1
|
Jost A, Pfeifer F. Interaction of the gas vesicle proteins GvpA, GvpC, GvpN, and GvpO of Halobacterium salinarum. Front Microbiol 2022; 13:971917. [PMID: 35966690 PMCID: PMC9372576 DOI: 10.3389/fmicb.2022.971917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
|
2
|
Born J, Weitzel K, Suess B, Pfeifer F. A Synthetic Riboswitch to Regulate Haloarchaeal Gene Expression. Front Microbiol 2021; 12:696181. [PMID: 34211452 PMCID: PMC8241225 DOI: 10.3389/fmicb.2021.696181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, synthetic riboswitches have become increasingly important to construct genetic circuits in all three domains of life. In bacteria, synthetic translational riboswitches are often employed that modulate gene expression by masking the Shine-Dalgarno (SD) sequence in the absence or presence of a cognate ligand. For (halo-)archaeal translation, a SD sequence is not strictly required. The application of synthetic riboswitches in haloarchaea is therefore limited so far, also because of the molar intracellular salt concentrations found in these microbes. In this study, we applied synthetic theophylline-dependent translational riboswitches in the archaeon Haloferax volcanii. The riboswitch variants A through E and E∗ were chosen since they not only mask the SD sequence but also the AUG start codon by forming a secondary structure in the absence of the ligand theophylline. Upon addition of the ligand, the ribosomal binding site and start codon become accessible for translation initiation. Riboswitch E mediated a dose-dependent, up to threefold activation of the bgaH reporter gene expression. Raising the salt concentration of the culture media from 3 to 4 M NaCl resulted in a 12-fold increase in the switching capacity of riboswitch E, and switching activity increased up to 26-fold when the cultivating temperature was reduced from 45 to 30°C. To construct a genetic circuit, riboswitch E was applied to regulate the synthesis of the transcriptional activator GvpE allowing a dose-dependent activation of the mgfp6 reporter gene under P pA promoter control.
Collapse
Affiliation(s)
| | | | - Beatrix Suess
- Synthetic RNA Biology, Department of Biology, Technical University Darmstadt, Darmstadt, Germany.,Centre of Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
3
|
Aldeguer-Riquelme B, Ramos-Barbero MD, Santos F, Antón J. Environmental dissolved DNA harbours meaningful biological information on microbial community structure. Environ Microbiol 2021; 23:2669-2682. [PMID: 33817941 DOI: 10.1111/1462-2920.15510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/03/2021] [Indexed: 01/21/2023]
Abstract
Extracellular DNA (eDNA) comprises all the DNA molecules outside cells. This component of microbial ecosystems may serve as a source of nutrients and genetic information. Hypersaline environments harbour one of the highest concentrations of eDNA reported for natural systems, which has been attributed to the physicochemical preservative effect of salts and to high viral abundance. Here, we compared centrifugation and filtration protocols for the extraction of dissolved DNA (dDNA, as opposed to eDNA that also includes DNA from free viral particles) from a solar saltern crystallizer pond (CR30) water sample. The crystallizer dDNA fraction has been characterized, for the first time, and compared with cellular and viral metagenomes from the same location. High-speed centrifugation affected CR30 dDNA concentration and composition due to cell lysis, highlighting that protocol optimization should be the first step in dDNA studies. Crystallizer dDNA, which accounted for lower concentrations than those previously reported for hypersaline anoxic sediments, had a mixed viral and cellular origin, was enriched in archaeal DNA and had a distinctive taxonomic composition compared to that from the cellular assemblage of the same sample. Bioinformatic analyses indicated that nanohaloarchaeal viruses could be a cause for these differences.
Collapse
Affiliation(s)
- Borja Aldeguer-Riquelme
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, 03080, Spain
| | | | - Fernando Santos
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, 03080, Spain
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, 03080, Spain.,Multidisciplinary Institute of Environmental Studies Ramón Margalef, University of Alicante, Alicante, 03080, Spain
| |
Collapse
|
4
|
Völkner K, Jost A, Pfeifer F. Accessory Gvp Proteins Form a Complex During Gas Vesicle Formation of Haloarchaea. Front Microbiol 2020; 11:610179. [PMID: 33281806 PMCID: PMC7688916 DOI: 10.3389/fmicb.2020.610179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Halobacterium salinarum forms gas vesicles consisting of a protein wall surrounding a gas-filled space. The hydrophobic 8-kDa protein GvpA is the major constituent of the ribbed wall, stabilized by GvpC at the exterior surface. In addition, eight accessory Gvp proteins are involved, encoded by gvpFGHIJKLM that are co-transcribed in early stages of growth. Most of these proteins are essential, but their functions are not yet clear. Here we investigate whether GvpF through GvpM interact. Pull-down experiments performed in Haloferax volcanii with the cellulose-binding-domain as tag suggested many interactions, and most of these were supported by the split-GFP analyses. The latter study indicated that GvpL attracted all other accessory Gvp, and the related GvpF bound besides GvpL also GvpG, GvpH and GvpI. A strong interaction was found between GvpH and GvpI. GvpG showed affinity to GvpF and GvpL, whereas GvpJ, GvpK and GvpM bound GvpL only. Using GvpA for similar analyses yielded GvpF as the only interaction partner. The contact site of GvpF was confined to the N-terminal half of GvpA and subsequently mapped to certain amino acids. Taken together, our results support the idea that the accessory Gvp form a complex early in gas-vesicle assembly attracting GvpA via GvpF.
Collapse
Affiliation(s)
- Kerstin Völkner
- Microbiology and Archaea, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Alisa Jost
- Microbiology and Archaea, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Martínez-Espinosa RM. Heterologous and Homologous Expression of Proteins from Haloarchaea: Denitrification as Case of Study. Int J Mol Sci 2019; 21:E82. [PMID: 31877629 PMCID: PMC6981372 DOI: 10.3390/ijms21010082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022] Open
Abstract
Haloarchaea (halophilic microbes belonging to the Archaea domain) are microorganisms requiring mid or even high salt concentrations to be alive. The molecular machinery of these organisms is adapted to such conditions, which are stressful for most life forms. Among their molecular adaptations, halophilic proteins are characterized by their high content of acidic amino acids (Aspartate (Asp) and glumate (Glu)), being only stable in solutions containing high salt concentration (between 1 and 4 M total salt concentration). Recent knowledge about haloarchaeal peptides, proteins, and enzymes have revealed that many haloarchaeal species produce proteins of interest due to their potential applications in biotechnology-based industries. Although proteins of interest are usually overproduced in recombinant prokaryotic or eukaryotic expression systems, these procedures do not accurately work for halophilic proteins, mainly if such proteins contain metallocofactors in their structures. This work summarizes the main challenges of heterologous and homologous expression of enzymes from haloarchaea, paying special attention to the metalloenzymes involved in the pathway of denitrification (anaerobic reduction of nitrate to dinitrogen), a pathway with significant implications in wastewater treatment, climate change, and biosensor design.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences and Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
6
|
Born J, Pfeifer F. Improved GFP Variants to Study Gene Expression in Haloarchaea. Front Microbiol 2019; 10:1200. [PMID: 31191505 PMCID: PMC6550001 DOI: 10.3389/fmicb.2019.01200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 12/04/2022] Open
Abstract
The study of promoter activities in haloarchaea is carried out exclusively using enzymes as reporters. An alternative reporter is the gene encoding the Green Fluorescent Protein (GFP), a simple and fast tool for investigating promoter strengths. However, the GFP variant smRS-GFP, used to analyze protein stabilities in haloarchaea, is not suitable to quantify weak promoter activities, since the fluorescence signal is too low. We enhanced the fluorescence of smRS-GFP 3.3-fold by introducing ten amino acid substitutions, resulting in mGFP6. Using mGFP6 as reporter, we studied six haloarchaeal promoters exhibiting different promoter strengths. The strongest activity was observed with the housekeeping promoters Pfdx of the ferredoxin gene and P2 of the ribosomal 16S rRNA gene. Much lower activities were determined for the promoters of the p-vac region driving the expression of gas vesicle protein (gvp) genes in Halobacterium salinarum PHH1. The basal promoter strength dropped in the order PpA, PpO > PpF, PpD. All promoters showed a growth-dependent activity pattern. The GvpE-induced activities of PpA and PpD were high, but lower compared to the Pfdx or P2 promoter activities. The mGFP6 reporter was also used to investigate the regulatory effects of 5′-untranslated regions (5′-UTRs) of three different gvp mRNAs. A deletion of the 5′-UTR always resulted in an increased expression, implying a negative effect of the 5′-UTRs on translation. Our experiments confirmed mGFP6 as simple, fast and sensitive reporter to study gene expression in haloarchaea.
Collapse
Affiliation(s)
- Johannes Born
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Winter K, Born J, Pfeifer F. Interaction of Haloarchaeal Gas Vesicle Proteins Determined by Split-GFP. Front Microbiol 2018; 9:1897. [PMID: 30174663 PMCID: PMC6107691 DOI: 10.3389/fmicb.2018.01897] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/27/2018] [Indexed: 11/24/2022] Open
Abstract
Several extremely halophilic archaea produce proteinaceous gas vesicles consisting of a gas-permeable protein wall constituted mainly by the gas vesicle proteins GvpA and GvpC. Eight additional accessory Gvp are involved in gas vesicle formation and might assist the assembly of this structure. Investigating interactions of halophilic proteins in vivo requires a method functioning at 2.5–5 M salt, and the split-GFP method was tested for this application. The two fragments NGFP and CGFP do not assemble a fluorescent GFP protein when produced in trans, but they assemble a fluorescent GFP when fused to interacting proteins. To adapt the method to high salt, we used the genes encoding two fragments of the salt-stable mGFP2 to construct four vector plasmids that allow an N- or C-terminal fusion to the two proteins of interest. To avoid a hindrance in the assembly of mGFP2, the fusion included a linker of 15 or 19 amino acids. The small gas vesicle accessory protein GvpM and its interaction partners GvpH, GvpJ, and GvpL were investigated by split-GFP. Eight different combinations were studied in each case, and fluorescent transformants indicative of an interaction were observed. We also determined that GvpF interacts with GvpM and uncovered the location of the interaction site of each of these proteins in GvpM. GvpL mainly interacted with the N-terminal 25-amino acid fragment of GvpM, whereas the other three proteins bound predominately to the C-terminal portion. Overall, the split-GFP method is suitable to investigate the interaction of two proteins in haloarchaeal cells. In future experiments, we will study the interactions of the remaining Gvps and determine whether some or all of these accessory Gvp proteins form (a) protein complex(es) during early stages of the assembly of the gas vesicle wall.
Collapse
Affiliation(s)
- Kerstin Winter
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Johannes Born
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
8
|
Construction of Expression Shuttle Vectors for the Haloarchaeon Natrinema sp. J7 Based on Its Chromosomal Origins of Replication. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:4237079. [PMID: 28348508 PMCID: PMC5350488 DOI: 10.1155/2017/4237079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/28/2016] [Accepted: 12/26/2016] [Indexed: 12/11/2022]
Abstract
Haloarchaeon Natrinema sp. J7, the first reported archaeon harboring both plasmid and chromosome-based temperate viruses, is a useful model for investigating archaeal virus-host and virus-virus interactions. However, the lack of genetic tools has limited such studies. On the basis of the automatically replicating sequences of the J7 chromosome and the pyrF marker, we constructed seven vectors, six of which were confirmed to possess replication ability in a pyrF-deletion derivative of J7 (J7-F). Among these vectors, pFJ1, pFJ4, and pFJ6 could be transformed into the host strain with relatively high efficiency (approximately 103 colony-forming units/μg DNA) and were present at about one copy per chromosome. These three vectors could be stably maintained in J7-F without selection and were used for heterologous protein expression. Only pFJ6 was found to be present in the transformed cells in an exclusively episomal, nonintegrated state (one copy per chromosome). In contrast, some pFJ1 and pFJ4 DNA was probably integrated into the J7-F chromosome. In addition, pFJ6 was found to be compatible with pYCJ in J7 cells, suggesting that these two vectors could be used for further studies of virus-virus and virus-host interactions.
Collapse
|
9
|
Identification, Characterization, and Application of the Replicon Region of the Halophilic Temperate Sphaerolipovirus SNJ1. J Bacteriol 2016; 198:1952-1964. [PMID: 27137505 DOI: 10.1128/jb.00131-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The temperate haloarchaeal virus SNJ1 displays lytic and lysogenic life cycles. During the lysogenic cycle, the virus resides in its host, Natrinema sp. strain J7-1, in the form of an extrachromosomal circular plasmid, pHH205. In this study, a 3.9-kb region containing seven predicted genes organized in two operons was identified as the minimal replicon of SNJ1. Only RepA, encoded by open reading frame 11-12 (ORF11-12), was found to be essential for replication, and its expression increased during the lytic cycle. Sequence analysis suggested that RepA is a distant homolog of HUH endonucleases, a superfamily that includes rolling-circle replication initiation proteins from various viruses and plasmids. In addition to RepA, two genetic elements located within both termini of the 3.9-kb replicon were also required for SNJ1 replication. SNJ1 genome and SNJ1 replicon-based shuttle vectors were present at 1 to 3 copies per chromosome. However, the deletion of ORF4 significantly increased the SNJ1 copy number, suggesting that the product of ORF4 is a negative regulator of SNJ1 abundance. Shuttle vectors based on the SNJ1 replicon were constructed and validated for stable expression of heterologous proteins, both in J7 derivatives and in Natrinema pallidum JCM 8980(T), suggesting their broad applicability as genetic tools for Natrinema species. IMPORTANCE Archaeal viruses exhibit striking morphological diversity and unique gene content. In this study, the minimal replicon of the temperate haloarchaeal virus SNJ1 was identified. A number of ORFs and genetic elements controlling virus genome replication, maintenance, and copy number were characterized. In addition, based on the replicon, a novel expression shuttle vector has been constructed and validated for protein expression and purification in Natrinema sp. CJ7 and Natrinema pallidum JCM 8980(T) This study not only provided mechanistic and functional insights into SNJ1 replication but also led to the development of useful genetic tools to investigate SNJ1 and other viruses infecting Natrinema species as well as their hosts.
Collapse
|
10
|
Abstract
Many plasmids have been described in Euryarchaeota, one of the three major archaeal phyla, most of them in salt-loving haloarchaea and hyperthermophilic Thermococcales. These plasmids resemble bacterial plasmids in terms of size (from small plasmids encoding only one gene up to large megaplasmids) and replication mechanisms (rolling circle or theta). Some of them are related to viral genomes and form a more or less continuous sequence space including many integrated elements. Plasmids from Euryarchaeota have been useful for designing efficient genetic tools for these microorganisms. In addition, they have also been used to probe the topological state of plasmids in species with or without DNA gyrase and/or reverse gyrase. Plasmids from Euryarchaeota encode both DNA replication proteins recruited from their hosts and novel families of DNA replication proteins. Euryarchaeota form an interesting playground to test evolutionary hypotheses on the origin and evolution of viruses and plasmids, since a robust phylogeny is available for this phylum. Preliminary studies have shown that for different plasmid families, plasmids share a common gene pool and coevolve with their hosts. They are involved in gene transfer, mostly between plasmids and viruses present in closely related species, but rarely between cells from distantly related archaeal lineages. With few exceptions (e.g., plasmids carrying gas vesicle genes), most archaeal plasmids seem to be cryptic. Interestingly, plasmids and viral genomes have been detected in extracellular membrane vesicles produced by Thermococcales, suggesting that these vesicles could be involved in the transfer of viruses and plasmids between cells.
Collapse
|
11
|
Abstract
SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade.
Collapse
|
12
|
Tavlaridou S, Winter K, Pfeifer F. The accessory gas vesicle protein GvpM of haloarchaea and its interaction partners during gas vesicle formation. Extremophiles 2014; 18:693-706. [PMID: 24846741 DOI: 10.1007/s00792-014-0650-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/27/2014] [Indexed: 11/29/2022]
Abstract
Gas vesicles consist predominantly of the hydrophobic GvpA and GvpC, and the accessory proteins GvpF through GvpM are required in minor amounts during formation. GvpM and its putative interaction partners were investigated. GvpM interacted with GvpH, GvpJ and GvpL, but not with GvpG. Interactions were also observed in vivo in Haloferax volcanii transformants using Gvp fusions to the green fluorescent protein smGFP. Cells producing the hydrophobic M(GF)P contained a single fluorescent aggregate per cell, whereas cells containing L(GFP) or H(GFP) were fully fluorescent. The soluble L(GFP) formed stable co-aggregates with GvpM in L(GFP)M transformants, but the presence of GvpH resulted in the absence of M(GF)P foci in HM(GFP) transformants. Substitution- and deletion mutants of GvpM determined functionally important amino acids (aa). Substitution of a polar by a non-polar aa in the N-terminal region of GvpM had no effect, whereas a substitution of a non-polar by a polar aa in this region inhibited gas vesicle formation in transformants. Substitutions in region 44-48 of GvpM strongly reduced the number of gas vesicles, and deletions at the N-terminus resulted in Vac(-) transformants. Gas vesicle morphology was not affected by any mutation, implying that GvpM is required during initial stages of gas vesicle assembly.
Collapse
Affiliation(s)
- Stella Tavlaridou
- Mikrobiologie und Archaea, Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | | | | |
Collapse
|
13
|
Schmidt I, Pfeifer F. Use of GFP-GvpE fusions to quantify the GvpD-mediated reduction of the transcriptional activator GvpE in haloarchaea. Arch Microbiol 2013; 195:403-12. [PMID: 23589224 DOI: 10.1007/s00203-013-0885-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 11/30/2022]
Abstract
Gas vesicle formation of Halobacterium salinarum is regulated by the transcriptional activator GvpE, and in the presence of the repressing protein GvpD, the amount of GvpE is strongly reduced. The green fluorescence protein was used to report this GvpD-mediated reduction of GvpE in vivo in Haloferax volcanii transformants. Both N- or C-terminal fusions of GFP to GvpE were tested, but only the N-terminal fusion reported the reduction. The fluorescence of GFP-GvpE was 62 % reduced with GvpD wild type (DWT), 78 % with the super-repressor D3-AAA, and only 10 % with the repression defect DMut6. Further analysis of D3-AAA indicated that the super-repression was due to the alteration R496A. GFP-GvpE variants defect in promoter activation was tested in the presence of DWT, D3-AAA and DMut6, and two of them were more stable. Overall, the GFP-GvpE fusion was suitable to study and quantify the amount of GvpE in vivo.
Collapse
Affiliation(s)
- Ina Schmidt
- Fachbereich Biologie, Mikrobiologie und Archaea, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | |
Collapse
|
14
|
Utilization of virus φCh1 elements to establish a shuttle vector system for Halo(alkali)philic Archaea via transformation of Natrialba magadii. Appl Environ Microbiol 2013; 79:2741-8. [PMID: 23416999 DOI: 10.1128/aem.03287-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the study described here, we successfully developed a transformation system for halo(alkali)philic members of the Archaea. This transformation system comprises a series of Natrialba magadii/Escherichia coli shuttle vectors based on a modified method to transform halophilic members of the Archaea and genomic elements of the N. magadii virus Ch1. The shuttle vector pRo-5, based on the repH-containing region of Ch1, stably replicated in E. coli and N. magadii and in several halophilic and haloalkaliphilic members of the Archaea not transformable so far. The Ch1 operon ORF53/ORF54 (repH) was essential for pRo-5 replication and was thus identified as the minimal replication origin. The plasmid allowed homologous and heterologous gene expression, as exemplified by the expression of Ch1 ORF3452, which encodes a structural protein, and the reporter gene bgaH of Haloferax lucentense in N. magadii. The new transformation/vector system will facilitate genetic studies within N. magadii and other haloalkaliphilic archaea and will allow the detailed characterization of the gene functions of N. magadii virus Ch1 in their extreme environments.
Collapse
|
15
|
Tavlaridou S, Faist K, Weitzel K, Pfeifer F. Effect of an overproduction of accessory Gvp proteins on gas vesicle formation in Haloferax volcanii. Extremophiles 2013; 17:277-87. [PMID: 23338749 DOI: 10.1007/s00792-013-0515-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/04/2013] [Indexed: 11/29/2022]
Abstract
Gas vesicle formation in haloarchaea requires the expression of the p-vac region consisting of 14 genes, gvpACNO and gvpDEFGHIJKLM. Expression of gvpFGHIJKLM leads to essential accessory proteins formed in minor amounts. An overexpression of gvpG, gvpH or gvpM in addition to p-vac inhibited gas vesicle formation, whereas large amounts of all other Gvp proteins did not disturb the synthesis. The unbalanced expression and in particular an aggregation of the overproduced Gvp with other accessory Gvp derived from p-vac could be a reason for the inhibition. Western analyses demonstrated that the hydrophobic GvpM (and GvpJ) indeed form multimers. Fluorescent dots of GvpM-GFP were seen in cells in vivo underlining an aggregation of GvpM. In search for proteins neutralizing the inhibitory effect in case of GvpM, p-vac +pGM(ex), +pHM(ex), +pJM(ex), and +pLM(ex) transformants were constructed. The inhibitory effect of GvpM on gas vesicle formation was suppressed by GvpH, GvpJ or GvpL, but not by GvpG. Western analyses demonstrated that pHM(ex) and pJM(ex) transformants contained additional larger protein bands when probed with an antiserum raised against GvpH or GvpJ, implying interactions. The balanced amount of GvpM-GvpH and GvpM-GvpJ appears to be important during gas vesicle genesis.
Collapse
Affiliation(s)
- Stella Tavlaridou
- Mikrobiologie und Archaea, Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstrasse 10, Darmstadt, Germany
| | | | | | | |
Collapse
|
16
|
Fröls S, Dyall-Smith M, Pfeifer F. Biofilm formation by haloarchaea. Environ Microbiol 2012; 14:3159-74. [DOI: 10.1111/j.1462-2920.2012.02895.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Sabrina Fröls
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstrasse 10; 64287; Darmstadt; Germany
| | - Mike Dyall-Smith
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga; NSW; 2678; Australia
| | - Felicitas Pfeifer
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstrasse 10; 64287; Darmstadt; Germany
| |
Collapse
|
17
|
Marschaus L, Pfeifer F. A dual promoter region with overlapping activator sequences drives the expression of gas vesicle protein genes in haloarchaea. MICROBIOLOGY-SGM 2012; 158:2815-2825. [PMID: 22997463 DOI: 10.1099/mic.0.060178-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gas vesicle formation in haloarchaea involves 14 gas vesicle protein (gvp) genes. The strong promoter P(A) drives the expression of gvpACNO, which encodes the major gas vesicle structural proteins GvpA and GvpC, whereas the oppositely oriented promoter P(D) initiates the synthesis of the two regulator proteins, GvpD and GvpE. GvpE activates P(A) and P(D), and requires a 20 nt upstream activator sequence (UAS). UAS(A) and UAS(D) partially overlap in the centre of the 35 bp intergenic region. The basal and GvpE-induced activities of P(A) and P(D) were investigated in Haloferax volcanii transformants. Each UAS consists of two 8 nt portions (P(A), 1A+2A; P(D), 1D+2D), and mutations in the overlapping 1A and 1D portions affected the GvpE induction of both promoters. Substitution of one of the UAS portions by a nonsense sequence showed that a complete UAS is required for activation. The activation of P(A) was more efficient compared with P(D). Promoter P(A) with UAS(A) in configuration 1A+1A was still activated by GvpE, but P(D) was not inducible with UAS(D) in configuration 1D+1D. The TATA box and/or transcription factor B recognition element (BRE) were exchanged between P(A) and P(D). All elements of P(A) functioned well in the environment of 'P(D)' and transferred the stronger P(A) activity to 'P(D)'. In contrast, the respective 'P(A)' chimeras were less active, and BRE(D) was not functional in the environment of 'P(A)'. The relative strengths of the two promoters were substantially determined by the BRE. A 4 nt scanning mutagenesis uncovered an additional regulatory element in the region between TATA(D) and the transcriptional start site of gvpD.
Collapse
Affiliation(s)
- Larissa Marschaus
- Mikrobiologie und Archaea, Fachbereich Biologie der Technischen Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Mikrobiologie und Archaea, Fachbereich Biologie der Technischen Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| |
Collapse
|
18
|
Bleiholder A, Frommherz R, Teufel K, Pfeifer F. Expression of multiple tfb genes in different Halobacterium salinarum strains and interaction of TFB with transcriptional activator GvpE. Arch Microbiol 2011; 194:269-79. [PMID: 21969032 DOI: 10.1007/s00203-011-0756-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/19/2011] [Accepted: 09/10/2011] [Indexed: 01/19/2023]
Abstract
Halobacterium salinarum NRC-1 contains multiple TBP and TFB proteins required for the recruitment of RNA polymerase for transcription initiation. The presence and the expression of genes encoding TFB were investigated in the two Hbt. salinarum strains NRC-1 and PHH1 and the mutant strain PHH4. The plasmid-encoded tfbC and tfbE genes of NRC-1 were lacking in PHH1 and PHH4. The 5'-end of the tfbF transcript was determined and contained a 5'-untranslated region of 39 nucleotides able to form a stem-loop structure. The expression of these tfb genes was studied in cultures growing at 15, 37°C and under heat shock conditions. Cold temperatures reduced growth and except for tfbF also the amounts of all tfb transcripts. However, the formation of gas vesicles increased in PHH1 and NRC-1. Heat shock reduced growth of PHH1 and NRC-1, but PHH4 was not affected. A 100-fold increase in tfbA and tfbB mRNA was observed in PHH1 and PHH4, whereas NRC-1 reduced the amounts of these transcripts and increased the expression of tfbG. All TFB proteins tested were able to interact with the transcription activator GvpE involved in gas vesicle formation that thus is able to recruit TFB to the gvp promoter.
Collapse
Affiliation(s)
- Anne Bleiholder
- Mikrobiologie und Genetik, Technische Universität Darmstadt, Germany
| | | | | | | |
Collapse
|
19
|
Strunk T, Hamacher K, Hoffgaard F, Engelhardt H, Zillig MD, Faist K, Wenzel W, Pfeifer F. Structural model of the gas vesicle protein GvpA and analysis of GvpA mutants in vivo. Mol Microbiol 2011; 81:56-68. [PMID: 21542854 DOI: 10.1111/j.1365-2958.2011.07669.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gas vesicles are gas-filled protein structures increasing the buoyancy of cells. The gas vesicle envelope is mainly constituted by the 8 kDa protein GvpA forming a wall with a water excluding inner surface. A structure of GvpA is not available; recent solid-state NMR results suggest a coil-α-β-β-α-coil fold. We obtained a first structural model of GvpA by high-performance de novo modelling. Attenuated total reflection (ATR)-Fourier transform infrared spectroscopy (FTIR) supported this structure. A dimer of GvpA was derived that could explain the formation of the protein monolayer in the gas vesicle wall. The hydrophobic inner surface is mainly constituted by anti-parallel β-strands. The proposed structure allows the pinpointing of contact sites that were mutated and tested for the ability to form gas vesicles in haloarchaea. Mutations in α-helix I and α-helix II, but also in the β-turn affected the gas vesicle formation, whereas other alterations had no effect. All mutants supported the structural features deduced from the model. The proposed GvpA dimers allow the formation of a monolayer protein wall, also consistent with protease treatments of isolated gas vesicles.
Collapse
Affiliation(s)
- Timo Strunk
- Institute for Nanotechnology, Karlsruhe Institute of Technology, PO Box 3640, D-76021 Karlsruhe, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Teufel K, Pfeifer F. Interaction of transcription activator GvpE with TATA-box-binding proteins of Halobacterium salinarum. Arch Microbiol 2010; 192:143-9. [DOI: 10.1007/s00203-009-0537-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/27/2009] [Accepted: 12/18/2009] [Indexed: 11/29/2022]
|
21
|
|
22
|
Hechler T, Frech M, Pfeifer F. Glucose inhibits the formation of gas vesicles in Haloferax volcanii transformants. Environ Microbiol 2008; 10:20-30. [PMID: 18211264 DOI: 10.1111/j.1462-2920.2007.01426.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of glucose on the formation of gas vesicles was investigated in Haloferax mediterranei and Hfx.volcanii transformants containing the mc-gvp gene cluster of Hfx. mediterranei (mc-vac transformants). Increasing amounts of glucose in the medium resulted in a successive decrease in the amount of gas vesicles in both species, with a complete inhibition of their formation at glucose concentrations of > 70 mM in mc-vac transformants, and 100 mM in Hfx. mediterranei. Maltose and sucrose imposed a similar inhibitory effect, whereas xylose, arabinose, lactose, pyruvate and 2-deoxy-glucose had no influence on the gas vesicle formation in mc-vac transformants. The activities of the two mc-vac promoters were strongly reduced in mc-vac transformants grown in the presence of > 50 mM glucose. The gas vesicle overproducing Delta D transformant (lacking the repressing protein GvpD) also showed a glucose-induced lack of gas vesicles, indicating that GvpD is not involved in the repression. The addition of glucose was useful to block gas vesicle formation at a certain stage during growth, and vice versa, gas vesicle synthesis could be induced when a glucose-grown culture was shifted to medium lacking glucose. Both procedures will enable the investigation of defined stages during gas vesicle formation.
Collapse
Affiliation(s)
- Torsten Hechler
- Institut für Mikrobiologie und Genetik, TU Darmstadt, D-64287 Darmstadt, Germany
| | | | | |
Collapse
|
23
|
Variations in the multiple tbp genes in different Halobacterium salinarum strains and their expression during growth. Arch Microbiol 2008; 190:309-18. [DOI: 10.1007/s00203-008-0383-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 11/26/2022]
|
24
|
Regulation of gvp genes encoding gas vesicle proteins in halophilic Archaea. Arch Microbiol 2008; 190:333-9. [PMID: 18385982 DOI: 10.1007/s00203-008-0362-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/27/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
Three gas vesicle gene clusters derived from Halobacterium salinarum (p-vac and c-vac) and Haloferax mediterranei (mc-vac) are used as model systems to study gene regulation in Archaea. An unusual pair of regulatory proteins is involved here, with GvpE acting as transcription activator and GvpD exhibiting a repressing function. Both regulators are able to interact leading to the loss of GvpE and the repression (or turnoff) of the gas vesicle formation. The latter function of GvpD requires a p-loop motif and an arginine-rich region, bR1. Both regulator proteins are differentially expressed from the same gvp transcript in Hfx. mediterranei and Hbt. salinarum PHH4. GvpE appears to recognize a 20-nucleotide activator sequence (UAS) located upstream and adjacent to the TFB-recognition element BRE of the two promoters driving the transcription of the divergently oriented gvpACNO and gvpDEFGHIJKLM gene clusters. The BRE elements of these two promoters are separated by 35 nucleotides only, and the distal portions of the two GvpE-UAS overlap considerably in the center of this region. Mutations here negatively affect the GvpE-induced activities of both gvp promoters, whereas alterations in the proximal UAS portions only affect the activity of the promoter located close by.
Collapse
|
25
|
Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. Genomics 2008; 91:335-46. [PMID: 18313895 DOI: 10.1016/j.ygeno.2008.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/12/2007] [Accepted: 01/02/2008] [Indexed: 01/23/2023]
Abstract
We report the sequence of the Halobacterium salinarum strain R1 chromosome and its four megaplasmids. Our set of protein-coding genes is supported by extensive proteomic and sequence homology data. The structures of the plasmids, which show three large-scale duplications (adding up to 100 kb), were unequivocally confirmed by cosmid analysis. The chromosome of strain R1 is completely colinear and virtually identical to that of strain NRC-1. Correlation of the plasmid sequences revealed 210 kb of sequence that occurs only in strain R1. The remaining 350 kb shows virtual sequence identity in the two strains. Nevertheless, the number and overall structure of the plasmids are largely incompatible. Also, 20% of the protein sequences differ despite the near identity at the DNA sequence level. Finally, we report genome-wide mobility data for insertion sequences from which we conclude that strains R1 and NRC-1 originate from the same natural isolate. This exemplifies evolution in the laboratory.
Collapse
|
26
|
Bauer M, Marschaus L, Reuff M, Besche V, Sartorius-Neef S, Pfeifer F. Overlapping activator sequences determined for two oppositely oriented promoters in halophilic Archaea. Nucleic Acids Res 2007; 36:598-606. [PMID: 18056077 PMCID: PMC2241852 DOI: 10.1093/nar/gkm1077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription of the genomic region involved in gas vesicle formation in Halobacterium salinarum (p-vac) and Haloferax mediterranei (mc-vac) is driven by two divergent promoters, P(A) and P(D), separated by only 35 nt. Both promoters are activated by the transcription activator GvpE which in the case of P(mcA) requires a 20-nt sequence (UAS) consisting of two conserved 8-nt sequence portions located upstream of BRE. Here, we determined the two UAS elements in the promoter region of p-vac by scanning mutageneses using constructs containing P(pD) (without P(pA)) fused to the bgaH reporter gene encoding an enzyme with beta-galactosidase activity, or the dual reporter construct pApD with P(pD) fused to bgaH and P(pA) to an altered version of gvpA. The two UAS elements found exhibited a similar extension and distance to BRE as previously determined for the UAS in P(mcA). Their distal 8-nt portions almost completely overlapped in the centre of P(pD)-P(pA), and mutations in this region negatively affected the GvpE-mediated activation of both promoters. Any alteration of the distance between BRE and UAS resulted in the loss of the GvpE activation, as did a complete substitution of the proximal 8-nt portion, underlining that a close location of UAS and BRE was very important.
Collapse
Affiliation(s)
- Martina Bauer
- Institut für Mikrobiologie und Genetik, TU Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Insertion sequences (ISs) can constitute an important component of prokaryotic (bacterial and archaeal) genomes. Over 1,500 individual ISs are included at present in the ISfinder database (www-is.biotoul.fr), and these represent only a small portion of those in the available prokaryotic genome sequences and those that are being discovered in ongoing sequencing projects. In spite of this diversity, the transposition mechanisms of only a few of these ubiquitous mobile genetic elements are known, and these are all restricted to those present in bacteria. This review presents an overview of ISs within the archaeal kingdom. We first provide a general historical summary of the known properties and behaviors of archaeal ISs. We then consider how transposition might be regulated in some cases by small antisense RNAs and by termination codon readthrough. This is followed by an extensive analysis of the IS content in the sequenced archaeal genomes present in the public databases as of June 2006, which provides an overview of their distribution among the major archaeal classes and species. We show that the diversity of archaeal ISs is very great and comparable to that of bacteria. We compare archaeal ISs to known bacterial ISs and find that most are clearly members of families first described for bacteria. Several cases of lateral gene transfer between bacteria and archaea are clearly documented, notably for methanogenic archaea. However, several archaeal ISs do not have bacterial equivalents but can be grouped into Archaea-specific groups or families. In addition to ISs, we identify and list nonautonomous IS-derived elements, such as miniature inverted-repeat transposable elements. Finally, we present a possible scenario for the evolutionary history of ISs in the Archaea.
Collapse
Affiliation(s)
- J Filée
- Laboratoire de Microbiologie et Génétique Moléculaires (UMR5100 CNRS), Campus Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | | | | |
Collapse
|
28
|
Scheuch S, Pfeifer F. GvpD-induced breakdown of the transcriptional activator GvpE of halophilic archaea requires a functional p-loop and an arginine-rich region of GvpD. Microbiology (Reading) 2007; 153:947-958. [PMID: 17379705 DOI: 10.1099/mic.0.2006/004499-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The two proteins involved in the regulation of gas vesicle formation in Haloferax mediterranei, mcGvpE (activator) and mcGvpD (repressive function), are able to interact in vitro. It was also found that the respective proteins cGvpE and cGvpD of Halobacterium salinarum and the heterologous pairs mcGvpD-cGvpE and cGvpD-mcGvpE were able to interact. Previously constructed mcGvpD mutants with alterations in regions affecting the repressive function of GvpD (p-loop motif or the two arginine-rich regions bR1 and bR2) were tested for their ability to interact with GvpE, and all still bound GvpE. Even a deletion of or near the p-loop motif in GvpD did not affect this ability to interact. Further deletion variants lacking larger N- or C-terminal portions of mcGvpD yielded that neither the N-terminal region with the p-loop motif nor the C-terminal portion were important for the binding of GvpE, and suggested that the central portion is involved in GvpE binding. The GvpD protein also induces a reduction in the amount of GvpE in Haloferax volcanii transformants expressing both genes under fdx promoter control on a single plasmid. Such DE(ex) transformants contain GvpD, but no detectable GvpE, whereas large amounts of GvpE are found in DeltaDE(ex) transformants that have incurred a deletion within the gvpD gene. A similar reduction was observed in D(ex)+E(ex) transformants harbouring both reading frames under fdx promoter control on two different plasmids. GvpD wild-type and also GvpD mutants were tested, and a significant reduction in the amount of GvpE was obtained in the case of GvpD wild-type and the super-repressor mutant GvpD(3-AAA). In contrast, transformants harbouring GvpD mutants with alterations in the p-loop motif or the bR1 region still contained GvpE. Since the amount of gvpE transcript was not reduced, the reduction occurred at the protein level. These results underlined that a functional p-loop and the arginine-rich region bR1 of GvpD were required for the GvpD-mediated reduction in the amount of GvpE.
Collapse
Affiliation(s)
- Sandra Scheuch
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
29
|
Sun C, Zhou M, Li Y, Xiang H. Molecular characterization of the minimal replicon and the unidirectional theta replication of pSCM201 in extremely halophilic archaea. J Bacteriol 2006; 188:8136-44. [PMID: 16997958 PMCID: PMC1698213 DOI: 10.1128/jb.00988-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A 3,463-bp plasmid, pSCM201, was isolated from a halophilic archaeon, Haloarcula sp. strain AS7094. The minimal replicon that is essential and sufficient for autonomous replication and stable maintenance in Haloarcula hispanica was determined by deletion analysis of the plasmid. This minimal replicon ( approximately 1.8 kb) consisted of only two functionally related segments: (i) a putative origin (ori201) containing an AT-rich region and sets of repeats and (ii) an adjacent gene encoding a putative replication initiation protein (Rep201). Electron microscopic observation and Southern blotting analysis demonstrated that pSCM201 replicates via a theta mechanism. Precise mapping of the putative origin suggested that the replication initiated from a fixed site close to the AT-rich region and proceeded unidirectionally toward the downstream rep201 gene, which was further confirmed by electron microscopic analysis of the ClaI-digested replication intermediates. To our knowledge, this is the first unidirectional theta replication plasmid experimentally identified in the domain of archaea. It provides a novel plasmid system to conduct research on archaeal DNA replication.
Collapse
Affiliation(s)
- Chaomin Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | |
Collapse
|
30
|
Berquist BR, Müller JA, DasSarma S. 27 Genetic Systems for Halophilic Archaea. J Microbiol Methods 2006. [DOI: 10.1016/s0580-9517(08)70030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
31
|
Gregor D, Pfeifer F. In vivo analyses of constitutive and regulated promoters in halophilic archaea. MICROBIOLOGY-SGM 2005; 151:25-33. [PMID: 15632422 DOI: 10.1099/mic.0.27541-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The two gvpA promoters P(cA) and P(pA) of Halobacterium salinarum, and the P(mcA) promoter of Haloferax mediterranei were investigated with respect to growth-phase-dependent expression and regulation in Haloferax volcanii transformants using the bgaH reading frame encoding BgaH, an enzyme with beta-galactosidase activity, as reporter. For comparison, the P(fdx) promoter of the ferredoxin gene of Hbt. salinarum and the P(bgaH) promoter of Haloferax lucentense (formerly Haloferax alicantei) were analysed. P(fdx), driving the expression of a house-keeping gene, was highly active during the exponential growth phase, whereas P(bgaH) and the three gvpA promoters yielded the largest activities during the stationary growth phase. Compared to P(fdx), the basal promoter activities of P(pA) and P(mcA) were rather low, and larger activities were only detected in the presence of the endogenous transcriptional activator protein GvpE. The P(cA) promoter does not yield a detectable basal promoter activity and is only active in the presence of the homologous cGvpE. To investigate whether the P(cA)-TATA box and the BRE element were the reason for the lack of the basal P(cA) activity, these elements and also sequences further upstream were substituted with the respective sequences of the stronger P(pA) promoter and investigated in Hfx. volcanii transformants. All these promoter chimera did not yield a detectable basal promoter activity. However, whenever the P(pA)-BRE element was substituted for the P(cA)-BRE, an enhanced cGvpE-mediated activation was observed. The promoter chimeras harbouring P(pA)-BRE plus 5 (or more) bp further upstream also gained activation by the heterologous pGvpE and mcGvpE proteins. The sequence required for the GvpE-mediated activation was determined by a 4 bp scanning mutagenesis with the 45 bp region upstream of P(mcA)-BRE. None of these alterations influenced the basal promoter activity, but the sequence TGAAACGG-n4-TGAACCAA was important for the GvpE-mediated activation of P(mcA).
Collapse
Affiliation(s)
- Dagmar Gregor
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| |
Collapse
|
32
|
Hofacker A, Schmitz KM, Cichonczyk A, Sartorius-Neef S, Pfeifer F. GvpE- and GvpD-mediated transcription regulation of the p-gvp genes encoding gas vesicles in Halobacterium salinarum. Microbiology (Reading) 2004; 150:1829-1838. [PMID: 15184569 DOI: 10.1099/mic.0.27078-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription of the 14 p-gvp genes involved in gas vesicle formation of Halobacterium salinarum PHH1 is driven by the four promoters pA, pD, pF and pO. The regulation of these promoters was investigated in Haloferax volcanii transformants with respect to the endogenous regulatory proteins GvpE and GvpD. Northern analyses demonstrated that the transcription derived from the pA and pD promoters was enhanced by GvpE, whereas the activities of the pF and pO promoters were not affected. Similar results were obtained using promoter fusions with the bgaH reporter gene encoding an enzyme with β-galactosidase activity. The largest amount of specific β-galactosidase activity was determined for pA-bgaH transformants, followed by pF-bgaH and pD-bgaH transformants. The presence of GvpE resulted in a severalfold induction of the pA and pD promoter, whereas the pF promoter was not affected. A lower GvpE-induced pA promoter activity was seen in the presence of GvpD in the pA-bgaH/DEex transformants, suggesting a function of GvpD in repression. To determine the DNA sequences involved in the GvpE-mediated activation, a 50-nucleotide region of the pA promoter was investigated by 4-nucleotide scanning mutagenesis. Some of these mutations affected the basal transcription, especially mutations in the region of the TATA box and the putative BRE sequence element, and also around position −10. Mutant E, harbouring a sequence with greater identity to the consensus BRE element, showed a significantly enhanced basal promoter activity compared to wild-type. Mutations not affecting basal transcription, but yielding a reduced GvpE-mediated activation, were located immediately upstream of BRE. These results suggested that the transcription activation by GvpE is in close contact with the core transcription machinery.
Collapse
Affiliation(s)
- Annette Hofacker
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Kerstin-Maike Schmitz
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Alexander Cichonczyk
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Simone Sartorius-Neef
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| |
Collapse
|
33
|
Sartorius-Neef S, Pfeifer F. In vivo studies on putative Shine-Dalgarno sequences of the halophilic archaeon Halobacterium salinarum. Mol Microbiol 2004; 51:579-88. [PMID: 14756795 DOI: 10.1046/j.1365-2958.2003.03858.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The involvement of Shine-Dalgarno sequences in the translation of mRNA in halophilic archaea was investigated for two gvp genes involved in gas vesicle formation in Halobacterium salinarum PHH1. With the exception of gvpA and gvpO, all reading frames of the p-gvpDEFGHIJKLM and p-gvpACNO mRNAs contained upstream of the AUG start codon a putative Shine-Dalgarno (SD) sequence that is complementary to the 3'-end of the small ribosomal subunit RNA. The importance of the SD sequences of gvpG and gvpH was investigated in Haloferax volcanii transformants, and an alteration of the SD sequence resulted in a reduction of the amount of the GvpG or GvpH protein. For a more quantitative analysis the region upstream of gvpH was fused to the bgaH reading frame encoding an enzyme with beta-galactosidase activity as reporter. Scanning mutagenesis within the mRNA leader demonstrated that mutations adjacent to the putative SD sequence GGAGGUCA did not influence the efficiency of translation, whereas constructs harbouring an altered SD sequence yielded only 5-50% of the beta-galactosidase activities obtained with the wild-type SD element. A complete mutation of the SD sequence still yielded 20% of the wild-type activity. Alterations in the spacing of the SD sequence and the translation initiation codon of gvpH indicated that a distance of 4 or 10 nucleotides yielded a similar beta-galactosidase activity as found with the 7 nt spacing of the SD element in wild type, whereas a distance of 1 nt resulted in the loss of translation. A complete deletion of the 5'-UTR resulting in a leaderless mRNA yielded an enhanced beta-galactosidase activity in transformants implying that the initiation of translation involved a mechanism other than a specific mRNA-rRNA interaction.
Collapse
Affiliation(s)
- Simone Sartorius-Neef
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | | |
Collapse
|
34
|
Zimmermann P, Pfeifer F. Regulation of the expression of gas vesicle genes in Haloferax mediterranei: interaction of the two regulatory proteins GvpD and GvpE. Mol Microbiol 2003; 49:783-94. [PMID: 12864859 DOI: 10.1046/j.1365-2958.2003.03593.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gas vesicle formation in Haloferax mediterranei occurs in the stationary growth phase and involves the 14 genes mc-gvpACNO and mc-gvpDEFGHIJKLM. The appearance of the two regulatory proteins GvpD and GvpE, and also of GvpF, was investigated during the growth of H. mediterranei. GvpD was only found during the stationary growth phase, GvpE was present from the late exponential to stationary growth phase, and GvpF was present only during the exponential growth, although the three genes were co-transcribed. The impact of GvpD and GvpE on the activity of the promoter of the mc-gvpACNO gene cluster encoding the gas vesicle structural proteins was analysed in H. volcanii transformants containing the mc-gvpA gene or a fusion of the mcA promoter with the bgaH reading frame encoding a halobacterial beta-galactosidase as reporter. The experiments proved that GvpE is a transcriptional activator, whereas GvpD is involved in the repression. Protein-protein affinity chromatography was used to search for putative binding partners of GvpD and GvpE. Both proteins were synthesized in Escherichia coli as his-tagged proteins, isolated under denaturing conditions and refolded by dialysis against buffers containing decreasing urea and increasing KCl concentrations up to 2.5 M. The Ni-NTA matrix tagged with GvpD-his or GvpE-his was incubated with soluble proteins of gas vesicle producing H. mediterranei cells. A 21 kDa protein was purified using the matrix tagged with GvpD-his which proved to be GvpE by Western analysis. Vice versa, GvpD was purified using the GvpE-his-Ni-NTA matrix. These results strongly suggested that GvpD and GvpE were able to interact and might constitute a regulatory system.
Collapse
Affiliation(s)
- Peter Zimmermann
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
35
|
Beard SJ, Hayes PK, Pfeifer F, Walsby AE. The sequence of the major gas vesicle protein, GvpA, influences the width and strength of halobacterial gas vesicles. FEMS Microbiol Lett 2002; 213:149-57. [PMID: 12167531 DOI: 10.1111/j.1574-6968.2002.tb11299.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Transformation experiments with Haloferax volcanii show that the amino acid sequence of the gas vesicle protein GvpA influences the morphology and strength of gas vesicles produced by halophilic archaea. A modified expression vector containing p-gvpA was used to complement a Vac(-) strain of Hfx. volcanii that harboured the entire p-vac region (from Halobacterium salinarum PHH1) except for p-gvpA. Replacement of p-gvpA with mc-gvpA (from Haloferax mediterranei) led to the synthesis of gas vesicles that were narrower and stronger. Other gene replacements (using c-gvpA from Hbt. salinarum or mutated p-gvpA sequences) led to a significant but smaller increase in gas vesicle strength, and less marked effects on gas vesicle morphology.
Collapse
Affiliation(s)
- Steven J Beard
- School of Biological Sciences, University of Bristol, Woodland Road, UK
| | | | | | | |
Collapse
|
36
|
Klein R, Baranyi U, Rössler N, Greineder B, Scholz H, Witte A. Natrialba magadii virus phiCh1: first complete nucleotide sequence and functional organization of a virus infecting a haloalkaliphilic archaeon. Mol Microbiol 2002; 45:851-63. [PMID: 12139629 DOI: 10.1046/j.1365-2958.2002.03064.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The double-stranded (ds)DNA virus phiCh1 infects the haloalkaliphilic archaeon Natrialba magadii. The complete DNA sequence of 58 498 bp of the temperate virus was established, and the probable functions of 21 of 98 phiCh1-encoded open reading frames (ORFs) have been assigned. This knowledge has been used to propose functional modules each required for specific functions during virus development. The phiCh1 DNA is terminally redundant and circularly permuted and therefore appears to be packaged by the so-called headful mechanism. The presence of ORFs encoding homologues of proteins involved in plasmid replication as well as experimental evidence indicate a plasmid-mediated replication strategy of the virus. Results from nanosequencing of virion components suggest covalent cross-linking of monomers of at least one of the structural proteins during virus maturation. A comparison of the phiCh1 genome with the partly sequenced genome of Halobacterium salinarum virus phiH revealed a close relationship between the two viruses, although their host organisms live in distinct environments with respect to the different pH values required for growth.
Collapse
Affiliation(s)
- R Klein
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
37
|
Gregor D, Pfeifer F. Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic archaea. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1745-1754. [PMID: 11429452 DOI: 10.1099/00221287-147-7-1745] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The bgaH reading frame encoding a beta-galactosidase of 'Haloferax alicantei' was used as a reporter gene to investigate three different promoter regions derived from gvpA genes of Haloferax mediterranei (mc-gvpA) and Halobacterium salinarum (c-gvpA and p-gvpA) in Haloferax volcanii transformants. The fusion of bgaH at the start codon of each gvpA reading frame (A1-bgaH fusion genes) caused translational problems in some cases. Transformants containing constructs with fusions further downstream in the gvpA reading frame (A-bgaH) produced beta-galactosidase, and colonies on agar plates turned blue when sprayed with X-Gal. The beta-galactosidase activities quantified by standard ONPG assays correlated well with the mRNA data determined with transformants containing the respective gvpA genes: the cA-bgaH fusion gene was completely inactive, the mcA-bgaH transformants showed low amounts of products, whereas the pA-bgaH fusion gene was constitutively expressed in the respective transformants. The transcription of each A-bgaH gene was activated by the homologous transcriptional activator protein GvpE. The cGvpE, pGvpE and mcGvpE proteins were able to activate the promoter of pA-bgaH and mcA-bgaH, whereas the promoter of cA-bgaH was only activated by cGvpE. Among the three GvpE proteins tested, cGvpE appeared to be the strongest transcriptional activator.
Collapse
Affiliation(s)
- Dagmar Gregor
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany1
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany1
| |
Collapse
|
38
|
Luo Y, Leisinger T, Wasserfallen A. Comparative sequence analysis of plasmids pME2001 and pME2200 of methanothermobacter marburgensis strains Marburg and ZH3. Plasmid 2001; 45:18-30. [PMID: 11319928 DOI: 10.1006/plas.2000.1493] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparison of the updated complete nucleotide sequences of the two related plasmids pME2001 and pME2200 from the thermophilic archaeon Methanothermobacter marburgensis (formerly Methanobacterium thermoautotrophicum) strains Marburg and ZH3, respectively, revealed an almost identical common backbone structure and five plasmid-specific inserted fragments (IFs), four of which are flanked by perfect or nearly perfect direct repeats 25-52 bp in length. A 4354-bp minimal replicon was derived from the alignment of the two plasmids, which encodes one putative antisense RNA related to replication control and five open reading frames (ORFs) organized in two operons. The first operon consists of four ORFs, the third of which, i.e. ORF3, contains a helix-turn-helix motif and a purine NTP-binding motif often found in proteins involved in DNA metabolic processes. The database search results suggest that ORF3 might function as a replication initiator protein. The large putative Rep protein encoded by pME2001 was overexpressed in Escherichia coli as an N-terminal His-tagged version using pET28a and a compatible helper plasmid that coexpresses minor tRNAs, argU and ileX to compensate for codon usage difference. ORFs 1, 2, and 3 are organized in a sequence reminiscent of that described in E. coli plasmids of the R1 family, cop-tap-rep. ORF6 encoded by IF1, one of the pME2200-specific elements, showed significant similarity to ORF6 encoded by archaeal phage psiM2 of M. marburgensis strain Marburg and may confer the apparent immunity of its host strain ZH3 to infection by phage psiM2. Our data indicate that M. marburgensis plasmids may evolve by a series of gene duplication and excision events.
Collapse
Affiliation(s)
- Y Luo
- Institute of Microbiology, Swiss Federal Institute of Technology Zürich, Schmelzbergstrasse 7, Zürich, CH-8092, Switzerland
| | | | | |
Collapse
|
39
|
Offner S, Hofacker A, Wanner G, Pfeifer F. Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J Bacteriol 2000; 182:4328-36. [PMID: 10894744 PMCID: PMC101952 DOI: 10.1128/jb.182.15.4328-4336.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The minimal number of genes required for the formation of gas vesicles in halophilic archaea has been determined. Single genes of the 14 gvp genes present in the p-vac region on plasmid pHH1 of Halobacterium salinarum (p-gvpACNO and p-gvpDEFGHIJKLM) were deleted, and the remaining genes were tested for the formation of gas vesicles in Haloferax volcanii transformants. The deletion of six gvp genes (p-gvpCN, p-gvpDE, and p-gvpHI) still enabled the production of gas vesicles in H. volcanii. The gas vesicles formed in some of these gvp gene deletion transformants were altered in shape (Delta I, Delta C) or strength (Delta H) but still functioned as flotation devices. A minimal p-vac region (minvac) containing the eight remaining genes (gvpFGJKLM-gvpAO) was constructed and tested for gas vesicle formation in H. volcanii. The minvac transformants did not form gas vesicles; however, minvac/gvpJKLM double transformants contained gas vesicles seen as light refractile bodies by phase-contrast microscopy. Transcript analyses demonstrated that minvac transformants synthesized regular amounts of gvpA mRNA, but the transcripts derived from gvpFGJKLM were mainly short and encompassed only gvpFG(J), suggesting that the gvpJKLM genes were not sufficiently expressed. Since gvpAO and gvpFGJKLM are the only gvp genes present in minvac/JKLM transformants containing gas vesicles, these gvp genes represent the minimal set required for gas vesicle formation in halophilic archaea. Homologs of six of these gvp genes are found in Anabaena flos-aquae, and homologs of all eight minimal halobacterial gvp genes are present in Bacillus megaterium and in the genome of Streptomyces coelicolor.
Collapse
Affiliation(s)
- S Offner
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
40
|
|
41
|
Offner S, Ziese U, Wanner G, Typke D, Pfeifer F. Structural characteristics of halobacterial gas vesicles. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1331-1342. [PMID: 9611808 DOI: 10.1099/00221287-144-5-1331] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gas vesicle formation in halophilic archaea is encoded by a DNA region (the vac region) containing 14 different genes: gvpACNO and gvpDEFGHIJKLM. In Halobacterium salinarum PHH1 (which expresses the p-vac region from plasmid pHH1), gas vesicles are spindle shaped, whereas predominantly cylindrical gas vesicles are synthesized by the chromosomal c-vac region of H. salinarum PHH4 and the single chromosomal mc-vac region of Haloferax mediterranei. Homologous complementation of gvp gene clusters derived from the chromosomal c-vac region led to cylindrical gas vesicles in transformants and proved that the activity of the c-gvpA promoter depended on a gene product from the c-gvpE-M DNA region. Heterologous complementation experiments with transcription units of different vac regions demonstrated that the formation of chimeric gas vesicles was possible. Comparison of micrographs of wild-type and chimeric gas vesicles indicated that the shape was not exclusively determined by GvpA, the major structural protein of the gas vesicle wall. More likely, a dynamic equilibrium of several gvp gene products was responsible for determination of the shape. Transmission electron microscopy of frozen hydrated, wild-type gas vesicles showed moiré patterns due to the superposition of the front and back parts of the ribbed gas vesicle envelope. Comparison of projections of model helices with the moiré pattern seen on the cylindrical part of the gas vesicles provided evidence that the ribs formed a helix of low pitch and not a stack of hoops.
Collapse
Affiliation(s)
- Sonja Offner
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Ulrike Ziese
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | - Gerhard Wanner
- Institut für Botanik, Ludwig-Maximilians-Universität München, D-80992 München, Germany
| | - Dieter Typke
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| |
Collapse
|
42
|
Li N, Cannon MC. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J Bacteriol 1998; 180:2450-8. [PMID: 9573198 PMCID: PMC107188 DOI: 10.1128/jb.180.9.2450-2458.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gas vesicles are intracellular, protein-coated, and hollow organelles found in cyanobacteria and halophilic archaea. They are permeable to ambient gases by diffusion and provide buoyancy, enabling cells to move upwards in liquid to access oxygen and/or light. In halobacteria, gas vesicle production is encoded in a 9-kb cluster of 14 genes (4 of known function). In cyanobacteria, the number of genes involved has not been determined. We now report the cloning and sequence analysis of an 8,142-bp cluster of 15 putative gas vesicle genes (gvp) from Bacillus megaterium VT1660 and their functional expression in Escherichia coli. Evidence includes homologies by sequence analysis to known gas vesicle genes, the buoyancy phenotype of E. coli strains that carry this gvp gene cluster, the presence of pressure-sensitive, refractile bodies in phase-contrast microscopy, structural details in phase-contrast microscopy, structural details in direct interference-contrast microscopy, and shape and size revealed by transmission electron microscopy. In B. megaterium, the gvp region carries a cluster of 15 putative genes arranged in one orientation; they are open reading frame 1 and gvpA, -P, -Q, -B, -R, -N, -F, -G, -L, -S, -K, -J, -T, and -U, of which the last 11 genes, in a 5.7-kb gene cluster, are the maximum required for gas vesicle synthesis and function in E. coli. To our knowledge, this is the first example of a functional gas vesicle gene cluster in nonaquatic bacteria and the first example of the interspecies transfer of genes resulting in the synthesis of a functional organelle.
Collapse
Affiliation(s)
- N Li
- Department of Microbiology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
43
|
Tumbula DL, Bowen TL, Whitman WB. Characterization of pURB500 from the archaeon Methanococcus maripaludis and construction of a shuttle vector. J Bacteriol 1997; 179:2976-86. [PMID: 9139917 PMCID: PMC179063 DOI: 10.1128/jb.179.9.2976-2986.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complete sequence of the 8,285-bp plasmid pURB500 from Methanococcus maripaludis C5 was determined. Sequence analysis identified 18 open reading frames as well as two regions of potential iterons and complex secondary structures. The shuttle vector, pDLT44, for M. maripaludis JJ was constructed from the entire pURB500 plasmid and pMEB.2, an Escherichia coli vector containing a methanococcal puromycin-resistance marker (P. Gernhardt, O. Possot, M. Foglino, L. Sibold, and A. Klein, Mol. Gen. Genet. 221:273-279, 1990). By using polyethylene glycol transformation, M. maripaludis JJ was transformed at a frequency of 3.3 x 10(7) transformants per microg of pDLT44. The shuttle vector was stable in E. coli under ampicillin selection but was maintained at a lower copy number than pMEB.2. Based on the inability of various restriction fragments of pURB500 to support maintenance in M. maripaludis JJ, multiple regions of pURB500 were required. pDLT44 did not replicate in Methanococcus voltae.
Collapse
Affiliation(s)
- D L Tumbula
- Department of Microbiology, University of Georgia, Athens 30602-2605, USA
| | | | | |
Collapse
|
44
|
Krüger K, Pfeifer F. Transcript analysis of the c-vac region and differential synthesis of the two regulatory gas vesicle proteins GvpD and GvpE in Halobacterium salinarium PHH4. J Bacteriol 1996; 178:4012-9. [PMID: 8763925 PMCID: PMC178154 DOI: 10.1128/jb.178.14.4012-4019.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Halobacterium salinarium PHH4 synthesizes gas vesicles in the stationary growth phase by the expression of 14 gyp genes arranged in two clusters. The chromosomal gvpACNO (c-gvpACNO) gene cluster (encoding the major structural gas vesicle protein GvpA and the minor structural protein GvpC was transcribed as three mRNA species starting at one promoter during the stationary phase of growth. The second gene cluster, c-gvpDEFGHIKLM), was transcribed during all stages of growth as a relatively unstable, single mRNA with a maximal length of 6 kb. In addition, a 1.7-kb c-gvpD transcript was synthesized during stationary growth starting at the same promotor as that of the cgvpDEFGHIJKLM mRNA. The expression of the first two genes located in this unit (c-gvpD and c-gvpE) was also monitored by Western blot (immunoblot) analyses using antisera raised against these proteins synthesized in Escherichia coli. While the cGvpD protein was present only during early exponential growth and disappeared during gas vesicle formation, the cGvpE protein was present during cGvpA and gas vesicle synthesis in the early stationary phase of growth. Previous data indicated that cGvpD is involved in repression of gas vesicle formation, whereas cGvpE is a transcriptional activator for the c-gvpA promoter. The appearance of both proteins during the growth cycle is in line with the functions of these proteins in gas vesicle synthesis. The mechanism of the differential translation of cGvpD and cGvpE from the c-gvpDEFGHIJKLM rnRNA still has to be elucidated, but antisense RNAs complementary to the 5' terminus as well as the 3' portion of the c-gvpD mRNA might be involved in this regulation. Such RNAs occurred during early stationary growth when the cGvpD protein level decreased and may possibly inhibit the translation of the c-gvpD mRNA.
Collapse
Affiliation(s)
- K Krüger
- Institut für Mikrobiologie und Genetik, Technische Hochschule Darmstadt, Germany
| | | |
Collapse
|
45
|
Erauso G, Marsin S, Benbouzid-Rollet N, Baucher MF, Barbeyron T, Zivanovic Y, Prieur D, Forterre P. Sequence of plasmid pGT5 from the archaeon Pyrococcus abyssi: evidence for rolling-circle replication in a hyperthermophile. J Bacteriol 1996; 178:3232-7. [PMID: 8655503 PMCID: PMC178075 DOI: 10.1128/jb.178.11.3232-3237.1996] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The plasmid pGT5 (3,444 bp) from the hyperthermophilic archaeon Pyrococcus abyssi GE5 has been completely sequenced. Two major open reading frames with a good coding probability are located on the same strand and cover 85% of the total sequence. The larger open reading frame encodes a putative polypeptide which exhibits sequence similarity with Rep proteins of plasmids using the rolling-circle mechanism for replication. Upstream of this open reading frame, we have detected an 11-bp motif identical to the double-stranded origin of several bacterial plasmids that replicate via the rolling-circle mechanism. A putative single-stranded origin exhibits similarities both to bacterial primosome-dependent single-stranded initiation sites and to bacterial primase (dnaG) start sites. A single-stranded form of pGT5 corresponding to the plus strand was detected in cells of P. abyssi. These data indicate that pGT5 replicates via the rolling-circle mechanism and suggest that members of the domain Archaea contain homologs of several bacterial proteins involved in chromosomal DNA replication. Phylogenetic analysis of Rep proteins from rolling-circle replicons suggest that diverse families diverged before the separation of the domains Archaea, Bacteria, and Eucarya.
Collapse
Affiliation(s)
- G Erauso
- Station Biologique de Roscoff, UPR 9042 Centre National de la Recherche Scientifique, Université Paris-Sud, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Offner S, Wanner G, Pfeifer F. Functional studies of the gvpACNO operon of Halobacterium salinarium reveal that the GvpC protein shapes gas vesicles. J Bacteriol 1996; 178:2071-8. [PMID: 8606186 PMCID: PMC177907 DOI: 10.1128/jb.178.7.2071-2078.1996] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gas vesicle (Vac) synthesis in Halobacterium salinarium PHH1 involves the expression of the plasmid pHH1-encoded vac (p-vac) region consisting of 14 different gvp genes that are arranged in two clusters, p-gvpACNO and, oriented in the direction opposite to that of gvpA, p-gvpDEFGHIJKLM. The p-gvpACNO region was analyzed at the transcriptional and functional levels in H. salinarium and in Haloferax volcanii transformants containing subfragments of the p-vac region. The p-gvpACNO genes were transcribed as several mRNAs: the 270-nucleotide (nt) p-gvpA transcript, encoding the major structural protein, occurred in large amounts, and minor amounts of three different readthrough transcripts (p-gvpACN, and p-gvpACNO mRNA) were found. In addition, the p-gvpO gene gave rise to two separate mRNA species: a 550-nt mRNA starting at the ATG and spanning the entire reading frame and a 420-nt RNA encompassing the second half of the p-gvpO gene. The requirement of p-gvpC, p-gvpN, and p-gvpO gene expression for gas vesicle synthesis was assessed by transformation experiments using the VAC- species Haloferax volcanii as the recipient. A delta C transformant, harboring the p-vac region with a deletion of the p-gvpC gene, produced large amounts of irregularly shaped gas vesicles. A shape-forming function of p-GvpC was demonstrated by complementation of the delta C transformant with the p-gvpC gene, resulting in wild-type-shaped gas vesicles. In the delta N transformant, the level of gas vesicle synthesis was very low, indicating that the p-GvpN protein is not required for gas vesicle assembly but may enhance gas vesicle synthesis. The p-gvpN deletion did not affect accumulation of p-gvpACO mRNA but reduced the separate p-gvpO transcription. The delta O transformant was Vac- and had a strongly decreased level of p-gvpACN mRNAs, demonstrating that the p-GvpO protein is required for gas vesicle synthesis and may affect transcription of this DNA region.
Collapse
Affiliation(s)
- S Offner
- Institut für Mikrobiologie und Genetik, Technische Hochschule Darmstadt, Germany
| | | | | |
Collapse
|
47
|
Offner S, Pfeifer F. Complementation studies with the gas vesicle-encoding p-vac region of Halobacterium salinarium PHH1 reveal a regulatory role for the p-gvpDE genes. Mol Microbiol 1995; 16:9-19. [PMID: 7651141 DOI: 10.1111/j.1365-2958.1995.tb02387.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gas-vesicle (Vac) synthesis in Halobacterium salinarium PHH1 involves the expression of the p-vac region consisting of 14 different gvp genes that are arranged in two clusters: p-gvpACNO and, oppositely oriented, p-gvpDEFGHIJKLM. The latter cluster of genes is transcribed as two units: p-gvpDE and p-gvpF-M. The 5'-terminus of the p-gvpF-M mRNA was located 169 nucleotides upstream of p-gvpF within p-gvpE. The p-gvpG and p-gvpK gene was expressed in Escherichia coli and antibodies to proteins obtained were raised in rabbits. Both proteins could be detected in halobacterial cell lysates; in gas-vesicle preparations, however, neither GvpG nor GvpK could be found. The requirement for single p-gvp gene expression for gas-vesicle synthesis was determined by transformation experiments using the Vac- species Haloferax volcanii as recipient. Construct delta A containing all p-gvp genes except for p-gvpA, encoding the major gas-vesicle structural protein, produced Vac- transformants, but the addition of p-gvpA on a second vector restored gas-vesicle synthesis to wild-type level (Vac++). Similarly, double transformants containing p-gvpD-M plus p-gvpACNO, or p-gvpG-M (fused to the promoter of the halobacterial ferredoxin gene for expression) plus p-gvpFED-ACNO were Vac++. Transformants containing the p-vac region either lacking gvpA, gvpF, or gvpGHI were Vac-, indicating the absolute requirement of these gvp genes (or at least one in the case of gvpGHI) for gas-vesicle formation. Double transformants containing the constructs p-gvpF-M plus p-gvpACNO (delta DE) accumulated gas vesicles (Vac+) but synthesized fewer than the wild type, showing that the p-gvpDE genes are not necessary for gas-vesicle assembly. A repressor function affecting the synthesis of the p-gvpF-M mRNA could be suggested for p-gvpD and the 5'-region of its mRNA.
Collapse
Affiliation(s)
- S Offner
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
48
|
Abstract
The pMDS series of cloning vectors developed for use in halophilic archaea have utilized a 10.5-kb plasmid, pHK2, from Haloferax sp. Aa2.2. The minimal replicon of pHK2 has now been determined (3359 bp) and completely sequenced. No significant sequence similarity was found between the pHK2 subfragment and plasmid pHV2 from the closely related H. volcanii. However, a long open reading frame (ORF), named rep, was identified which encodes a putative protein with approx. 30% sequence identity to ORFs within plasmids pGRB1, pHGN1 and pHSB1 from Halobacterium sp. All these putative Rep proteins contain sequence motifs conserved in bacterial plasmids and phage genomes known to replicate via a rolling-circle mechanism.
Collapse
Affiliation(s)
- M L Holmes
- Department of Microbiology, University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
49
|
Schleper C, Röder R, Singer T, Zillig W. An insertion element of the extremely thermophilic archaeon Sulfolobus solfataricus transposes into the endogenous beta-galactosidase gene. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:91-6. [PMID: 8190076 DOI: 10.1007/bf00283880] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three phenotypically stable mutants of the extremely thermophilic archaeon Sulfolobus solfataricus have been isolated by screening for beta-galactosidase negative colonies on plates with X-Gal (5-bromo-4-chloro-3-indolyl-beta-D- galactopyranoside). From one of these mutants an insertion element, designated ISC1217, was isolated and characterized. Sequence analysis of ISC1217 and of the regions adjacent to the insertion site in the beta-galactosidase gene revealed features typical of a transposable element: ISC1217 contained terminal inverted repeats and was flanked by a direct repeat of 6 bp. The 1147 bp sequence contained an open reading frame encoding a putative protein of 354 amino acid residues and, overlapping this, two smaller open reading frames on the opposite strand. There were approximately 8 copies of the insertion element in the S. solfataricus genome. ISC1217 did not cross-hybridize with DNA of other Sulfolobus species. All three independently isolated beta-galactosidase mutants of S. solfataricus arose by transposition of ISC1217 or a related element.
Collapse
Affiliation(s)
- C Schleper
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
50
|
Abstract
We have identified the replication origin of pNRC100, a 200-kb plasmid of Halobacterium halobium, by assaying for replication ability of miniplasmids containing cloned fragments of pNRC100 and the mevinolin resistance selectable marker of Haloferax volcanii. First, we showed the replication ability of plasmid pNGHCMEV1, which contains the 19-kb HindIII-C fragment of pNRC100, by recovery of plasmid DNA from mevinolin-resistant transformants of H. halobium. The minimal replication origin of approximately 3.9 kb was defined by subcloning successively smaller regions of pNGHCMEV1 and assaying for plasmid replication in either H. halobium or H. volcanii. The same replication origin was also recovered after transformation of H. volcanii with a library of partial Sau3AI fragments of pNRC100. The nucleotide sequence of the minimal replication origin was determined and found to contain a long open reading frame, named repH, transcribed away from a highly A+T-rich region. The transcription start site was identified by primer extension analysis to be 17 to 18 nucleotides 5' to a putative repH start codon. The predicted product of the repH gene, an acidic protein with a molecular weight of 113,442, showed 24 to 27% identity with predicted gene products of H. volcanii plasmid pHV2 and H. halobium plasmid p phi HL, suggesting that each is involved in plasmid replication. One pNRC100 minireplicon, pNG11 delta 12, was analyzed by linker scanning mutagenesis, which showed the requirement of repH for replication. Restoration of the repH reading frame of one replication-defective pNG11 delta 12 derivative by introduction of a second small insertion resulted in reversion to replication proficiency. The replication ability of pNG11delta12 was lost when the entire A+T-rich region, about 550 bp long, was deleted but not when small insertions or deletions were introduced into this region. The presence of only 52 bp of the A+T-rich segment was sufficient to permit replication. The pNG11delta12 minireplicon was lost at high frequency from cells grown without mevinolin selection, suggesting that the plasmid partitioning locus of pNRC100 is absent in the minimal replication origin region. We discuss the possible roles of the repH gene and the A+T-rich region in replication of pNRC100.
Collapse
Affiliation(s)
- W L Ng
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|