1
|
Hu ZH, Zhang N, Qin ZY, Li JW, Tao JP, Yang N, Chen Y, Kong JY, Luo W, Chen X, Li XH, Xiong AS, Zhuang J. Circadian rhythm response and its effect on photosynthetic characteristics of the Lhcb family genes in tea plant. BMC PLANT BIOLOGY 2024; 24:333. [PMID: 38664694 PMCID: PMC11044350 DOI: 10.1186/s12870-024-04958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.
Collapse
Affiliation(s)
- Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Yuan Qin
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Yu Kong
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Luo
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Wegener M, Persicke M, Dietz KJ. Reprogramming the translatome during daily light transitions as affected by cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1/C2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2494-2509. [PMID: 38156667 DOI: 10.1093/jxb/erad509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Dark-light and light-dark transitions during the day are switching points of leaf metabolism that strongly affect the regulatory state of the cells, and this change is hypothesized to affect the translatome. The cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1 and GAPC2 function in glycolysis, and carbohydrate and energy metabolism, but GAPC1/C2 also shows moonlighting functions in gene expression and post-transcriptional regulation. In this study we examined the rapid reprogramming of the translatome that occurs within 10 min at the end of the night and the end of the day in wild-type (WT) Arabidopsis and a gapc1/c2 double-knockdown mutant. Metabolite profiling compared to the WT showed that gapc1/c2 knockdown led to increases in a set of metabolites at the start of day, particularly intermediates of the citric acid cycle and linked pathways. Differences in metabolite changes were also detected at the end of the day. Only small sets of transcripts changed in the total RNA pool; however, RNA-sequencing revealed major alterations in polysome-associated transcripts at the light-transition points. The most pronounced difference between the WT and gapc1/c2 was seen in the reorganization of the translatome at the start of the night. Our results are in line with the proposed hypothesis that GAPC1/C2 play a role in the control of the translatome during light/dark transitions.
Collapse
Affiliation(s)
- Melanie Wegener
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, D-33615, Bielefeld, Germany
| | - Marcus Persicke
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, D-33615, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. 27, D-33615 Bielefeld, Germany
| |
Collapse
|
3
|
Adhikari ND, Simko I, Mou B. Phenomic and Physiological Analysis of Salinity Effects on Lettuce. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4814. [PMID: 31694293 PMCID: PMC6864466 DOI: 10.3390/s19214814] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023]
Abstract
Salinity is a rising concern in many lettuce-growing regions. Lettuce (Lactuca sativa L.) is sensitive to salinity, which reduces plant biomass, and causes leaf burn and early senescence. We sought to identify physiological traits important in salt tolerance that allows lettuce adaptation to high salinity while maintaining its productivity. Based on previous salinity tolerance studies, one sensitive and one tolerant genotype each was selected from crisphead, butterhead, and romaine, as well as leaf types of cultivated lettuce and its wild relative, L. serriola L. Physiological parameters were measured four weeks after transplanting two-day old seedlings into 350 mL volume pots filled with sand, hydrated with Hoagland nutrient solution and grown in a growth chamber. Salinity treatment consisted of gradually increasing concentrations of NaCl and CaCl2 from 0 mM/0 mM at the time of transplanting, to 30 mM/15 mM at the beginning of week three, and maintaining it until harvest. Across the 10 genotypes, leaf area and fresh weight decreased 0-64% and 16-67%, respectively, under salinity compared to the control. Salinity stress increased the chlorophyll index by 4-26% in the cultivated genotypes, while decreasing it by 5-14% in the two wild accessions. Tolerant lines less affected by elevated salinity were characterized by high values of the chlorophyll fluorescence parameters Fv/Fm and instantaneous photosystem II quantum yield (QY), and lower leaf transpiration.
Collapse
Affiliation(s)
- Neil D. Adhikari
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, USA;
| | | | - Beiquan Mou
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, USA;
| |
Collapse
|
4
|
Lanoue J, Zheng J, Little C, Thibodeau A, Grodzinski B, Hao X. Alternating Red and Blue Light-Emitting Diodes Allows for Injury-Free Tomato Production With Continuous Lighting. FRONTIERS IN PLANT SCIENCE 2019; 10:1114. [PMID: 31572419 PMCID: PMC6754077 DOI: 10.3389/fpls.2019.01114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/14/2019] [Indexed: 05/05/2023]
Abstract
Plant biomass is largely dictated by the total amount of light intercepted by the plant [daily light integral (DLI) - intensity × photoperiod]. Continuous light (CL, 24 h lighting) has been hypothesized to increase plant biomass and yield if CL does not cause any injury. However, lighting longer than 18 h causes leaf injury in tomato characterized by interveinal chlorosis and yield is no longer increased with further photoperiod extension in tomatoes. Our previous research indicated the response of cucumbers to long photoperiod of lighting varies with light spectrum. Therefore, we set out to examine greenhouse tomato production under supplemental CL using an alternating red (200 µmol m-2 s-1, 06:00-18:00) and blue (50 µmol m-2 s-1, 18:00-06:00) spectrum in comparison to a 12 h supplemental lighting treatment with a red/blue mixture (200 µmol m-2 s-1 red + 50 µmol m-2 s-1 blue, 06:00-18:00) at the same DLI. Our results indicate that tomato plants grown under supplemental CL using the red and blue alternating spectrum were injury-free. Furthermore, parameters related to photosynthetic performance (i.e., Pnmax, quantum yield, and Fv/Fm) were similar between CL and 12 h lighting treatments indicating no detrimental effect of growth under CL. Leaves under CL produced higher net carbon exchange rates (NCER) during the subjective night period (18:00-06:00) compared to plants grown under 12 h lighting. Notably, 53 days into the treatment, leaves grown under CL produced positive NCER values (photosynthesis) during the subjective night period, a period typically associated with respiration. At 53 days into the growth cycle, it is estimated that leaves under CL will accumulate approximately 800 mg C m-2 more than leaves under 12 h lighting over a 24 h period. Leaves grown under CL also displayed similar diurnal patterns in carbohydrates (glucose, fructose, sucrose, and starch) as leaves under 12 h lighting indicating no adverse effects on carbohydrate metabolism under CL. Taken together, this study provides evidence that red and blue spectral alternations during CL allow for injury-free tomato production. We suggest that an alternating spectrum during CL may alleviate the injury typically associated with CL production in tomato.
Collapse
Affiliation(s)
- Jason Lanoue
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Jingming Zheng
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Celeste Little
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Alyssa Thibodeau
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Bernard Grodzinski
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|
5
|
Górska AM, Gouveia P, Borba AR, Zimmermann A, Serra TS, Lourenço TF, Margarida Oliveira M, Peterhänsel C, Saibo NJM. ZmbHLH80 and ZmbHLH90 transcription factors act antagonistically and contribute to regulate PEPC1 cell-specific gene expression in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:270-285. [PMID: 30900785 DOI: 10.1111/tpj.14323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/20/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Compartmentation of photosynthetic reactions between mesophyll and bundle sheath cells is a key feature of C4 photosynthesis and depends on the cell-specific accumulation of major C4 enzymes, such as phosphoenolpyruvate carboxylase 1. The ZmPEPC1 upstream region, which drives light-inducible and mesophyll-specific gene expression in maize, has been shown to keep the same properties when introduced into rice (C3 plant), indicating that rice has the transcription factors (TFs) needed to confer C4 -like gene expression. Using a yeast one-hybrid approach, we identified OsbHLH112, a rice basic Helix-Loop-Helix (bHLH) TF that interacts with the maize ZmPEPC1 upstream region. Moreover, we found that maize OsbHLH112 homologues, ZmbHLH80, and ZmbHLH90, also interact with the ZmPEPC1 upstream region, suggesting that these C4 regulators were co-opted from C3 plants. A transactivation assay in maize mesophyll protoplasts revealed that ZmbHLH80 represses, whereas ZmbHLH90 activates, ZmPEPC1 expression. In addition, ZmbHLH80 was shown to impair the ZmPEPC1 promoter activation caused by ZmbHLH90. We showed that ZmbHLH80 and ZmbHLH90 bind to the same cis-element within the ZmPEPC1 upstream region either as homodimers or heterodimers. The formation of homo- and heterodimers with higher oligomeric forms promoted by ZmbHLH80 may explain its negative effect on gene transcription. Gene expression analysis revealed that ZmbHLH80 is preferentially expressed in bundle sheath cells, whereas ZmbHLH90 does not show a clear cell-specific expression pattern. Altogether, our results led us to propose a model in which ZmbHLH80 contributes to mesophyll-specific ZmPEPC1 gene expression by impairing ZmbHLH90-mediated ZmPEPC1 activation in the bundle sheath cells.
Collapse
Affiliation(s)
- Alicja M Górska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Paulo Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Ana R Borba
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Anna Zimmermann
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
- Leibniz Universität Hannover, Institut für Botanik, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Tânia S Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Tiago F Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Maria Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Christoph Peterhänsel
- Leibniz Universität Hannover, Institut für Botanik, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| |
Collapse
|
6
|
Johansson M, Köster T. On the move through time - a historical review of plant clock research. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:13-20. [PMID: 29607587 DOI: 10.1111/plb.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock is an important regulator of growth and development that has evolved to help organisms to anticipate the predictably occurring events on the planet, such as light-dark transitions, and adapt growth and development to these. This review looks back in history on how knowledge about the endogenous biological clock has been acquired over the centuries, with a focus on discoveries in plants. Key findings at the physiological, genetic and molecular level are described and the role of the circadian clock in important molecular processes is reviewed.
Collapse
Affiliation(s)
- M Johansson
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - T Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Bettini PP, Marvasi M, Fani F, Lazzara L, Cosi E, Melani L, Mauro ML. Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants. JOURNAL OF PLANT PHYSIOLOGY 2016; 204:27-35. [PMID: 27497742 DOI: 10.1016/j.jplph.2016.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Insertion of Agrobacterium rhizogenes rolB gene into plant genome affects plant development, hormone balance and defence. However, beside the current research, the overall transcriptional response and gene expression of rolB as a modulator in plant is unknown. Transformed rolB tomato plant (Solanum lycopersicum L.) cultivar Tondino has been used to investigate the differential expression profile. Tomato is a well-known model organism both at the genetic and molecular level, and one of the most important commercial food crops in the world. Through the construction and characterization of a cDNA subtracted library, we have investigated the differential gene expression between transgenic clones of rolB and control tomato and have evaluated genes specifically transcribed in transgenic rolB plants. Among the selected genes, five genes encoding for chlorophyll a/b binding protein, carbonic anhydrase, cytochrome b6/f complex Fe-S subunit, potassium efflux antiporter 3, and chloroplast small heat-shock protein, all involved in chloroplast function, were identified. Measurement of photosynthesis efficiency by the level of three different photosynthetic parameters (Fv/Fm, rETR, NPQ) showed rolB significant increase in non-photochemical quenching and a, b chlorophyll content. Our results point to highlight the role of rolB on plant fitness by improving photosynthesis.
Collapse
Affiliation(s)
- Priscilla P Bettini
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Massimiliano Marvasi
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Fabiola Fani
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Luigi Lazzara
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Elena Cosi
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Lorenzo Melani
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Maria Luisa Mauro
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
8
|
Campos N, Torné JM, Bleda MJ, Manich A, Urreta I, Montalbán IA, Castañón S, Moncalean P, Santos M. Proteomic and transcriptomic analysis of rice tranglutaminase and chloroplast-related proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:142-153. [PMID: 25443841 DOI: 10.1016/j.plantsci.2014.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 05/09/2023]
Abstract
The recently cloned rice transglutaminase gene (tgo) is the second plant transglutaminase identified to date (Campos et al. Plant Sci. 205-206 (2013) 97-110). Similarly to its counterpart in maize (tgz), this rice TGase was localized in the chloroplast, although in this case not exclusively. To further characterise plastidial tgo functionality, proteomic and transcriptomic studies were carried out to identify possible TGO-related proteins. Some LHCII antenna proteins were identified as TGO related using an in vitro proteomic approach, as well as ATPase and some PSII core proteins by mass spectrometry. To study the relationship between TGO and other plastidial proteins, a transcriptomic in vivo Dynamic Array (Fluidigm™) was used to analyse the mRNA expression of 30 plastidial genes with respect to that of tgo, in rice plants subjected to different periods of continuous illumination. The results indicated a gene-dependent tendency in the expression pattern that was related to tgo expression and to the illumination cycle. For certain genes, including tgo, significant differences between treatments, principally at the initiation and/or at the end of the illumination period, connected with the day/night cycling of gene expression, were observed. The tgo expression was especially related to plastidial proteins involved in photoprotection and the thylakoid electrochemical gradient.
Collapse
Affiliation(s)
- N Campos
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - J M Torné
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - M J Bleda
- Institute of Advanced Chemistry of Catalonia IQAC, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - A Manich
- Department of Chemical and Surfactants Technology, Institute of Advanced Chemistry of Catalonia IQAC, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - I Urreta
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Vitoria, Campus Agroalimentario de Arkaute, Aptdo.46, E-01080 Vitoria-Gasteiz, Araba, Spain.
| | - I A Montalbán
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Campus Agroalimentario de Arkaute Apto 46, E-01080, Vitoria-Gasteiz, Araba, Spain.
| | - S Castañón
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Campus Agroalimentario de Arkaute, Aptdo.46, E-01080 Vitoria-Gasteiz, Araba, Spain.
| | - P Moncalean
- Biotechnology Department, Neiker-Tecnalia, Arkaute, Campus Agroalimentario de Arkaute, Apto 46, E-01080 Vitoria-Gasteiz, Araba, Spain.
| | - M Santos
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
9
|
Nose M, Watanabe A. Clock genes and diurnal transcriptome dynamics in summer and winter in the gymnosperm Japanese cedar (Cryptomeria japonica (L.f.) D.Don). BMC PLANT BIOLOGY 2014; 14:308. [PMID: 25403374 PMCID: PMC4245765 DOI: 10.1186/s12870-014-0308-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/27/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND The circadian clock and diurnal dynamics of the transcriptome are presumed to play important roles in the regulation of physiological, biological and developmental processes synchronized with diurnal and annual cycles of plant environments. However, little is known about the circadian clock and its regulation in gymnosperms, including conifers. Here we present the diurnal transcriptome dynamics of Japanese cedar (Cryptomeria japonica (L.f.) D.Don) in both active (summer) and dormant (winter) periods. RESULTS Microarray analysis revealed significant differences in transcripts between summer and winter, and diurnal transcriptome dynamics only in the summer. About 7.7% of unique genes (556 out of 7,254) on the microarray were periodically expressed in summer. Expression patterns of some genes, especially light-related genes, did not show significant oscillation in Japanese cedar, thus differing from those reported in angiosperms. Gene network analysis of the microarray data revealed a network associated with the putative core clock genes (CjLHYa, CjLHYb, CjTOC1, CjGI and CjZTL), which were also isolated, indicating their importance in the diurnal regulation of the transcriptome. CONCLUSION This study revealed the existence of core clock genes and diurnal rhythms of the transcriptome in summer in Japanese cedar. Dampening of diurnal rhythms in winter indicated seasonal change in the rhythms according to environmental conditions. The data also revealed genes that showed different expression patterns compared to angiosperms, suggesting a unique gene regulatory network in conifers. This study provides fundamental data to understand transcriptional regulatory mechanisms in conifers.
Collapse
Affiliation(s)
- Mine Nose
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Ibaraki, 319-1301, Japan.
| | - Atsushi Watanabe
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Ibaraki, 319-1301, Japan.
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
10
|
Zhu SH, Green BR. Photoprotection in the diatom Thalassiosira pseudonana: Role of LI818-like proteins in response to high light stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1449-57. [DOI: 10.1016/j.bbabio.2010.04.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/11/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
|
11
|
|
12
|
Klimmek F, Sjödin A, Noutsos C, Leister D, Jansson S. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. PLANT PHYSIOLOGY 2006; 140:793-804. [PMID: 16524980 PMCID: PMC1400566 DOI: 10.1104/pp.105.073304] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/27/2005] [Accepted: 12/27/2005] [Indexed: 05/07/2023]
Abstract
We have analyzed gene regulation of the Lhc supergene family in poplar (Populus spp.) and Arabidopsis (Arabidopsis thaliana) using digital expression profiling. Multivariate analysis of the tissue-specific, environmental, and developmental Lhc expression patterns in Arabidopsis and poplar was employed to characterize four rarely expressed Lhc genes, Lhca5, Lhca6, Lhcb7, and Lhcb4.3. Those genes have high expression levels under different conditions and in different tissues than the abundantly expressed Lhca1 to 4 and Lhcb1 to 6 genes that code for the 10 major types of higher plant light-harvesting proteins. However, in some of the datasets analyzed, the Lhcb4 and Lhcb6 genes as well as an Arabidopsis gene not present in poplar (Lhcb2.3) exhibited minor differences to the main cooperative Lhc gene expression pattern. The pattern of the rarely expressed Lhc genes was always found to be more similar to that of PsbS and the various light-harvesting-like genes, which might indicate distinct physiological functions for the rarely and abundantly expressed Lhc proteins. The previously undetected Lhcb7 gene encodes a novel plant Lhcb-type protein that possibly contains an additional, fourth, transmembrane N-terminal helix with a highly conserved motif. As the Lhcb4.3 gene seems to be present only in Eurosid species and as its regulation pattern varies significantly from that of Lhcb4.1 and Lhcb4.2, we conclude it to encode a distinct Lhc protein type, Lhcb8.
Collapse
Affiliation(s)
- Frank Klimmek
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Sweden
| | | | | | | | | |
Collapse
|
13
|
Hoffrogge R, Mikschofsky H, Piechulla B. Surface plasmon resonance spectroscopy (SPR) interaction studies of the circadian-controlled tomato LHCa4*1 (CAB 11) protein with its promoter. Chronobiol Int 2003; 20:543-58. [PMID: 12916712 DOI: 10.1081/cbi-120022410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Feedback regulation is an important biochemical mechanism which is also able to direct the circadian timing at the transcriptional level. Independent investigations highlighted a conserved ca. 10 nucleotide motif present in many circadian regulated Lhc genes. Two of such nucleotide motifs exist within 119 nucleotides of the Lhca4*1 promoter from tomato. This promoter fragment was used as a bait in a yeast one hybrid screen and interestingly a clone encoding with sequence identity to the LHCa4*1 protein was isolated as an interaction partner. The LHCa4*1 protein was heterologous expressed and binding to the 119bp promoter fragment was demonstrated by surface plasmon resonance spectroscopy (SPR, Biacore). This result allows to postulate an autoregulatory feedback loop involved in expression of the Lhca4*1 gene.
Collapse
Affiliation(s)
- Raimund Hoffrogge
- Department of Biological Sciences, Division of Biochemistry, University of Rostock, Rostock, Germany
| | | | | |
Collapse
|
14
|
Pott MB, Effmert U, Piechulla B. Transcriptional and post-translational regulation of S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SAMT) during Stephanotis floribunda flower development. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:635-643. [PMID: 12872485 DOI: 10.1078/0176-1617-00968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Methyl salicylate (MeSA) and a number of other volatiles are primarily emitted in the evening/night by Stephanotis floribunda leading to attraction of night active pollinators. A second minor emission peak for MeSA occurs in the morning/day. To understand these emission patterns, we have studied in detail the temporal regulation of the last step of the biosynthetic pathway of MeSA, the convertion of salicylic acid (SA) to MeSA catalysed by S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SAMT). We observed that in young flowers a maximum in SAMT activity occurs in the night, and that in flowers which were open longer than 4 days, two SAMT activity maxima occurred per day. These maxima correlated well with dawn and dusk and the previously detected MeSA emission peaks. The SAMT mRNA levels, however, have a broad maximum during the dark phase, while the SAMT protein levels continuously increase during floral development without showing daily rhythms. Furthermore, under continuous illumination (LL) the SAMT mRNA levels and activity patterns oscillate, suggesting the involvement of a circadian clock in the regulation network. Taken together, this analysis clearly demonstrates that regulation of MeSA emission occurs both at the transcriptional and post-translational levels, indicating that control at more than one level is necessary to guarantee the precise timing of volatile emission in flowers of S. floribunda.
Collapse
Affiliation(s)
- Marcella B Pott
- University of Rostock, Department of Molecular Physiology and Biotechnology, Albert-Einstein-Str. 3, 18051 Rostock, Germany
| | | | | |
Collapse
|
15
|
|
16
|
Christensen S, Silverthorne J. Origins of phytochrome-modulated Lhcb mRNA expression in seed plants. PLANT PHYSIOLOGY 2001; 126:1609-1618. [PMID: 11500559 PMCID: PMC117160 DOI: 10.1104/pp.126.4.1609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Revised: 03/07/2001] [Accepted: 05/02/2001] [Indexed: 05/23/2023]
Abstract
The levels of Lhcb mRNA in higher plants are regulated by phytochrome, cryptochrome, and an endogenous circadian oscillator. To determine whether similar regulatory mechanisms operate in the ancient gymnosperm Ginkgo biloba, we measured Lhcb mRNA levels in seedlings in response to different light conditions. Removal of a diurnally oscillating light stimulus caused dampening of maximal Lhcb mRNA accumulation levels, with little change in periodicity. Although low fluence pulses of both red and blue light given to etiolated seedlings caused maximal accumulation of Lhcb mRNAs characteristic of the phasic/circadian response seen in flowering plants, the additional initial acute response seen in flowering plants was absent. The induction of Lhcb gene expression in both cases was at least partially reversible by far-red light, and appeared biphasic over a range of red fluences. Together, these data indicate that Lhcb genes in G. biloba appear to be regulated in a manner similar to that of flowering plants, whereas signaling and attenuation of mRNA levels through the photoreceptor systems and circadian clock show features distinct from those characterized to date. The implications for these findings are discussed in light of the evolution of circadian clock input signaling.
Collapse
Affiliation(s)
- S Christensen
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
17
|
Abstract
Photosynthesis is one of the important processes that enable life on earth. To optimize photosynthesis reactions during a solar day, most of them are timed to be active during the light phase. This includes the components of the thylakoid membranes in chloroplasts. Prominent representatives are the proteins of the light-harvesting complex (LHC). The synthesis of both the Lhc mRNA and the LHC protein occurs during the day and is regulated by the circadian clock, exhibiting the following pattern: increasing levels after sunrise, reaching a maximum around noon, and decreasing levels in the afternoon. To elucidate the involved control elements and regulatory circuits, the following strategies were applied: (1) analysis of promoters of Lhc genes, (2) analysis of DNA binding proteins, and (3) screening and investigation of mutants. The most promising elements found so far that may be involved in mediating the circadian rhythmicity of Lhc mRNA oscillations are a myb-like transcription factor CCA1 (Wang et al. 1997) and the corresponding DNA binding sequence (Piechulla et al. 1998).
Collapse
Affiliation(s)
- B Piechulla
- University of Rostock, Department of Molecular Physiology of Plants and Microorganisms, Rostock, Germany
| |
Collapse
|
18
|
Jones TL, Tucker DE, Ort DR. Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. PLANT PHYSIOLOGY 1998; 118:149-58. [PMID: 9733534 PMCID: PMC34851 DOI: 10.1104/pp.118.1.149] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/1998] [Accepted: 06/08/1998] [Indexed: 05/19/2023]
Abstract
Overnight low-temperature exposure inhibits photosynthesis in chilling-sensitive species such as tomato (Lycopersicon esculentum) and cucumber by as much as 60%. In an earlier study we showed that one intriguing effect of low temperature on chilling-sensitive plants is to stall the endogenous rhythm controlling transcription of certain nuclear-encoded genes, causing the synthesis of the corresponding transcripts and proteins to be mistimed when the plant is rewarmed. Here we show that the circadian rhythm controlling the activity of sucrose phosphate synthase (SPS) and nitrate reductase (NR), key control points of carbon and nitrogen metabolism in plant cells, is delayed in tomato by chilling treatments. Using specific protein kinase and phosphatase inhibitors, we further demonstrate that the chilling-induced delay in the circadian control of SPS and NR activity is associated with the activity of critical protein phosphatases. The sensitivity of the pattern of SPS activity to specific inhibitors of transcription and translation indicates that there is a chilling-induced delay in SPS phosphorylation status that is caused by an effect of low temperature on the expression of a gene coding for a phosphoprotein phosphatase, perhaps the SPS phosphatase. In contrast, the chilling-induced delay in NR activity does not appear to arise from effects on NR phosphorylation status, but rather from direct effects on NR expression. It is likely that the mistiming in the regulation of SPS and NR, and perhaps other key metabolic enzymes under circadian regulation, underlies the chilling sensitivity of photosynthesis in these plant species.
Collapse
Affiliation(s)
- TL Jones
- Department of Plant Biology (T.L.J., D.E.T., D.R.O.)
| | | | | |
Collapse
|
19
|
Peters JL, Szell M, Kendrick RE. The expression of light-regulated genes in the high-pigment-1 mutant of tomato. PLANT PHYSIOLOGY 1998; 117:797-807. [PMID: 9662522 PMCID: PMC34934 DOI: 10.1104/pp.117.3.797] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/1997] [Accepted: 04/06/1998] [Indexed: 05/22/2023]
Abstract
Three light-regulated genes, chlorophyll a/b-binding protein (CAB), ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, and chalcone synthase (CHS), are demonstrated to be up-regulated in the high-pigment-1 (hp-1) mutant of tomato (Lycopersicon esculentum Mill. ) compared with wild type (WT). However, the pattern of up-regulation of the three genes depends on the light conditions, stage of development, and tissue studied. Compared with WT, the hp-1 mutant showed higher CAB gene expression in the dark after a single red-light pulse and in the pericarp of immature fruits. However, in vegetative tissues of light-grown seedlings and adult plants, CAB mRNA accumulation did not differ between WT and the hp-1 mutant. The ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit mRNA accumulated to a higher level in the hp-1 mutant than WT under all light conditions and tissues studied, whereas CHS gene expression was up-regulated in de-etiolated vegetative hp-1-mutant tissues only. The CAB and CHS genes were shown to be phytochrome regulated and both phytochrome A and B1 play a role in CAB gene expression. These observations support the hypothesis that the HP-1 protein plays a general repressive role in phytochrome signal transduction.
Collapse
Affiliation(s)
- JL Peters
- Laboratory for Photoperception and Signal Transduction, Frontier Research Program, Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama, 351-0198 Japan
| | | | | |
Collapse
|
20
|
|
21
|
Savard F, Richard C, Guertin M. The Chlamydomonas reinhardtii LI818 gene represents a distant relative of the cabI/II genes that is regulated during the cell cycle and in response to illumination. PLANT MOLECULAR BIOLOGY 1996; 32:461-473. [PMID: 8980495 DOI: 10.1007/bf00019098] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the green unicellular alga Chlamydomonas reinhardtii, as in higher plants, the expression of the genes encoding the chlorophyll a/b-binding (CAB) polypeptides associated with photosystem I (PSI) and photosystem II (PSII) is regulated by endogenous (circadian clock) and exogenous signals (light and temperature). The circadian clock ensures that the oscillation in the levels of the different cab mRNAs is continuously kept in phase with light/dark (LD) cycles and is maximal by the middle of the day. On the other hand, light controls the amplitude of the oscillations. We report here the cloning and characterization of the C. reinhardtii LI818 gene, which identifies a CAB-related polypeptide and whose expression is regulated quite differently from the cab I/II genes. We show: (1) that in LD synchronized Chlamydomonas cells LI818 mRNA accumulation is subject to dual regulation that involves separable regulation by light and an endogenous oscillator; (2) that LI818 mRNA is fully expressed several hours before the cab I/II mRNAs and that the latter accumulate concomitantly; (3) that blocking the electron flow through PSII using DCMU prevents cells from accumulating cab I/II mRNAs but not LI818 mRNA and (4) that the accumulation of LI818 mRNA is abolished by blocking cytoplasmic protein synthesis, suggesting that these regulatory mechanisms are mediated by labile proteins.
Collapse
Affiliation(s)
- F Savard
- Département de Biochimie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | | | | |
Collapse
|
22
|
Winter L, Stöcker S, Merforth N, Mühlbach HP, Piechulla B. Circadian oscillations of Lhc mRNAs in a photoautotrophic cell culture of Lycopersicon peruvianum. PHOTOSYNTHESIS RESEARCH 1996; 47:77-84. [PMID: 24301709 DOI: 10.1007/bf00017755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/1995] [Accepted: 11/06/1995] [Indexed: 06/02/2023]
Abstract
Fourteen genes encoding proteins of the light harvesting complex (Lhc) are expressed in a photoautotrophic cell culture from the wild species of tomato (Lycopersicon peruvianum). For two genes, Lhca2 (cab7) and Lhcb2(*)1 (cab4), a rhythmic oscillation of the transcript accumulation is observed under light/dark and constant dark conditions indicating that gene expression is controlled by a circadian clock in the tomato cell culture. The circadian expression of the Lhc genes remains present after application of 2,2'-dipyridyl. However, the amplitude of Lhc mRNA oscillations and the photosynthetic capacity (Fmax/Fo) decrease significantly. The transcript accumulations of psbA, rbcS and rbcL are less or not at all affected by 2,2'-dipyridyl.
Collapse
Affiliation(s)
- L Winter
- Institut für Biochemie der Pflanze, Untere Karspüle 2, 37073, Göttingen, Germany
| | | | | | | | | |
Collapse
|
23
|
Kellmann JW, Kleinow T, Engelhardt K, Philipp C, Wegener D, Schell J, Schreier PH. Characterization of two class II chitinase genes from peanut and expression studies in transgenic tobacco plants. PLANT MOLECULAR BIOLOGY 1996; 30:351-8. [PMID: 8616259 DOI: 10.1007/bf00020121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two different genes encoding class II chitinases from peanut (Arachis hypogaea L. cv. NC4), A.h.Chi2;1 and A.h.Chi2;2, have been cloned. In peanut cell suspension cultures, mRNA levels of A.h.Chi2;2 increased after ethylene or salicylate treatment and in the presence of conidia from Botrytis cinerea. The second gene, A.h.Chi2;1, was only expressed after treatment with the fungal spores. Transgenic tobacco plants containing the complete peanut A.h.Chi2;1 gene exhibited essentially the same expression pattern in leaves as observed in peanut cell cultures. Expression characteristics of transgenic tobacco carrying a promoter-GUS fusion of A.h.Chi2;1 are described.
Collapse
Affiliation(s)
- J W Kellmann
- Max-Planck-Institut für Züchtungsforschung, Köln, FRG
| | | | | | | | | | | | | |
Collapse
|
24
|
Morishige DT, Preiss S. Light-induced biogenesis of the light-harvesting complexes of Photosystems I and II : Gene expression and protein accumulation. PHOTOSYNTHESIS RESEARCH 1995; 44:183-190. [PMID: 24307037 DOI: 10.1007/bf00018308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/1994] [Accepted: 01/21/1995] [Indexed: 06/02/2023]
Abstract
The light-harvesting complexes of Photosystems I and II contain multiple chlorophyll-carotenoid-binding proteins. The stoichiometry and topology of the LHCs is precisely defined to optimally funnel captured light energy to the reaction center. The manner in which this exact arrangement is accomplished is not known. As an initial means to understand the mechanisms involved in establishing a functional LHC, the influence of light on LHC gene expression and protein accumulation was studied during the light-induced greening of etiolated wild type and chlorophyll b-less mutant barley seedlings. Light, involving phytochrome, promotes the expression of all LHC genes with the same relative kinetics. LHC protein accumulation closely parallels the increases observed in transcript levels. Differential accumulation of LHC transcripts or protein was not evident in wild type seedlings. Post-translational factors are likely to be involved in fine tuning the position and stoichiometry of the individual LHCs around the reaction center.
Collapse
Affiliation(s)
- D T Morishige
- Department of Biology, University of California/Los Angeles, 90024-1606, Los Angeles, CA, USA
| | | |
Collapse
|
25
|
Hwang S, Herrin DL. Control of lhc gene transcription by the circadian clock in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1994; 26:557-69. [PMID: 7948912 DOI: 10.1007/bf00013743] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transcription of nuclear lhc genes has been shown to be under circadian clock control in angiosperms. but many aspects of this regulation have not been elucidated. Unicellular organisms, such as the green alga Chlamydomonas reinhardtii, offer significant advantages for the study of cellular clocks. Therefore, we have asked whether lhc gene expression is regulated by a circadian clock in C. reinhardtii. The mRNA for a photosystem I chlorophyll a/b apoprotein showed a strong diurnal rhythm in cells growing under 12 h/12 h light/dark (LD) cycles; the mRNA accumulated and then declined during the light period reaching very low levels at mid-dark. A similar diurnal pattern was documented for rbcS mRNA. In LD-grown cells shifted to continuous light, the ca. 24 h rhythm of lhca1 mRNA continued for at least 2 cycles. In LD-grown cells shifted to continuous darkness the rhythm of lhca1, but not rbcS2, mRNA also continued, although at lower absolute levels than in LD-grown cells. Also, in the cells shifted to continuous dark, the lhca1 mRNA rhythm persisted in the absence of significant cell division. Pulse-labelling with 32PO4 and sensitivity to actinomycin D demonstrated that control of lhca1 (and rbcS) is mainly transcriptional. However, it was also shown that the half-life of lhca1 mRNA (and rbcS2) is short (1-2 h) and may also vary somewhat during a cycle. We conclude that a cellular, circadian clock regulates lhca1 transcription in C. reinhardtii.
Collapse
Affiliation(s)
- S Hwang
- Botany Department, University of Texas at Austin 78713
| | | |
Collapse
|
26
|
Nikaido SS, Locke CR, Weeks DP. Automated sampling and RNA isolation at room temperature for measurements of circadian rhythms in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1994; 26:275-284. [PMID: 7948876 DOI: 10.1007/bf00039538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of techniques allowing the unattended collection of RNA from cell samples at room temperature makes practical accurate and facile monitoring of circadian rhythms in Chlamydomonas reinhardtii. The utility of these methods was demonstrated by collecting RNA samples for three days from cells maintained in continuous darkness. Every hour, cells were automatically collected and lysed with buffer containing SDS and proteinase K. Samples were maintained at room temperature with little or no evidence of degradation of RNA. Strong, non-damping circadian rhythms of cab mRNA abundance were measured. Free-running rhythms of about 24 h were measured from cultures maintained at 16, 20, 25 and 30 degrees C, thus demonstrating temperature compensation of circadian period. Simultaneous collections from cultures previously entrained to 12 h light/12 h dark cycles of opposite phase displayed circadian rhythms of cab mRNA abundance that were in phase with their previous entraining light cycles. Thus, this result suggests that the measured circadian rhythms of cab mRNA abundance was not an artifact of the collection procedure.
Collapse
Affiliation(s)
- S S Nikaido
- Department of Biochemistry, University of Nebraska-Lincoln 68583-0718
| | | | | |
Collapse
|
27
|
Piechulla B. 'Circadian clock' directs the expression of plant genes. PLANT MOLECULAR BIOLOGY 1993; 22:533-542. [PMID: 8329689 DOI: 10.1007/bf00015982] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- B Piechulla
- Institut für Biochemie der Pflanze, Göttingen, Germany
| |
Collapse
|