than normal CD133+ cells. Skeletal muscle-derived CD133+ cells consist of myoblasts, pericytes and fibroblasts.
Collapse
Affiliation(s)
- Jinhong Meng
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
3
|
Dumont NA, Rudnicki MA. Targeting muscle stem cell intrinsic defects to treat Duchenne muscular dystrophy. NPJ Regen Med 2016; 1. [PMID: 29188075 PMCID: PMC5703417 DOI: 10.1038/npjregenmed.2016.6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterised by skeletal muscle degeneration and progressive muscle wasting, which is caused by loss-of-function mutations in the DMD gene that encodes for the protein dystrophin. Dystrophin has critical roles in myofiber stability and integrity by connecting the actin cytoskeleton to the extracellular matrix. Absence of dystrophin leads to myofiber fragility and contributes to skeletal muscle degeneration in DMD patients, however, accumulating evidence also indicate that muscle stem cells (also known as satellite cells) are defective in dystrophic muscles, which leads to impaired muscle regeneration. Our recent work demonstrated that dystrophin is expressed in activated satellite cells, where it regulates the establishment of satellite cell polarity and asymmetric cell division. These findings indicate that dystrophin-deficient satellite cells have intrinsic dysfunctions that contribute to muscle wasting and progression of the disease. This discovery suggests that satellite cells could be targeted to treat DMD. Here we discuss how these new findings affect regenerative therapies for muscular dystrophies. Therapies targeting satellite cells hold great potential and could have long-term efficiency owing to the high self-renewal ability of these cells.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Duddy W, Duguez S, Johnston H, Cohen TV, Phadke A, Gordish-Dressman H, Nagaraju K, Gnocchi V, Low S, Partridge T. Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia. Skelet Muscle 2015; 5:16. [PMID: 25987977 PMCID: PMC4434871 DOI: 10.1186/s13395-015-0041-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preclinical testing of potential therapies for Duchenne muscular dystrophy (DMD) is conducted predominantly of the mdx mouse. But lack of a detailed quantitative description of the pathology of this animal limits our ability to evaluate the effectiveness of putative therapies or their relevance to DMD. METHODS Accordingly, we have measured the main cellular components of muscle growth and regeneration over the period of postnatal growth and early pathology in mdx and wild-type (WT) mice; phalloidin binding is used as a measure of fibre size, myonuclear counts and BrdU labelling as records of myogenic activity. RESULTS We confirm a two-phase postnatal growth pattern in WT muscle: first, increase in myonuclear number over weeks 1 to 3, then expansion of myonuclear domain. Mdx muscle growth lags behind that of WT prior to overt signs of pathology. Fibres are smaller, with fewer myonuclei and smaller myonuclear domains. Moreover, satellite cells are more readily detached from mdx than WT muscle fibres. At 3 weeks, mdx muscles enter a phase of florid myonecrosis, accompanied by concurrent regeneration of an intensity that results in complete replacement of pre-existing muscle over the succeeding 3 to 4 weeks. Both WT and mdx muscles attain maximum size by 12 to 14 weeks, mdx muscle fibres being up to 50% larger than those of WT as they become increasingly branched. Mdx muscle fibres also become hypernucleated, containing twice as many myonuclei per sarcoplasmic volume, as those of WT, the excess corresponding to the number of centrally placed myonuclei. CONCLUSIONS The best-known consequence of lack of dystrophin that is common to DMD and the mdx mouse is the conspicuous necrosis and regeneration of muscle fibres. We present protocols for measuring this in terms both of loss of muscle nuclei previously labelled with BrdU and of the intensity of myonuclear labelling with BrdU administered during the regeneration period. Both measurements can be used to assess the efficacy of putative antinecrotic agents. We also show that lack of dystrophin is associated with a number of previously unsuspected abnormalities of muscle fibre structure and function that do not appear to be directly associated with myonecrosis.
Collapse
Affiliation(s)
- William Duddy
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA ; Myology Center of Research, Institut de Myologie Pitié-Salpétrière - Bâtiment Babinski, 75651 Paris Cedex 13, France
| | - Stephanie Duguez
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA ; Myology Center of Research, Institut de Myologie Pitié-Salpétrière - Bâtiment Babinski, 75651 Paris Cedex 13, France
| | - Helen Johnston
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| | - Tatiana V Cohen
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA ; Center for Genetic Muscle Disorders, Kennedy Krieger Institute, 801 N. Broadway, Baltimore, MD 21205 USA
| | - Aditi Phadke
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| | - Viola Gnocchi
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| | - SiewHui Low
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218 USA
| | - Terence Partridge
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| |
Collapse
|
5
|
Abstract
Dissociated human fetal skeletal muscle contains myogenic cells, as well as non-myogenic cells such as adipocytes, fibroblasts, and lymphocytes. It is therefore important to determine an efficient and reliable isolation method to obtain a purer population of myoblasts. Toward this end, fluorescence-activated cell sorting in conjunction with robust myogenic cell surface markers can be utilized to enrich for myoblasts in dissociated muscle. In this chapter, we describe a method to significantly enrich for myoblasts using -melanoma cell adhesion molecule (MCAM), which we have determined to be an excellent marker of human fetal myoblasts. The myoblasts resulting from this isolation method can then be expanded in vitro and still retain significant myogenic activity as shown by an in vitro fusion assay. The ability to isolate a highly myogenic population from dissociated muscle facilitates the in vitro study of skeletal muscle development and muscle diseases. Furthermore, robust expansion of these cells will lead to new insights in the development of cell-based therapies for human muscle disorders.
Collapse
Affiliation(s)
- Ariya D Lapan
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
6
|
Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M, Kraft P, Shkreli M, Delp S, Pomerantz JH, Artandi SE, Blau HM. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 2010; 143:1059-71. [PMID: 21145579 DOI: 10.1016/j.cell.2010.11.039] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/18/2010] [Accepted: 11/02/2010] [Indexed: 01/10/2023]
Abstract
In Duchenne muscular dystrophy (DMD), dystrophin mutation leads to progressive lethal skeletal muscle degeneration. For unknown reasons, dystrophin deficiency does not recapitulate DMD in mice (mdx), which have mild skeletal muscle defects and potent regenerative capacity. We postulated that human DMD progression is a consequence of loss of functional muscle stem cells (MuSC), and the mild mouse mdx phenotype results from greater MuSC reserve fueled by longer telomeres. We report that mdx mice lacking the RNA component of telomerase (mdx/mTR) have shortened telomeres in muscle cells and severe muscular dystrophy that progressively worsens with age. Muscle wasting severity parallels a decline in MuSC regenerative capacity and is ameliorated histologically by transplantation of wild-type MuSC. These data show that DMD progression results, in part, from a cell-autonomous failure of MuSC to maintain the damage-repair cycle initiated by dystrophin deficiency. The essential role of MuSC function has therapeutic implications for DMD.
Collapse
Affiliation(s)
- Alessandra Sacco
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chaouch S, Mouly V, Goyenvalle A, Vulin A, Mamchaoui K, Negroni E, Di Santo J, Butler-Browne G, Torrente Y, Garcia L, Furling D. Immortalized Skin Fibroblasts Expressing Conditional MyoD as a Renewable and Reliable Source of Converted Human Muscle Cells to Assess Therapeutic Strategies for Muscular Dystrophies: Validation of an Exon-Skipping Approach to Restore Dystrophin in Duchenne Muscular Dystrophy Cells. Hum Gene Ther 2009; 20:784-90. [DOI: 10.1089/hum.2008.163] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Soraya Chaouch
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Vincent Mouly
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Aurélie Goyenvalle
- Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Adeline Vulin
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Kamel Mamchaoui
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Elisa Negroni
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - James Di Santo
- Unité des Cytokines et Développement Lymphoide, Institut Pasteur, Paris F-75015, France
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Yvan Torrente
- Stem Cell Laboratory of the Centro Dino Ferrari, Department of Neurological Sciences, Fondazione IRCCS Policlinico of Milan, University of Milan, 20122 Milan, Italy
| | - Luis Garcia
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Denis Furling
- Université Pierre et Marie Curie-Paris 06, UMRS 974, Paris F-75013, France
- INSERM, U974, Institut de Myologie, Paris F-75013, France
- CNRS, UMR 7215, Institut de Myologie, Paris F-75013, France
| |
Collapse
|
8
|
Novelli M, Cossu A, Oukrif D, Quaglia A, Lakhani S, Poulsom R, Sasieni P, Carta P, Contini M, Pasca A, Palmieri G, Bodmer W, Tanda F, Wright N. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci U S A 2003; 100:3311-4. [PMID: 12610207 PMCID: PMC152288 DOI: 10.1073/pnas.0437825100] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Most models of tumorigenesis assume that tumors are monoclonal in origin. This conclusion is based largely on studies using X chromosome-linked markers in females. One important factor, often ignored in such studies, is the distribution of X-inactivated cells in tissues. Because lyonization occurs early in development, many of the progeny of a single embryonic stem cell are grouped together in the adult, forming patches. As polyclonality can be demonstrated only at the borders of X-inactivation patches, the patch size is crucial in determining the chance of demonstrating polyclonality and hence the number of tumors that need to be examined to exclude polyclonality. Previously studies using X-linked genes such as glucose-6-phosphate dehydrogenase have been handicapped by the need to destroy the tissues to study the haplotypes of glucose-6-phosphate dehydrogenase [Fialkow, P.-J. (1976) Biochim. Biophys. Acta 458, 283-321] or to determine the restriction fragment length polymorphisms of X chromosome-linked genes [Vogelstein, B., Fearon, E. R., Hamilton, S. R. & Feinberg, A. P. (1985) Science 227, 642-645]. Here we visualize X-inactivation patches in human females directly. Results show that the patch size is relatively large in both the human colon and breast, confounding assessment of tumor clonality with traditional X-inactivation studies.
Collapse
Affiliation(s)
- Marco Novelli
- Department of Histopathology, Rockefeller Building, University Street, University College London Hospitals, London WC1E 6JJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Oexle K, Zwirner A, Freudenberg K, Kohlschütter A, Speer A. Examination of telomere lengths in muscle tissue casts doubt on replicative aging as cause of progression in Duchenne muscular dystrophy. Pediatr Res 1997; 42:226-31. [PMID: 9262227 DOI: 10.1203/00006450-199708000-00016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mean telomere length (TL) of somatic cells indicates their replicative age. In comparison with normal leukocytes (-0.03 kbp/y, 6.2 kbp at 80 y), we found advanced TL shortening in premature aging due to ataxia-telangiectasia or the Nijmegen chromosomal breakage syndrome. Duchenne muscular dystrophy (DMD) has been related to replicative senescence of satellite cells (SCs) caused by increased fiber turnover. Therefore, we determined TLs in DMD muscle. Because the regenerated fiber nuclei are produced by SCs. telomeres of both fiber and SC nuclei should be shortened. In DMD the SC number is increased. We determined that up to the age of 7 y the sum of fiber and SC nuclei should be large enough (73%) for the detection of TL shortening. Normal muscle fibers have negligible turnover rates, and, as expected, we did not find age-related TL shortening (10-83 y, n = 24, 8.3 +/- 0.5 kbp). Surprisingly, there was only slight TL shortening in patient muscles (DMD, 0.3-4.8 y, n = 4, 8.3 +/- 0.7 kbp; 5-7 y, n = 7, 7.9 +/- 0.4 kbp; limb-girdle muscular dystrophy 2C, 13 y, 7.6 kbp; Becker muscular dystrophy, 7 y, 8.5 kbp). Similarly, the peak positions of the telomere blots varied only slightly (DMD, 10.0 +/- 0.9 kbp; normal: 10.7 +/- 0.9 kbp). In accordance with our TL findings we derived less than 4 annual doublings per SC from published histologic data on DMD.
Collapse
Affiliation(s)
- K Oexle
- Department of Neuropediatrics, Virchow Medical Center, Humboldt University, Berlin, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
10
|
Siniscalco M. Giorgio Filippi, April 4, 1935-January 19, 1996. AMERICAN JOURNAL OF MEDICAL GENETICS 1997; 68:94-7. [PMID: 8986285 DOI: 10.1002/(sici)1096-8628(19970110)68:1<94::aid-ajmg19>3.0.co;2-j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Siniscalco
- Sardinian Center for Studies on Genomic Diversity, Cagliari, Italy
| |
Collapse
|
11
|
Wernig A, Irintchev A. "Bystander" damage of host muscle caused by implantation of MHC-compatible myogenic cells. J Neurol Sci 1995; 130:190-6. [PMID: 8586985 DOI: 10.1016/0022-510x(95)00034-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transplantation of normal myoblasts has been considered a potential therapy for muscle dystrophies. While survival of implanted cells has been described in animal experiments and in human trials, functional effects remained unclear. Here we report on survival of progenors of implanted C2nlsBAG cells in regenerating muscles but irreversible net loss in muscle tissue and contractile force. This is caused by immune rejection of implanted myoblasts despite MHC-compatibility and "bystander" damage of host muscle tissue.
Collapse
Affiliation(s)
- A Wernig
- Department of Physiology, Neurophysiology, University of Bonn, Germany
| | | |
Collapse
|
12
|
Baroffio A, Aubry JP, Kaelin A, Krause RM, Hamann M, Bader CR. Purification of human muscle satellite cells by flow cytometry. Muscle Nerve 1993; 16:498-505. [PMID: 8515758 DOI: 10.1002/mus.880160511] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To purify satellite cells directly from human muscle biopsies, we have developed a method based on size separation of dissociated cells by flow cytometry. Immediately after tryptic dissociation of human muscle biopsies and elimination of erythrocytes, microscopic observation and flow cytometry analysis of cell suspensions revealed two populations of cells differing in size and nucleocytoplasmic ratio. Clonal cultures of these two cell types with a manual procedure demonstrated that only the small cells were myogenic satellite cells. Flow cytometry-sorting and analysis of the small cell population showed that (1) all sorted cells contained desmin immediately after dissociation and plating; (2) more than 98% of the cells expressed the 5.1.H11 epitope after 2 weeks of proliferation in culture; and (3) 90% of the sorted cells were able to form myotubes when cultivated at low density or in clonal cultures. Thus, human muscle satellite cells can be directly purified from human muscle samples using flow cytometry.
Collapse
Affiliation(s)
- A Baroffio
- Division de Neurophysiologie Clinique, Hôpital Cantonal Universitaire, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Grounds MD, Yablonka-Reuveni Z. Molecular and cell biology of skeletal muscle regeneration. MOLECULAR AND CELL BIOLOGY OF HUMAN DISEASES SERIES 1993; 3:210-56. [PMID: 8111541 DOI: 10.1007/978-94-011-1528-5_9] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M D Grounds
- Department of Pathology, University of Western Australia, Queen Elizabeth II Medical Centre, Perth
| | | |
Collapse
|
14
|
Ontell MP, Hughes D, Hauschka SD, Ontell M. Transient neonatal denervation alters the proliferative capacity of myosatellite cells in dystrophic (129ReJdy/dy) muscle. JOURNAL OF NEUROBIOLOGY 1992; 23:407-19. [PMID: 1634888 DOI: 10.1002/neu.480230407] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been previously shown that transiently denervated, neonatal dystrophic muscle fails to undergo the degeneration-regeneration cycle characteristic of murine dystrophy (Moschella and Ontell, 1987). Thus, the myosatellite cells (myogenic stem cells) in these muscles have been spared the mitotic challenge to which dystrophic myosatellite cells are normally subjected early in the time course of the disease. By in vitro evaluation of the proliferative capacity of myosatellite cells derived from extensor digitorum longus (EDL) muscles of 100-day-old genetically normal (+/+) and genetically dystrophic [dy/dy (129ReJdy/dy)] mice and from muscles of age-matched mice that had been neonatally denervated (by sciaticotomy) and allowed to reinnervate, it has been possible to directly determine whether the cessation of spontaneous regeneration in older dy/dy muscles in vivo, is due to an innate defect in the proliferative capacity of the myosatellite cells or exhaustion of the myosatellite cells' mitotic activity during the regenerative phase of the disease. This study demonstrates that transient neonatal denervation of dystrophic muscle (Den.dy/dy) increases the number of muscle colony-forming cells (MCFs) per milligram of wet weight muscle tissue, increases the plating efficiency, and significantly increases the in vitro mitotic activity of dystrophic myosatellite cells toward normal values. The increased mitotic capability of myosatellite cells derived from Den.dy/dy muscle as compared to unoperated dy/dy muscle suggests that there is no innate defect in the proliferative capacity of the myosatellite cells of dy/dy muscles and that the cessation of spontaneous regeneration in the dy/dy muscles is related to the exhaustion of their myosatellite cells' mitotic capability.
Collapse
Affiliation(s)
- M P Ontell
- Department of Neurobiology, Anatomy, and Cell Science, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | | | | | |
Collapse
|
15
|
|
16
|
Affiliation(s)
- L Hayflick
- University of California, San Francisco 95497
| |
Collapse
|
17
|
Partridge TA. Invited review: myoblast transfer: a possible therapy for inherited myopathies? Muscle Nerve 1991; 14:197-212. [PMID: 2041542 DOI: 10.1002/mus.880140302] [Citation(s) in RCA: 193] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A potential therapeutic strategy for genetic diseases is to alter the genetic constitution of the affected tissues by means of grafts of normal precursor or stem cells. Over several years, evidence has accumulated to suggest that primary diseases of skeletal muscle, such as Duchenne muscular dystrophy, may be susceptible to this approach. This review makes a critical examination of such background evidence, and also of more recent data directly addressing the concept of therapy by means of grafts of normal myogenic cells. It is concluded that the data establish the principle that such grafts effect an alteration of the genetic constitution and phenotype of skeletal muscle and, therefore, might be used to alleviate recessively inherited myopathies. Several obstacles to the therapeutic application of this method to human disease are also identified; these seem to be problems of a technical nature rather than of basic principle, and none appears insuperable.
Collapse
Affiliation(s)
- T A Partridge
- Department of Histopathology, Charing Cross & Westminster Medical School, London, UK
| |
Collapse
|
18
|
Webster C, Blau HM. Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. SOMATIC CELL AND MOLECULAR GENETICS 1990; 16:557-65. [PMID: 2267630 DOI: 10.1007/bf01233096] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An assessment of the replicative life-span of myoblasts is of fundamental importance in designing treatment strategies for Duchenne muscular dystrophy (DMD) based on cell or gene therapy. To ascertain myoblast life-span, or the total number of cell divisions of which a myoblast was capable, we serially passaged and counted the progeny of individual myoblasts until they senesced. We compared the life-span of myoblasts from eight DMD patients with controls: three individuals with no known neuromuscular disease, three DMD carriers, and three patients with other muscle degenerative diseases. A decline in replicative capacity was observed with increasing donor age, which was markedly accelerated for DMD relative to control myoblasts. The average myoblast from a 5-year-old control was capable of 56 doublings, or a potential yield of approximately 10(17) cells per cell. By contrast, at 2 years of age, the typical age at clinical onset, only 6% of DMD myoblasts had a life-span of 50 doublings in tissue culture, and by age 7 DMD myoblasts capable of 10 doublings were rare. Our results suggest that the myoblasts (satellite cells) of even the youngest DMD patients have undergone extensive division in an attempt to regenerate degenerating myofibers. These findings have implications for therapeutic intervention in DMD involving genetic engineering and myoblast implantation.
Collapse
Affiliation(s)
- C Webster
- Department of Pharmacology, Stanford University School of Medicine, California 94305-5332
| | | |
Collapse
|
19
|
Bresolin N, Bet L, Moggio M, Meola G, Fortunato F, Comi G, Adobbati L, Geremia L, Pittalis S, Scarlato G. Muscle glucose-6-phosphate dehydrogenase deficiency. J Neurol 1989; 236:193-8. [PMID: 2760630 DOI: 10.1007/bf00314498] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Muscle glucose-6-phosphate dehydrogenase (G6PD) deficiency is described in four clinically heterogeneous patients: an athlete who developed myoglobinuria after physical exercise; a 7-year-old, mildly mentally retarded boy, who had episodes of dark urine and high creatine kinase; and two brothers of Sardinian origin, the elder showing moderate exercise intolerance. Histochemical and biochemical studies showed a lack of G6PD activity in muscle biopsy specimens as well as in erythrocytes. G6PD characterization in erythrocytes classified these mutant enzymes as Mediterranean variant in all the patients. The deficiency was confirmed in the patients' myotubes and skin fibroblasts, where residual activity was present. Electrophoretic studies in tissue culture extracts showed that the residual muscle enzyme migrated as a single electrophoretic band like normal human muscle G6PD.
Collapse
Affiliation(s)
- N Bresolin
- Istituto di Clinica Neurologica, Università degli Studi di Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
DiMario J, Strohman RC. Satellite cells from dystrophic (mdx) mouse muscle are stimulated by fibroblast growth factor in vitro. Differentiation 1988; 39:42-9. [PMID: 3246292 DOI: 10.1111/j.1432-0436.1988.tb00079.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Satellite cells cultured from dystrophic (mdx) and from control mouse hindlimb muscles grow and fuse to form muscle fibers within 4-5 days. Total cell number and muscle-fiber formation are stimulated by bovine fibroblast growth factor (FGF). At low FGF levels (0.02-0.20 ng/ml) control satellite cells as well as fibroblasts are unresponsive, while mdx satellite cells show three- to four-fold increases in growth. Control cells do not begin to respond until FGF levels reach 1-5 ng/ml. Heparin, a major constituent of muscle fiber basal lamina, inhibits myogenesis in these mouse muscle cultures. The heightened sensitivity of mdx satellite cells to FGF may permit high rates of new fiber formation in vivo without a parallel hyperplasia in the muscle fibroblast population. This finding may be important in explaining successful regeneration in mdx muscle in vivo and the fact that mdx animals escape the catastrophic symptoms seen in the related human Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- J DiMario
- Department of Zoology, University of California, Berkeley 94720
| | | |
Collapse
|
21
|
Abstract
We examined the effects of human recombinant tumor necrosis factor-alpha (TNF) on human primary myoblasts. When added to proliferating myoblasts, TNF inhibited the expression of alpha-cardiac actin, a muscle-specific gene whose expression is observed at low levels in human myoblasts. TNF also inhibited muscle differentiation as measured by several parameters, including cell fusion and the expression of other muscle-specific genes, such as alpha-skeletal actin and myosin heavy chain. Muscle cells were sensitive to TNF in a narrow temporal window of differentiation. Northern (RNA) blot and immunofluorescence analyses revealed that human muscle gene expression became unresponsive to TNF coincident with myoblast differentiation. When TNF was added to differentiated myotubes, there was no effect on muscle gene expression. In contrast, TNF-inducible mRNAs such as interferon beta-2 still responded, suggesting that the signal mediated by TNF binding to its receptor had no effect on muscle-specific genes after differentiation.
Collapse
|
22
|
Abstract
We examined the effects of human recombinant tumor necrosis factor-alpha (TNF) on human primary myoblasts. When added to proliferating myoblasts, TNF inhibited the expression of alpha-cardiac actin, a muscle-specific gene whose expression is observed at low levels in human myoblasts. TNF also inhibited muscle differentiation as measured by several parameters, including cell fusion and the expression of other muscle-specific genes, such as alpha-skeletal actin and myosin heavy chain. Muscle cells were sensitive to TNF in a narrow temporal window of differentiation. Northern (RNA) blot and immunofluorescence analyses revealed that human muscle gene expression became unresponsive to TNF coincident with myoblast differentiation. When TNF was added to differentiated myotubes, there was no effect on muscle gene expression. In contrast, TNF-inducible mRNAs such as interferon beta-2 still responded, suggesting that the signal mediated by TNF binding to its receptor had no effect on muscle-specific genes after differentiation.
Collapse
Affiliation(s)
- S C Miller
- Department of Medicine, Stanford University Medical Center, California 94305
| | | | | | | |
Collapse
|
23
|
Ecob-Prince MS, Brown AE. Morphological differentiation of human muscle cocultured with mouse spinal cord. J Neurol Sci 1988; 83:179-90. [PMID: 3356988 DOI: 10.1016/0022-510x(88)90067-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human muscle fibres have been cocultured with sections of embryonic mouse spinal cord for periods of up to 2 months. The muscle fibres regenerated to form a bundle of myotubes, a proportion of which developed cross-striations and contractions. This proportion was variable between biopsies, and morphological differentiation was not as successful as when mouse muscle and mouse nerve were cultured together. Regeneration and morphological differentiation were unaffected by storing samples in liquid nitrogen, and were not improved by the presence of original synaptic areas in the explanted bundle or by alterations in the growth media. These involved changing the levels of serum and embryo extract, using different sources of serum, and the incorporation of additives in the medium. A comparison of the growth characteristics of samples of muscle from 30 patients (including some control samples) indicated that although muscle from younger patients (less than 14 years) regenerated more quickly, the myotubes did not have better differentiation. It also indicated that the growth characteristics of regenerated myotubes from diseased and normal muscle were indistinguishable within the 4-8 weeks observation period. Muscle from patients with Duchenne muscular dystrophy regenerated and differentiated less well than would be expected from age-matched controls, but this was not thought to reflect an intrinsic abnormality in the regenerative capacity of the muscle.
Collapse
Affiliation(s)
- M S Ecob-Prince
- Muscular Dystrophy Group Research Laboratories, Newcastle General Hospital, U.K
| | | |
Collapse
|
24
|
Monaco AP, Kunkel LM. Cloning of the Duchenne/Becker muscular dystrophy locus. ADVANCES IN HUMAN GENETICS 1988; 17:61-98. [PMID: 3055851 DOI: 10.1007/978-1-4613-0987-1_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- A P Monaco
- Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
25
|
Webster C, Pavlath GK, Parks DR, Walsh FS, Blau HM. Isolation of human myoblasts with the fluorescence-activated cell sorter. Exp Cell Res 1988; 174:252-65. [PMID: 3335226 DOI: 10.1016/0014-4827(88)90159-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have established procedures for the rapid and efficient purification of human myoblasts using the fluorescence-activated cell sorter. Our approach capitalizes on the specific reaction of monoclonal antibody 5.1H11 with a human muscle cell surface antigen. For each of the five samples analyzed, an enrichment of myoblasts to greater than 99% of the cell population was immediately achieved. Following 3 to 4 weeks of additional growth in vitro, sorted myoblast cultures remained 97% pure. Differentiation of the sorted myoblast cultures, assessed by creatine kinase activity and isozyme content, was comparable to that of pure myoblast cultures obtained by cloning, and was significantly greater than that of mixed fibroblast and myoblast cultures. An average of 10(4) viable myoblasts can be obtained per 0.1 g tissue, each with the potential to undergo approximately 40 cell divisions. Accordingly, if only two-thirds of this proliferative capacity is utilized, the potential yield approximates 10(12) myoblasts, equivalent to 1 kg of cells. Human myogenesis in vitro is no longer limited by cell number and is now amenable to molecular and biochemical analysis on a large scale.+
Collapse
Affiliation(s)
- C Webster
- Department of Pharmacology, Stanford University School of Medicine, California 94305
| | | | | | | | | |
Collapse
|
26
|
Worton RG, Burghes AH. Molecular genetics of Duchenne and Becker muscular dystrophy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1988; 29:1-76. [PMID: 3042661 DOI: 10.1016/s0074-7742(08)60083-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- R G Worton
- Genetics Department, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Lev AA, Feener CC, Kunkel LM, Brown RH. Expression of the Duchenne's muscular dystrophy gene in cultured muscle cells. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47660-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Rugolo M, Rocchi M, Lenaz G, Romeo G. Increased chloride efflux in fibroblasts from X-linked muscular dystrophies and clones from Duchenne carriers. FEBS Lett 1987; 212:313-6. [PMID: 3817163 DOI: 10.1016/0014-5793(87)81367-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previous studies have suggested an increased chloride membrane permeability in Duchenne muscular dystrophy (DMD) fibroblasts. We report that an increased chloride efflux with respect to controls is present not only in fibroblasts from DMD, but also from two other X-linked muscular dystrophies, Becker and Emery-Dreifuss, as well as in clones from DMD carrier females. The latter observation suggests that, at least in DMD, the increased chloride efflux phenotype might be subject to lyonization.
Collapse
|
29
|
Silberstein L, Webster SG, Travis M, Blau HM. Developmental progression of myosin gene expression in cultured muscle cells. Cell 1986; 46:1075-81. [PMID: 3530499 DOI: 10.1016/0092-8674(86)90707-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Myosin heavy chains are encoded by distinct members of a multigene family at different stages of muscle development. Study of the underlying regulatory mechanisms has been hindered because transitions in myosin expression have not been readily attained in tissue culture. Here we show a transition from early (fetal) to late (perinatal/adult) myosins defined by two monoclonal antibodies, F1.652 and N3.36, in the myotubes of mouse C2C12 cells. On day 1 of differentiation, essentially all myosin was early myosin. By day 8, early myosin dropped to 25% of its day 1 value and was replaced by late myosin. The transition occurred without neural contact, connective tissue components, or complex substrates, suggesting that its regulation may be intrinsic to the muscle cell. Our results demonstrate that a developmental progression in myosin gene expression, which occurs rapidly, with high frequency, and under relatively simple conditions, is now amenable to molecular analysis in cultured muscle cells.
Collapse
|