1
|
Mutations in AraR leading to constitutive expression of arabinolytic genes in Aspergillus niger under derepressing conditions [corrected]. Appl Microbiol Biotechnol 2019; 103:4125-4136. [PMID: 30963207 PMCID: PMC6486530 DOI: 10.1007/s00253-019-09777-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
The AraR transcription factor of Aspergillus niger encodes a Zn(II)2Cys6 transcription factor required for the induction of genes encoding arabinolytic enzymes. One of the target genes of AraR is abfA, encoding an arabinofuranosidase. The expression of abfA as well as other L-arabinose-induced genes in A. niger requires the presence of L-arabinose or its derivative L-arabitol as an inducer to activate AraR-dependant gene expression. In this study, mutants were isolated that express L-arabinose-induced genes independently of the presence of an inducer under derepressing conditions. To obtain these mutants, a reporter strain was constructed in a ΔcreA background containing the L-arabinose-responsive promoter (PabfA) fused to the acetamidase (amdS) gene. Spores of the ΔcreA PabfA-amdS reporter strain were UV-mutagenized and mutants were obtained by their ability to grow on acetamide without the presence of inducer. From a total of 164 mutants, 15 mutants were identified to contain transacting mutations resulting in high arabinofuranosidase activity in the medium after growth under non-inducing conditions. Sequencing of the araR gene of the 15 constitutive mutants revealed that 14 mutants carried a mutation in AraR. Some mutations were found more than once and in total nine different point mutations were identified in AraR. The AraRN806I point mutation was reintroduced into a parental strain and confirmed that this point mutation leads to inducer-independent expression of AraR target genes. The inducer independent of L-arabinose-induced genes in the AraRN806I mutant was found to be sensitive to carbon catabolite repression, indicating that the CreA-mediated carbon catabolite repression is dominant over the AraRN806I mutant allele. These mutations in AraR provide new opportunities to improve arabinase production in industrial fungal strains.
Collapse
|
2
|
Khosravi C, Battaglia E, Kun RS, Dalhuijsen S, Visser J, Aguilar-Pontes MV, Zhou M, Heyman HM, Kim YM, Baker SE, de Vries RP. Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans. BMC Genomics 2018; 19:214. [PMID: 29566661 PMCID: PMC5863803 DOI: 10.1186/s12864-018-4609-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/19/2018] [Indexed: 11/11/2022] Open
Abstract
Background Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi, are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases, but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involved in regulating preferential use of different carbon catabolic pathways. Results Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. Conclusion Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses. Electronic supplementary material The online version of this article (10.1186/s12864-018-4609-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Roland S Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Sacha Dalhuijsen
- Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Genetics and Technology Consultancy, P.O. Box 396, 6700, AJ, Wageningen, The Netherlands
| | - María Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Heino M Heyman
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Scott E Baker
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands. .,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Hutwimmer S, Wang H, Strasser H, Burgstaller W. Formation of exudate droplets byMetarhizium anisopliaeand the presence of destruxins. Mycologia 2017; 102:1-10. [DOI: 10.3852/09-079] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stefan Hutwimmer
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Hui Wang
- College of Plant Protection, Northwest A&F University, YangLing 712100, Shaanxi, P.R. China
| | | | | |
Collapse
|
4
|
Ku S. Finding and Producing Probiotic Glycosylases for the Biocatalysis of Ginsenosides: A Mini Review. Molecules 2016; 21:molecules21050645. [PMID: 27196878 PMCID: PMC6273753 DOI: 10.3390/molecules21050645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/16/2022] Open
Abstract
Various microorganisms have been widely applied in nutraceutical industries for the processing of phytochemical conversion. Specifically, in the Asian food industry and academia, notable attention is paid to the biocatalytic process of ginsenosides (ginseng saponins) using probiotic bacteria that produce high levels of glycosyl-hydrolases. Multiple groups have conducted experiments in order to determine the best conditions to produce more active and stable enzymes, which can be applicable to produce diverse types of ginsenosides for commercial applications. In this sense, there are various reviews that cover the biofunctional effects of multiple types of ginsenosides and the pathways of ginsenoside deglycosylation. However, little work has been published on the production methods of probiotic enzymes, which is a critical component of ginsenoside processing. This review aims to investigate current preparation methods, results on the discovery of new glycosylases, the application potential of probiotic enzymes and their use for biocatalysis of ginsenosides in the nutraceutical industry.
Collapse
Affiliation(s)
- Seockmo Ku
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA.
| |
Collapse
|
5
|
Effects of ascorbic acid on α-l-arabinofuranosidase and α-l-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside. ACTA ACUST UNITED AC 2015; 58:857-865. [PMID: 26612991 PMCID: PMC4648979 DOI: 10.1007/s13765-015-0113-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/08/2015] [Indexed: 12/03/2022]
Abstract
Bifidobacterium longum RD47 was cultured in 24 kinds of modified MRS broths containing various ingredients to select the most promising source that induces microbial enzymes. Among the various ingredients, ascorbic acid significantly enhanced α-l-arabinofuranosidase and α-l-arabinopyranosidase activities in Bifidobacterium longum RD47. Addition of 2 % ascorbic acid (w/v) to MRS showed the maximum enzyme activities. Both whole cell and disrupted cell homogenates showed efficient ρ-nitrophenyl-β-d-glucopyranoside and ρ-nitrophenyl-β-d-glucofuranoside hydrolysis activities. The initially enhanced α-l-arabinopyranosidase and α-l-arabinofuranosidase activities by ascorbic acid were maintained over the cell disruption process. The optimal pH of α-l-arabinofuranosidase and α-l-arabinopyranosidase was 5.0 and 7.0, respectively. Both enzymes showed the maximum activities at 40.0 °C. Under the controlled condition using Bifidobacterium longum RD47, ginsenoside Rb2, and Rc were converted to ginsenoside Rd.
Collapse
|
6
|
de Assis LJ, Ries LNA, Savoldi M, dos Reis TF, Brown NA, Goldman GH. Aspergillus nidulans protein kinase A plays an important role in cellulase production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:213. [PMID: 26690721 PMCID: PMC4683954 DOI: 10.1186/s13068-015-0401-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/30/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND The production of bioethanol from lignocellulosic feedstocks is dependent on lignocellulosic biomass degradation by hydrolytic enzymes. The main component of lignocellulose is cellulose and different types of organisms are able to secrete cellulases. The filamentous fungus Aspergillus nidulans serves as a model organism to study cellulase production and the available tools allow exploring more in depth the mechanisms governing cellulase production and carbon catabolite repression. RESULTS In A. nidulans, microarray data identified the cAMP-dependent protein kinase A (PkaA) as being involved in the transcriptional modulation and the production of lignocellulolytic enzymes in the presence of cellulose. Deletion of pkaA resulted in increased hydrolytic enzyme secretion, but reduced growth in the presence of lignocellulosic components and various other carbon sources. Furthermore, genes involved in fungal development were increased in the ΔpkaA strain, probably leading to the increased hyphal branching as was observed in this strain. This would allow the secretion of higher amounts of proteins. In addition, the expression of SynA, encoding a V-SNARE synaptobrevin protein involved in secretion, was increased in the ΔpkaA mutant. Deletion of pkaA also resulted in the reduced nuclear localization of the carbon catabolite repressor CreA in the presence of glucose and in partial de-repression when grown on cellulose. PkaA is involved in the glucose signaling pathway as the absence of this protein resulted in reduced glucose uptake and lower hexokinase/glucokinase activity, directing the cell to starvation conditions. Genome-wide transcriptomics showed that the expression of genes encoding proteins involved in fatty acid metabolism, mitochondrial function and in the use of cell storages was increased. CONCLUSIONS This study shows that PkaA is involved in hydrolytic enzyme production in A. nidulans. It appears that this protein kinase blocks the glucose pathway, hence forcing the cell to change to starvation conditions, increasing hydrolytic enzyme secretion and inducing the usage of cellular storages. This work uncovered new regulatory avenues governing the tight interplay between the metabolic states of the cell, which are important for the production of hydrolytic enzymes targeting lignocellulosic biomass. Deletion of pkaA resulted in a strain with increased hydrolytic enzyme secretion and reduced biomass formation.
Collapse
Affiliation(s)
- Leandro José de Assis
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Laure Nicolas Annick Ries
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Marcela Savoldi
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Neil Andrew Brown
- />Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Gustavo Henrique Goldman
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Chulkin AM, Vavilova EA, Benevolenskij SV. Transcriptional regulator of carbon catabolite repression CreA of filamentous fungus Penicillium canescens. Mol Biol 2010. [DOI: 10.1134/s0026893310040151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Gueimonde M, Noriega L, Margolles A, de los Reyes-Gavilán CG. Induction of alpha-L-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Arch Microbiol 2006; 187:145-53. [PMID: 17031615 DOI: 10.1007/s00203-006-0181-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/23/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
Bifidobacterium longum can be isolated from human faeces, some strains being considered probiotics. B. longum NIZO B667 produces an exo-acting alpha-L-arabinofuranosidase, AbfB, previously purified by us, that releases L-arabinose from arabinan and arabinoxylan. This activity was subjected to two-seven-fold induction by L-arabinose, D-xylose, L-arabitol and xylitol and to repression by glucose. Maximum activity was obtained at 48 h incubation except for D-xylose that was at 24 h. High concentrations (200 mM) of L-arabitol also caused repression of the arabinofuranosidase. A unique band of activity showing the same migration pattern as the purified AbfB was found in zymograms of cell free extracts, indicating that the activity was likely due to this sole enzyme. The assessment of the influence of inducers and repressors on the activity of AbfB and on the expression of the abfB gene by real time PCR indicated that regulation was transcriptional. DNA amplifications using a pair of degenerated primers flanking an internal fragment within alpha-L-arabinofuranosidase genes of the family 51 of glycoside hydrolases evidenced that these enzymes are widespread in Bifidobacterium. The aminoacidic sequences of bifidobacteria included a fragment of four to six residues in the position 136-141 that was absent in other microorganisms.
Collapse
Affiliation(s)
- Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias, CSIC, Ctra. de Infiesto s/n, apartado 85, 33300 Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
9
|
Aro N, Ilmén M, Saloheimo A, Penttilä M. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 2003; 69:56-65. [PMID: 12513977 PMCID: PMC152388 DOI: 10.1128/aem.69.1.56-65.2003] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized the effect of deletion of the Trichoderma reesei (Hypocrea jecorina) ace1 gene encoding the novel cellulase regulator ACEI that was isolated based on its ability to bind to and activate in vivo in Saccharomyces cerevisiae the promoter of the main cellulase gene, cbh1. Deletion of ace1 resulted in an increase in the expression of all the main cellulase genes and two xylanase genes in sophorose- and cellulose-induced cultures, indicating that ACEI acts as a repressor of cellulase and xylanase expression. Growth of the strain with a deletion of the ace1 gene on different carbon sources was analyzed. On cellulose-based medium, on which cellulases are needed for growth, the Deltaace1 strain grew better than the host strain due to the increased cellulase production. On culture media containing sorbitol as the sole carbon source, the growth of the strain with a deletion of the ace1 gene was severely impaired, suggesting that ACEI regulates expression of other genes in addition to cellulase and xylanase genes. A strain with a deletion of the ace1 gene and with a deletion of the ace2 gene coding for the cellulase and xylanase activator ACEII expressed cellulases and xylanases similar to the Deltaace1 strain, indicating that yet another activator regulating cellulase and xylanase promoters was present.
Collapse
Affiliation(s)
- Nina Aro
- VTT Biotechnology, FIN-02044 VTT, Espoo, Finland.
| | | | | | | |
Collapse
|
10
|
Felenbok B, Flipphi M, Nikolaev I. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:149-204. [PMID: 11550794 DOI: 10.1016/s0079-6603(01)69047-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This article reviews our knowledge of the ethanol utilization pathway (alc system) in the hyphal fungus Aspergillus nidulans. We discuss the progress made over the past decade in elucidating the two regulatory circuits controlling ethanol catabolism at the level of transcription, specific induction, and carbon catabolite repression, and show how their interplay modulates the utilization of nutrient carbon sources. The mechanisms featuring in this regulation are presented and their modes of action are discussed: First, AlcR, the transcriptional activator, which demonstrates quite remarkable structural features and an original mode of action; second, the physiological inducer acetaldehyde, whose intracellular accumulation induces the alc genes and thereby a catabolic flux while avoiding intoxification; third, CreA, the transcriptional repressor mediating carbon catabolite repression in A. nidulans, which acts in different ways on the various alc genes; Fourth, the promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA) and the regulatory alcR gene, which exhibit exceptional strength compared to other genes of the respective classes. alc gene expression depends on the number and localization of regulatory cis-acting elements and on the particular interaction between the two regulator proteins, AlcR and CreA, binding to them. All these characteristics make the ethanol regulon a suitable system for induced expression of heterologous protein in filamentous fungi.
Collapse
Affiliation(s)
- B Felenbok
- Institut de Génétique et Microbiologie, Université Paris-Sud, Centre Universitaire d'Orsay, France.
| | | | | |
Collapse
|
11
|
Aspergillus nidulans as a model organism for the study of the expression of genes encoding enzymes of relevance in the food industry. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Kroon PA, Williamson G, Fish NM, Archer DB, Belshaw NJ. A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6740-52. [PMID: 11082184 DOI: 10.1046/j.1432-1033.2000.01742.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An esterase was isolated from cultures of the filamentous fungus Penicillium funiculosum grown on sugar beet pulp as the sole carbon source. The enzyme (ferulic acid esterase B, FAEB) was shown to be a cinnamoyl esterase (CE), efficiently releasing hydroxycinnamic acids from synthetic ester substrates and plant cell walls, and bound strongly to microcrystalline cellulose. A gene fragment was obtained by PCR using partial amino-acid sequences obtained from the pure enzyme and used to a probe a P. funiculosum genomic DNA library. A clone containing a 1120-bp ORF, faeB, was obtained which encoded a putative 353-residue preprotein including an 18-residue signal peptide, which when expressed in Eschericia coli produced CE activity. Northern analysis showed that transcription of faeB was tightly regulated, being stimulated by growth of the fungus on sugar beet pulp but inhibited by free glucose. The faeB promoter sequence contains putative motifs for binding an activator protein, XLNR, and a carbon catabolite repressor protein, CREA. FAEB was comprised of two distinct domains separated by a 20 residue Thr/Ser/Pro linker region. The N-terminal domain comprised 276 amino acids, contained a G-X-S-X-G motif typical of serine esterases, and was shown to be a member of a family comprising serine esterases, including microbial acetyl xylan esterases, poly (3-hydroxyalkanoate) depolymerases and CEs, and proteins of unknown function from Mycobacterium spp. and plants. The C-terminal domain comprised 39 amino acids and closely resembled the family 1 cellulose binding carbohydrate-binding modules (CBM) of fungal glycosyl hydrolases. This is the first report of a fungal CE with a CBM.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids/chemistry
- Base Sequence
- Blotting, Northern
- Carbohydrate Metabolism
- Carboxylic Ester Hydrolases/chemistry
- Carboxylic Ester Hydrolases/genetics
- Carboxylic Ester Hydrolases/metabolism
- Cell Wall/metabolism
- Cellulose/metabolism
- Chenopodiaceae/chemistry
- Chromatography, Ion Exchange
- Cloning, Molecular
- Coumaric Acids/metabolism
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Gene Library
- Glucose/metabolism
- Glutathione Transferase/metabolism
- Hydrolysis
- Kinetics
- Molecular Sequence Data
- Open Reading Frames
- Penicillium/enzymology
- Plants/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Substrate Specificity
- Sulfones/pharmacology
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- P A Kroon
- Institute of Food Research, Norwich Research Park, Colney, Norwich, UK.
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Kaneko S, Arimoto M, Ohba M, Kobayashi H, Ishii T, Kusakabe I. Purification and substrate specificities of two alpha-L-arabinofuranosidases from Aspergillus awamori IFO 4033. Appl Environ Microbiol 1998; 64:4021-7. [PMID: 9758835 PMCID: PMC106594 DOI: 10.1128/aem.64.10.4021-4027.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
alpha-L-Arabinofuranosidases I and II were purified from the culture filtrate of Aspergillus awamori IFO 4033 and had molecular weights of 81,000 and 62,000 and pIs of 3.3 and 3.6, respectively. Both enzymes had an optimum pH of 4.0 and an optimum temperature of 60 degreesC and exhibited stability at pH values from 3 to 7 and at temperatures up to 60 degrees C. The enzymes released arabinose from p-nitrophenyl-alpha-L-arabinofuranoside, O-alpha-L-arabinofuranosyl-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-x ylopyranose, and arabinose-containing polysaccharides but not from O-beta-D-xylopyranosyl-(1-->2)-O-alpha-L-arabinofuranosyl-(1-->3)-O-b eta-D-xylopyranosyl-(1-->4)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyra nose. alpha-L-Arabinofuranosidase I also released arabinose from O-beta-D-xylopy-ranosyl-(1-->4)-[O-alpha-L-arabinofuranosyl- (1-->3)]- O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose. However, alpha-L-arabinofuranosidase II did not readily catalyze this hydrolysis reaction. alpha-L-Arabinofuranosidase I hydrolyzed all linkages that can occur between two alpha-L-arabinofuranosyl residues in the following order: (1-->5) linkage > (1-->3) linkage > (1-->2) linkage. alpha-L-Arabinofuranosidase II hydrolyzed the linkages in the following order: (1-->5) linkage > (1-->2) linkage > (1-->3) linkage. alpha-L-Arabinofuranosidase I preferentially hydrolyzed the (1-->5) linkage of branched arabinotrisaccharide. On the other hand, alpha-L-arabinofuranosidase II preferentially hydrolyzed the (1-->3) linkage in the same substrate. alpha-L-Arabinofuranosidase I released arabinose from the nonreducing terminus of arabinan, whereas alpha-L-arabinofuranosidase II preferentially hydrolyzed the arabinosyl side chain linkage of arabinan.
Collapse
Affiliation(s)
- S Kaneko
- Institute of Applied Biochemistry, University of Tsukuba, 1-1-1 Tennoodai, Tsukuba, Ibaraki 305, Japan
| | | | | | | | | | | |
Collapse
|
15
|
van Peij NN, Visser J, de Graaff LH. Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 1998; 27:131-42. [PMID: 9466262 DOI: 10.1046/j.1365-2958.1998.00666.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complementation by transformation of an Aspergillus niger mutant lacking xylanolytic activity led to the isolation of the xlnR gene. The xlnR gene encodes a polypeptide of 875 amino acids capable of forming a zinc binuclear cluster domain with similarity to the zinc clusters of the GAL4 superfamily of transcription factors. The XlnR-binding site 5'-GGCTAAA-3' was deduced after electrophoretic mobility shift assays, DNase I footprinting and comparison of various xylanolytic promoters. The importance of the second G within the presumed XlnR binding site 5'-GGCTAAA-3' was confirmed in vitro and in vivo. The 5'-GGCTAAA-3' consensus sequence is found within several xylanolytic promoters of various Aspergillus species and Penicillium chrysogenum. Therefore, this sequence may be an important and conserved cis-acting element in induction of xylanolytic genes in filamentous fungi. Our results indicate that XlnR is a transcriptional activator of the xylanolytic system in A. niger.
Collapse
MESH Headings
- Amino Acid Sequence
- Aspergillus niger/enzymology
- Aspergillus niger/genetics
- Aspergillus niger/metabolism
- Base Sequence
- Binding, Competitive
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- DNA Footprinting
- DNA, Fungal/chemistry
- Deoxyribonuclease I
- Electrophoresis, Polyacrylamide Gel
- Fungal Proteins
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Fungal/physiology
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic/genetics
- Restriction Mapping
- Sequence Analysis, DNA
- Trans-Activators/genetics
- Transcription, Genetic
- Transformation, Genetic
- Xylan Endo-1,3-beta-Xylosidase
- Xylans/metabolism
- Xylosidases/chemistry
- Xylosidases/genetics
- Xylosidases/metabolism
- Zinc Fingers/genetics
- Zinc Fingers/physiology
Collapse
Affiliation(s)
- N N van Peij
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, The Netherlands
| | | | | |
Collapse
|
16
|
Alamäe T, Liiv L. Glucose repression of maltase and methanol-oxidizing enzymes in the methylotrophic yeast Hansenula polymorpha: isolation and study of regulatory mutants. Folia Microbiol (Praha) 1998; 43:443-52. [PMID: 9821297 DOI: 10.1007/bf02820789] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Regulation of the synthesis of maltase and methanol-oxidizing enzymes by the carbon source has been analyzed in the methylotrophic yeast Hansenula polymorpha. Maltase was shown to be responsible for the growth of H. polymorpha not only on maltose, but also on sucrose. The affinity of maltase towards maltase substrates decreased in the order: 4-nitrophenyl glucoside (PNPG) < sucrose < maltose. Mutants with glucose repression-insensitive synthesis of alcohol oxidase and maltase were obtained from H. polymorpha by mutagenesis and subsequent selection on methanol medium in the presence of 2-deoxy-D-glucose. One of the isolated mutants, L63, was studied in more detail. Mutant L63 was recessive and monogenic and it was not deficient in hexokinase. Its analysis revealed that H. polymorpha most probably has a repressor protein that in the presence of glucose can down-regulate expression of both maltase and enzymes of methanol oxidation.
Collapse
Affiliation(s)
- T Alamäe
- Department of Genetics, University of Tartu, Estonia.
| | | |
Collapse
|
17
|
Abstract
Enzymes from filamentous fungi are already widely exploited, but new applications for known enzymes and new enzymic activities continue to be found. In addition, enzymes from less amenable non-fungal sources require heterologous production and fungi are being used as the production hosts. In each case there is a need to improve production and to ensure quality of product. While conventional, mutagenesis-based, strain improvement methods will continue to be applied to enzyme production from filamentous fungi the application of recombinant DNA techniques is beginning to reveal important information on the molecular basis of fungal enzyme production and this knowledge is now being applied both in the laboratory and commercially. We review the current state of knowledge on the molecular basis of enzyme production by filamentous fungi. We focus on transcriptional and post-transcriptional regulation of protein production, the transit of proteins through the secretory pathway and the structure of the proteins produced including glycosylation.
Collapse
Affiliation(s)
- D B Archer
- Genetics and Microbiology Department, Institute of Food Research, Norwich, UK
| | | |
Collapse
|
18
|
Ruijter GJG, Vanhanen SA, Gielkens MMC, van de Vondervoort PJI, Visser J. Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and L-arabinose catabolic enzymes. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 9):2991-2998. [PMID: 9308182 DOI: 10.1099/00221287-143-9-2991] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aspergillus niger mutants relieved of carbon repression were isolated from an areA parental strain by selection of colonies that exhibited improved growth on a combination of 4-aminobutanoic acid (GABA) and D-glucose. In addition to derepression of the utilization of GABA as a nitrogen source in the presence of D-glucose, three of the four mutants also showed derepression of L-alanine and L-proline utilization. Transformation of the mutants with the A. niger creA gene, encoding the repressor protein CREA, re-established the areA phenotype on GABA/D-glucose, identifying the mutations as creAd. The creA gene mapped on chromosome IV by linkage analysis and contour-clamped homogeneous electric field hybridization. The creA mutants obtained were used to study the involvement of CREA in repression by D-glucose of arabinases and L-arabinose catabolism in A. niger. In wild-type A. niger, alpha-L-arabinofuranosidase A, alpha-L-arabinofuranosidase B, endo-arabinase, L-arabinose reductase and L-arabitol dehydrogenase were induced on L-arabinose, but addition of D-glucose prevented this induction. Repression was relieved to varying degrees in the creA mutants, showing that biosynthesis of arabinases and L-arabinose catabolic enzymes is under control of CREA.
Collapse
Affiliation(s)
- George J G Ruijter
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Sipo A Vanhanen
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Marco M C Gielkens
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Peter J I van de Vondervoort
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Jaap Visser
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
19
|
Abstract
Many microorganisms prefer easily metabolizable carbon sources over alternative, less readily metabolized carbon sources. One of the mechanisms to achieve this is repression of the synthesis of enzymes related to catabolism of the alternative carbon sources, i.e. carbon repression. It is now clear that in Aspergillus nidulans and Aspergillus niger the repressor protein CREA plays a major role in carbon repression. CREA inhibits transcription of many target genes by binding to specific sequences in the promoter of these genes. Unfortunately there is little information on other components of the signalling pathway that triggers repression by CREA. In this review we summarize the current understanding of carbon repression in Aspergilli.
Collapse
Affiliation(s)
- G J Ruijter
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, The Netherlands
| | | |
Collapse
|
20
|
Differential carbon catabolite repression of two intracellular β-glucosidases in Aspergillus nidulans. ACTA ACUST UNITED AC 1997. [DOI: 10.1017/s0953756296002821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Wolschek MF, Kubicek CP. The filamentous fungus Aspergillus niger contains two "differentially regulated" trehalose-6-phosphate synthase-encoding genes, tpsA and tpsB. J Biol Chem 1997; 272:2729-35. [PMID: 9006911 DOI: 10.1074/jbc.272.5.2729] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two genes encoding trehalose-6-phosphate synthase were cloned from Aspergillus niger. tpsA was cloned using the Saccharomyces cerevisiae GGS1/TPS1 gene as a probe. It encodes a 517-amino acid polypeptide with 64-70% similarity to trehalose-6-phosphate synthase of S. cerevisiae, Kluyveromyces lactis, and Schizosaccharomyces pombe. Its transcription occurs constitutively and is enhanced on carbon-derepressing carbon sources, coinciding with the presence of a CreA-binding nucleotide motif in the 5'-noncoding region of tpsA. Disruption of tpsA only weakly reduces growth on glucose, and neither influences the glucose induction of a low affinity glucose permease nor interferes with the catabolite repression of a pectinase; it causes reduced the heat tolerance of conidia. tpsB was cloned by a polymerase chain reaction-based strategy. Its 480 amino acid sequence showed 76.5% identity to tpsA. Its transcription was hardly detectable at ambient temperatures but was enhanced strongly upon heat shock, which agrees with the presence of several copies of a C4T stress-responsive element in its 5'-upstream sequences. Hence the function of yeast GGS1/TPS1 has been split into two differentially regulated genes in A. niger, of which none appears to be involved in glucose sensing.
Collapse
Affiliation(s)
- M F Wolschek
- Section of Microbial Biochemistry, Institute of Biochemical Technology and Microbiology, University of Technology of Vienna, Getreidemarkt 9/172-5, A-1060 Wien, Austria
| | | |
Collapse
|
22
|
Ruijter GJ, Panneman H, van den Broeck HC, Bennett JM, Visser J. Characterisation of the Aspergillus nidulans frA1 mutant: hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression. FEMS Microbiol Lett 1996; 139:223-28. [PMID: 8674991 DOI: 10.1111/j.1574-6968.1996.tb08206.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hexose phosphorylation was studied in Aspergillus nidulans wild-type and in a fructose non-utilising mutant (frA). The data indicate the presence of at least one hexokinase and one glucokinase in wild-type A. nidulans, while the frA1 mutant lacks hexokinase activity. The A. nidulans gene encoding hexokinase was isolated by complementation of the frA1 mutation. The absence of hexokinase activity in the frA1 mutant did not interfere with glucose repression of the enzymes involved in alcohol and L-arabinose catabolism. This suggest that, unlike the situation in yeast where mutation of hexokinase PII abolishes glucose repression, the A. nidulans hexokinase might not be involved in glucose repression.
Collapse
Affiliation(s)
- G J Ruijter
- Section Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Abstract
beta-Glucosidase in Aspergillus nidulans was found to be both intracellular and extracellular. The intracellular beta-glucosidase was synthesized after the exhaustion of carbon source in the medium. The extracellular enzyme appeared with autolysis of the mycelium. Biosynthesis of beta-glucosidase was not induced by various carbohydrates but repressed to varying extents in the presence of glucose, glycerol, and 2-deoxyglucose. This repression was not relieved by addition of cAMP. The repression was relieved much more by mutations in the creA gene than by one in the creC gene. Thus, beta-glucosidase synthesis in A. nidulans is subject to carbon catabolite repression.
Collapse
Affiliation(s)
- J Lee
- Department of Microbiology, College of Natural Sciences, Seoul National University, South Korea.
| | | | | |
Collapse
|