1
|
Willi B, Brügger L, Müller L, Tabor S, Bender W, Müller M. Molecular and genetic characterization of Cbx-Basel , a new dominant allele of Ultrabithorax in D. melanogaster. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001321. [PMID: 39450185 PMCID: PMC11499937 DOI: 10.17912/micropub.biology.001321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Dominant gain-of-function alleles for the homeotic gene Ultrabithorax ( Ubx ) have been known for a long time. They are summarized under the name Contrabithorax ( Cbx ). Such alleles are rather easy to spot because the morphology of the conspicuous dorsal wing appendage is often dramatically changed. The majority of these alleles is associated with chromosomal rearrangements that alter the genetic landscape of the Ultrabithorax locus. Thereby, UBX protein is ectopically expressed in the wing primordium where it is normally absent. Since Ubx specifies haltere identity, wing cells expressing UBX are determined to become haltere cells. However, apart from the prototypic allele Cbx-1 , information on the molecular details of Contrabithorax alleles is scarce. Here, we present a rather detailed account on a novel Cbx-1-like allele called Cbx-Basel . The results of our study corroborate the model that has been postulated for the Cbx-1 wing phenotype.
Collapse
Affiliation(s)
- Basil Willi
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| | - Lukas Brügger
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| | - Leandra Müller
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| | | | | | - Martin Müller
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| |
Collapse
|
2
|
Brosh O, Fabian DK, Cogni R, Tolosana I, Day JP, Olivieri F, Merckx M, Akilli N, Szkuta P, Jiggins FM. A novel transposable element-mediated mechanism causes antiviral resistance in Drosophila through truncating the Veneno protein. Proc Natl Acad Sci U S A 2022; 119:e2122026119. [PMID: 35858337 PMCID: PMC9304006 DOI: 10.1073/pnas.2122026119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/18/2022] [Indexed: 01/13/2023] Open
Abstract
Hosts are continually selected to evolve new defenses against an ever-changing array of pathogens. To understand this process, we examined the genetic basis of resistance to the Drosophila A virus in Drosophila melanogaster. In a natural population, we identified a polymorphic transposable element (TE) insertion that was associated with an ∼19,000-fold reduction in viral titers, allowing flies to largely escape the harmful effects of infection by this virulent pathogen. The insertion occurs in the protein-coding sequence of the gene Veneno, which encodes a Tudor domain protein. By mutating Veneno with CRISPR-Cas9 in flies and expressing it in cultured cells, we show that the ancestral allele of the gene has no effect on viral replication. Instead, the TE insertion is a gain-of-function mutation that creates a gene encoding a novel resistance factor. Viral titers remained reduced when we deleted the TE sequence from the transcript, indicating that resistance results from the TE truncating the Veneno protein. This is a novel mechanism of virus resistance and a new way by which TEs can contribute to adaptation.
Collapse
Affiliation(s)
- Osama Brosh
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Daniel K. Fabian
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Rodrigo Cogni
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
- Department of Ecology, University of São Paulo, 05508-220 São Paulo, Brazil
| | - Ignacio Tolosana
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Jonathan P. Day
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Francesca Olivieri
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Manon Merckx
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Nazli Akilli
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Piotr Szkuta
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| |
Collapse
|
3
|
Prabhakaran M, Kelley RL. Mutations in the transcription elongation factor SPT5 disrupt a reporter for dosage compensation in Drosophila. PLoS Genet 2012; 8:e1003073. [PMID: 23209435 PMCID: PMC3510053 DOI: 10.1371/journal.pgen.1003073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/22/2012] [Indexed: 12/04/2022] Open
Abstract
In Drosophila, the MSL (Male Specific Lethal) complex up regulates transcription of active genes on the single male X-chromosome to equalize gene expression between sexes. One model argues that the MSL complex acts upon the elongation step of transcription rather than initiation. In an unbiased forward genetic screen for new factors required for dosage compensation, we found that mutations in the universally conserved transcription elongation factor Spt5 lower MSL complex dependent expression from the miniwhite reporter gene in vivo. We show that SPT5 interacts directly with MSL1 in vitro and is required downstream of MSL complex recruitment, providing the first mechanistic data corroborating the elongation model of dosage compensation. Drosophila males hypertranscribe most of the genes along their single X chromosome to match the output of females with two X chromosomes. It had been difficult to imagine how the MSL dosage compensation complex could impose a modest, but essential, ∼two-fold increase by interacting with hundreds of different factors that control transcription initiation for such a diverse collection of genes. An alternative model proposed that dosage compensation instead acted at some step of transcription elongation common to all genes. We performed a genetic screen for mutations that subtly reduce dosage compensation and recovered mutations in the Spt5 gene that encodes a universally conserved elongation factor. SPT5 closes the RNA polymerase II clamp around the DNA template to prevent pausing or premature termination. We find that the dosage compensation complex genetically and physically interacts with SPT5 on actively transcribed genes providing direct molecular support for the elongation model of dosage compensation.
Collapse
Affiliation(s)
- Mahalakshmi Prabhakaran
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard L. Kelley
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Chen S, Birve A, Rasmuson-Lestander A. In vivo analysis of Drosophila SU(Z)12 function. Mol Genet Genomics 2007; 279:159-70. [PMID: 18034266 DOI: 10.1007/s00438-007-0304-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
Polycomb group (PcG) proteins are required to maintain a stable repression of the homeotic genes during Drosophila development. Mutants in the PcG gene Supressor of zeste 12 (Su(z)12) exhibit strong homeotic transformations caused by widespread misexpression of several homeotic genes in embryos and larvae. Su(z)12 has also been suggested to be involved in position effect variegation and in regulation of the white gene expression in combination with zeste. To elucidate whether SU(Z)12 has any such direct functions we investigated the binding pattern to polytene chromosomes and compared the localization to other proteins. We found that SU(Z)12 binds to about 90 specific eukaryotic sites, however, not the white locus. We also find staining at the chromocenter and the nucleolus. The binding along chromosome arms is mostly in interbands and these sites correlate precisely with those of Enhancer-of-zeste and other components of the PRC2 silencing complex. This implies that SU(Z)12 mainly exists in complex with PRC2. Comparisons with other PcG protein-binding patterns reveal extensive overlap. However, SU(Z)12 binding sites and histone 3 trimethylated lysine 27 residues (3meK27 H3) do not correlate that well. Still, we show that Su(z)12 is essential for tri-methylation of the lysine 27 residue of histone H3 in vivo, and that overexpression of SU(Z)12 in somatic clones results in higher levels of histone methylation, indicating that SU(Z)12 is rate limiting for the enzymatic activity of PRC2. In addition, we analyzed the binding pattern of Heterochromatin Protein 1 (HP1) and found that SU(Z)12 and HP1 do not co-localize.
Collapse
Affiliation(s)
- Sa Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
5
|
Abstract
The epigenetic phospho-serine 10 modification of histone H3 has been a puzzle due to its association with two apparently opposed chromatin states. It is found at elevated levels on the highly condensed, transcriptionally inactive mitotic chromosomes yet is also correlated with the more extended chromatin configuration of active genes, euchromatic interband regions, and activated heat shock puffs of Drosophila polytene chromosomes. In addition, phosphorylation of histone H3S10 is up-regulated on the hypertranscribed male X chromosome. Here we review the cellular effects of histone H3S10 phosphorylation and discuss a model for its involvement in regulating chromatin organization and heterochromatization that would be applicable to both interphase and mitotic chromosomes.
Collapse
Affiliation(s)
- Kristen M Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 3154 Molecular Biology Building, Ames, Iowa 50011, USA.
| | | |
Collapse
|
6
|
Lerach S, Zhang W, Deng H, Bao X, Girton J, Johansen J, Johansen KM. JIL-1 kinase, a member of the male-specific lethal (MSL) complex, is necessary for proper dosage compensation of eye pigmentation in Drosophila. Genesis 2006; 43:213-5. [PMID: 16307450 PMCID: PMC2980853 DOI: 10.1002/gene.20172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The upregulation of the JIL-1 kinase on the male X chromosome and its association with the male-specific lethal (MSL) complex suggest that JIL-1 may play a role in regulating dosage compensation. To directly test this hypothesis we measured eye pigment levels of mutants in the X-linked white gene in an allelic series of JIL-1 hypomorphic mutants. We show that dosage compensation of w(a) alleles that normally do exhibit dosage compensation was severely impaired in the JIL-1 mutant backgrounds. As a control we also examined a hypomorphic white allele w(e) that fails to dosage compensate in males due to a pogo element insertion. In this case the relative pigment level measured in males as compared to females remained approximately the same even in the most severe JIL-1 hypomorphic background. These results indicate that proper dosage compensation of eye pigment levels in males controlled by X-linked white alleles requires normal JIL-1 function.
Collapse
|
7
|
Diegelmann S, Zars M, Zars T. Genetic dissociation of acquisition and memory strength in the heat-box spatial learning paradigm in Drosophila. Learn Mem 2006; 13:72-83. [PMID: 16418434 PMCID: PMC1360135 DOI: 10.1101/lm.45506] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Memories can have different strengths, largely dependent on the intensity of reinforcers encountered. The relationship between reinforcement and memory strength is evident in asymptotic memory curves, with the level of the asymptote related to the intensity of the reinforcer. Although this is likely a fundamental property of memory formation, relatively little is known of how memory strength is determined. Memory performance at different levels in Drosophila can be measured in an operant heat-box conditioning paradigm. In this spatial learning paradigm, flies learn and remember to avoid one-half of a dark chamber associated with a temperature outside of the preferred range. The reinforcement temperature has a strong effect on the level of learning in wild-type flies, with higher temperatures inducing stronger memories. Additionally, two mutations alter memory-acquisition curves, either changing acquisition rate or asymptotic memory level. The rutabaga mutation, affecting a type-1 adenylyl cyclase, decreases the acquisition rate. In contrast, the white mutation, modifying an ABC transporter, limits asymptotic memory. The white mutation does not negatively affect classical olfactory conditioning but actually improves performance at low reinforcement levels. Thus, memory acquisition/memory strength and classical olfactory/operant spatial memories can be genetically dissociated. A conceptual model of operant conditioning and the levels at which rutabaga and white influence conditioning is proposed.
Collapse
Affiliation(s)
- Soeren Diegelmann
- University of Missouri-Columbia, Division of Biological Sciences, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
8
|
Zingler N, Weichenrieder O, Schumann GG. APE-type non-LTR retrotransposons: determinants involved in target site recognition. Cytogenet Genome Res 2005; 110:250-68. [PMID: 16093679 DOI: 10.1159/000084959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 02/05/2004] [Indexed: 10/25/2022] Open
Abstract
Non-long terminal repeat (Non-LTR) retrotransposons represent a diverse and widely distributed group of transposable elements and an almost ubiquitous component of eukaryotic genomes that has a major impact on evolution. Their copy number can range from a few to several million and they often make up a significant fraction of the genomes. The members of the dominating subtype of non-LTR retrotransposons code for an endonuclease with homology to apurinic/apyrimidinic endonucleases (APE), and are thus termed APE-type non-LTR retrotransposons. In the last decade both the number of identified non-LTR retrotransposons and our knowledge of biology and evolution of APE-type non-LTR retrotransposons has increased tremendously.
Collapse
Affiliation(s)
- N Zingler
- Paul-Ehrlich-Institut, Langen, Germany
| | | | | |
Collapse
|
9
|
Schlenke TA, Begun DJ. Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci U S A 2004; 101:1626-31. [PMID: 14745026 PMCID: PMC341797 DOI: 10.1073/pnas.0303793101] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 12/07/2003] [Indexed: 11/18/2022] Open
Abstract
We know little about several important properties of beneficial mutations, including their mutational origin, their phenotypic effects (e.g., protein structure changes vs. regulatory changes), and the frequency and rapidity with which they become fixed in a population. One signature of the spread of beneficial mutations is the reduction of heterozygosity at linked sites. Here, we present population genetic data from several loci across chromosome arm 2R in Drosophila simulans. A 100-kb segment from a freely recombining region of this chromosome shows extremely reduced heterozygosity in a California population sample, yet typical levels of divergence between species, suggesting that at least one episode of strong directional selection has occurred in the region. The 5' flanking sequence of one gene in this region, Cyp6g1 (a cytochrome P450), is nearly fixed for a Doc transposable element insertion. Presence of the insertion is correlated with increased transcript abundance of Cyp6g1, a phenotype previously shown to be associated with insecticide resistance in Drosophila melanogaster. Surveys of nucleotide variation in the same genomic region in an African D. simulans population revealed no evidence for a high-frequency Doc element and no evidence for reduced polymorphism. These data are consistent with the notion that the Doc element is a geographically restricted beneficial mutation. Data from D. simulans Cyp6g1 are paralleled in many respects by data from its sister species D. melanogaster.
Collapse
Affiliation(s)
- Todd A Schlenke
- Section of Evolution and Ecology, Division of Biological Sciences, University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
10
|
Abe H, Sugasaki T, Terada T, Kanehara M, Ohbayashi F, Shimada T, Kawai S, Mita K, Oshiki T. Nested retrotransposons on the W chromosome of the wild silkworm Bombyx mandarina. INSECT MOLECULAR BIOLOGY 2002; 11:307-314. [PMID: 12144695 DOI: 10.1046/j.1365-2583.2002.00339.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The W chromosome of the silkworms Bombyx mori or B. mandarina is recombinationally isolated from the Z chromosome and the autosomes. We previously characterized a female-specific randomly amplified polymorphic DNA (RAPD), designated W-Yamato, derived from the W chromosome of the wild silkworm Bombyx mandarina. To further analyse the W chromosome of B. mandarina, we obtained a lambda phage clone that contains the W-Yamato RAPD sequence and sequenced the 16.7 kb DNA insert. We found that this DNA comprises a nested structure of at least seven elements: six retrotransposons and one transposable element-like sequence. The transposable element-like sequence is inserted into a micropia-like retrotransposon (Karate). The Karate and the non-long terminal repeat (non-LTR) retrotransposon BMC1 are inserted into a 412-like retrotransposon (Judo). Furthermore, this Judo, and two non-LTR retrotransposons (Kurosawa and Kendo) are inserted into a Pao-like retrotransposon (Yamato). These results indicate that the retrotransposons inserted into the W chromosome are not efficiently removed but accumulate gradually as strata without recombination.
Collapse
Affiliation(s)
- H Abe
- Department of Biological Production, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Frame IG, Cutfield JF, Poulter RT. New BEL-like LTR-retrotransposons in Fugu rubripes, Caenorhabditis elegans, and Drosophila melanogaster. Gene 2001; 263:219-30. [PMID: 11223261 DOI: 10.1016/s0378-1119(00)00567-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The BEL group of retroelements is present in greater numbers, variety and taxonomic range than may have been thought previously. In addition to the insects, nematodes and schistosomes, BEL-like elements are present in echinoderms, urochordates, and at least two highly diverged species of fish. We describe one new full-length BEL-like element in Fugu that we call Suzu, another in Drosophila that we call Tinker, and seven new families in C. elegans. Many of the C. elegans elements have an unusual insertion at the 5' end. The previously known Roo, TRAM and Telemac are also BEL-like retrotransposons. Some BEL-like elements have captured an envelope gene, probably from other retroelements in some cases but from a phlebovirus in one case.
Collapse
Affiliation(s)
- I G Frame
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | |
Collapse
|
12
|
Berezikov E, Bucheton A, Busseau I. A search for reverse transcriptase-coding sequences reveals new non-LTR retrotransposons in the genome of Drosophila melanogaster. Genome Biol 2000; 1:RESEARCH0012. [PMID: 11178266 PMCID: PMC16141 DOI: 10.1186/gb-2000-1-6-research0012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2000] [Revised: 10/13/2000] [Accepted: 10/26/2000] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Non-long terminal repeat (non-LTR) retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate. We have performed a systematic search for sequences matching the characteristic reverse transcriptase domain of non-LTR retrotransposons in the sequenced regions of the Drosophila melanogaster genome. RESULTS In addition to previously characterized BS, Doc, F, G, I and Jockey elements, we have identified new non-LTR retrotransposons: Waldo, You and JuanDm. Waldo elements are related to mosquito RTI elements. You to the Drosophila I factor, and JuanDm to mosquito Juan-A and Juan-C. Interestingly, all JuanDm elements are highly homogeneous in sequence, suggesting that they are recent components of the Drosophila genome. CONCLUSIONS The genome of D. melanogaster contains at least ten families of non-site-specific non-LTR retrotransposons representing three distinct clades. Many of these families contain potentially active members. Fine evolutionary analyses must await the more accurate sequences that are expected in the next future.
Collapse
Affiliation(s)
- Eugene Berezikov
- Institute of Cytology and Genetics, Prospect Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Alain Bucheton
- Institut de Génétique Humaine, CNRS, rue de la Cardonille, Montpellier cedex 5, France
| | - Isabelle Busseau
- Institut de Génétique Humaine, CNRS, rue de la Cardonille, Montpellier cedex 5, France
| |
Collapse
|
13
|
Kronhamn J, Rasmuson-Lestander A. Genetic organization of the ci-M-pan region on chromosome IV in Drosophila melanogaster. Genome 1999; 42:1144-9. [PMID: 10659782 DOI: 10.1139/g99-085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genes cubitus interruptus (ci), ribosomal protein S3A (RpS3A), and pangolin (pan) are localized within 73 kb in the cytological region 101F-102A on chromosome IV in Drosophila melanogaster. A region of 13 kb harbours the regulatory regions of both ci and pan, transcribed in opposite directions, and a 1.1-kb gene encoding RpS3A. This dense clustering gives rise to very complicated complementation patterns between different alleles in these loci. We investigated this region genetically and molecularly by use of an enhancer trap line (IA5), where the P-element was found to be inserted into the first intron of pan. Screens for imprecise excisions of the P-element were performed, and complementations between new and old established mutant lines were investigated. We found that when mutated or deleted the RpS3A gene gives rise to a Minute phenotype, and we conclude that M(4)101 encodes the ribosomal protein S3A.
Collapse
Affiliation(s)
- J Kronhamn
- Department of Genetics, Umeå University, Sweden
| | | |
Collapse
|
14
|
Xu PX, Zhang X, Heaney S, Yoon A, Michelson AM, Maas RL. Regulation of Pax6 expression is conserved between mice and flies. Development 1999; 126:383-95. [PMID: 9847251 DOI: 10.1242/dev.126.2.383] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pax6 plays a key role in visual system development throughout the metazoa and the function of Pax6 is evolutionarily conserved. However, the regulation of Pax6 expression during eye development is largely unknown. We have identified two physically distinct promoters in mouse Pax6, P0 and P1, that direct differential Pax6 expression in the developing eye. P0-initiated transcripts predominate in lens placode and corneal and conjunctival epithelia, whereas P1-initiated transcripts are expressed in lens placode, optic vesicle and CNS, and only weakly in corneal and conjunctival epithelia. To further investigate their tissue-specific expression, a series of constructs for each promoter were examined in transgenic mice. We identified three different regulatory regions which direct distinct domains of Pax6 expression in the eye. A regulatory element upstream of the Pax6 P0 promoter is required for expression in a subpopulation of retinal progenitors and in the developing pancreas, while a second regulatory element upstream of the Pax6 P1 promoter is sufficient to direct expression in a subset of post-mitotic, non-terminally differentiated photoreceptors. A third element in Pax6 intron 4, when combined with either the P0 or P1 promoter, accurately directs expression in amacrine cells, ciliary body and iris. These results indicate that the complex expression pattern of Pax6 is differentially regulated by two promoters acting in combination with multiple cis-acting elements. We have also tested whether the regulatory mechanisms that direct Pax6 ocular expression are conserved between mice and flies. Remarkably, when inserted upstream of either the mouse Pax6 P1 or P0 promoter, an eye-enhancer region of the Drosophila eyeless gene, a Pax6 homolog, directs eye- and CNS-specific expression in transgenic mice that accurately reproduces features of endogenous Pax6 expression. These results suggest that in addition to conservation of Pax6 function, the upstream regulation of Pax6 has also been conserved during evolution.
Collapse
Affiliation(s)
- P X Xu
- Division of Genetics, Department of Medicine and Howard Hughes Medical Institute, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115, USA
| | | | | | | | | | | |
Collapse
|
15
|
Frolov MV, Birchler JA. Mutation in P0, a dual function ribosomal protein/apurinic/apyrimidinic endonuclease, modifies gene expression and position effect variegation in Drosophila. Genetics 1998; 150:1487-95. [PMID: 9832526 PMCID: PMC1460415 DOI: 10.1093/genetics/150.4.1487] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a search for modifiers of gene expression with the white eye color gene as a target, a third chromosomal P-element insertion mutant l(3)01544 has been identified that exhibits a strong pigment increase in a white-apricot background. Molecular analysis shows that the P-element insertion is found in the first intron of the gene surrounding the insertion site. Sequencing both the cDNA and genomic fragments revealed that the identified gene is identical to one encoding ribosomal protein P0/apurinic/apyrimidinic endonuclease. The P-element-induced mutation, l(3)01544, affects the steady-state level of white transcripts and transcripts of some other genes. In addition, l(3)01544 suppresses the variegated phenotypes of In(1)wm4h and In(1)y3P, suggesting a potential involvement of the P0 protein in modifying position effect variegation. The revertant generated by the precise excision of the P element has lost all mutant phenotypes. Recent work revealed that Drosophila ribosomal protein P0 contains an apurinic/apyrimidinic endonuclease activity. Our results suggest that this multifunctional protein is also involved in regulation of gene expression in Drosophila.
Collapse
Affiliation(s)
- M V Frolov
- University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
16
|
Fu W, Duan H, Frei E, Noll M. shaven and sparkling are mutations in separate enhancers of the Drosophila Pax2 homolog. Development 1998; 125:2943-50. [PMID: 9655816 DOI: 10.1242/dev.125.15.2943] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that the sparkling gene, which like mammalian Pax2 plays an important role in eye development, is encoded by the Drosophila homolog of Pax2. Here we demonstrate that D-Pax2 also encodes the shaven function, which is crucial during bristle development. Both sv and spa alleles, previously thought to represent different genes, are mutations in two widely separated enhancers of D-Pax2. The sv function of D-Pax2 acts in at least two distinct steps of mechanosensory bristle development: the specification of the alternative fate of shaft as opposed to socket cell, and later the differentiation of the shaft cell.
Collapse
Affiliation(s)
- W Fu
- Institute for Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
17
|
Brown JL, Mucci D, Whiteley M, Dirksen ML, Kassis JA. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1998; 1:1057-64. [PMID: 9651589 DOI: 10.1016/s1097-2765(00)80106-9] [Citation(s) in RCA: 310] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genes of the Polycomb group (PcG) of Drosophila encode proteins necessary for the maintenance of transcriptional repression of homeotic genes. PcG proteins are thought to act by binding as multiprotein complexes to DNA through Polycomb group response elements (PREs); however, specific DNA binding has not been demonstrated for any of the PcG proteins. We have identified a sequence-specific DNA binding protein that interacts with a PRE from the Drosophila engrailed gene. This protein (PHO) is a homolog of the ubiquitous mammalian transcription factor Yin Yang-1 and is encoded by pleiohomeotic, a known member of the PcG. We propose that PHO acts to anchor PcG protein complexes to DNA.
Collapse
Affiliation(s)
- J L Brown
- Laboratory of Developmental Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
18
|
Frolov MV, Benevolenskaya EV, Birchler JA. Regena (Rga), a Drosophila homolog of the global negative transcriptional regulator CDC36 (NOT2) from yeast, modifies gene expression and suppresses position effect variegation. Genetics 1998; 148:317-29. [PMID: 9475742 PMCID: PMC1459787 DOI: 10.1093/genetics/148.1.317] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A mutation in Regena (Rga) was isolated in screens for modifiers of white eye color gene expression. The reduction in the level of the Rga product results in a complex modulation of white mRNA both positively and negatively, depending on the developmental stage. In addition to white, Rga also affects the expression of several other tested genes, with one of them, Vinculin, being regulated in a strong sex-specific manner. Rga was cloned by transposon tagging. Its predicted product lacks any recognized nucleic acid-binding motif but is homologous to a global negative transcriptional regulator, CDC36 (NOT2), from yeast. Rga also acts as a suppressor of position effect variegation, suggesting that a possible function of Rga could be mediation of an interaction between chromatin proteins and the transcriptional complex.
Collapse
Affiliation(s)
- M V Frolov
- Division of Biological Sciences, University of Missouri-Columbia 65211, USA
| | | | | |
Collapse
|
19
|
Abstract
Centromeres play a critical role in chromosome inheritance but are among the most difficult genomic components to analyze in multicellular eukaryotes. Here, we present a highly detailed molecular structure of a functional centromere in a multicellular organism. The centromere of the Drosophila minichromosome Dp1187 is contained within a 420 kb region of centric heterochromatin. We have used a new approach to characterize the detailed structure of this centromere and found that it is primarily composed of satellites and single, complete transposable elements. In the rest of the Drosophila genome, these satellites and transposable elements are neither unique to the centromeres nor present at all centromeres. We discuss the impact of these results on our understanding of heterochromatin structure and on the determinants of centromere identity and function.
Collapse
Affiliation(s)
- X Sun
- Molecular Biology and Virology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
20
|
Kerber B, Fellert S, Taubert H, Hoch M. Germ line and embryonic expression of Fex, a member of the Drosophila F-element retrotransposon family, is mediated by an internal cis-regulatory control region. Mol Cell Biol 1996; 16:2998-3007. [PMID: 8649411 PMCID: PMC231294 DOI: 10.1128/mcb.16.6.2998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The F elements of Drosophila melanogaster belong to the superfamily of long interspersed nucleotide element retrotransposons. To date, F-element transcription has not been detected in flies. Here we describe the isolation of a member of the F-element family, termed Fex, which is transcribed in specific cells of the female and male germ lines and in various tissues during embryogenesis of D. melanogaster. Sequence analysis revealed that this element contains two complete open reading frames coding for a putative nucleic acid-binding protein and a putative reverse transcriptase. Functional analysis of the 5' region, using germ line transformation of Fex-lacZ reporter gene constructs, demonstrates that major aspects of tissue-specific Fex expression are controlled by internal cis-acting elements that lie in the putative coding region of open reading frame 1. These sequences mediate dynamic gene expression in eight expression domains during embryonic and germ line development. The capacity of the cis-regulatory region of the Fex element to mediate such complex expression patterns is unique among members of the long interspersed nucleotide element superfamily of retrotransposons and is reminiscent of regulatory regions of developmental control genes.
Collapse
Affiliation(s)
- B Kerber
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | | | | | | |
Collapse
|
21
|
Bhadra U, Birchler JA. Characterization of a sex-influenced modifier of gene expression and suppressor of position-effect variegation in Drosophila. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:601-13. [PMID: 8676863 DOI: 10.1007/bf02174448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Modifier of white (Mow), a dominant transacting gene, has been identified through a mutagenic screen for second-site loci that alter the level of expression of the white eye color locus. Mow reduces the expression of white in most developmental stages, but enhances its expression in the pupal stage, the time at which the major contribution to the adult phenotype is made. Tests with an Alcohol dehydrogenase promoter-white reporter and a series of white truncation constructs have shown that Mow fails to affect the reporter; cis-regulatory mutations of white also show no response, suggesting a requirement for white regulatory domains for interaction with Mow. A quantitative analysis of steady-state transcript levels reveals that the white mRNA level decreases in the presence of one dose of Mow in larvae and adults, but the reduction is greater in females than males. Two other functionally related genes, brown and scarlet, also exhibit a similar sexually dimorphic alteration in expression, mediated by Mow. In the mid-pupal stage, by contrast, the level of white and brown mRNA is increased by Mow. In addition, Mow acts as a weak suppressor of position effect variegation (PEV). These observations suggest a connection between dosage modulation of gene expression and suppression of position-effect variegation.
Collapse
Affiliation(s)
- U Bhadra
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | |
Collapse
|
22
|
Burke WD, Müller F, Eickbush TH. R4, a non-LTR retrotransposon specific to the large subunit rRNA genes of nematodes. Nucleic Acids Res 1995; 23:4628-34. [PMID: 8524653 PMCID: PMC307436 DOI: 10.1093/nar/23.22.4628] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A 4.7 kb sequence-specific insertion in the 26S ribosomal RNA gene of Ascaris lumbricoides, named R4, is shown to be a non-long terminal repeat (non-LTR) retrotransposable element. The R4 element inserts at a site in the large subunit rRNA gene which is midway between two other sequence-specific non-LTR retrotransposable elements, R1 and R2, found in most insect species. Based on the structure of its open reading frame and the sequence of its reverse transcriptase domain, R4 elements do not appear to be a family of R1 or R2 elements that have changed their insertion site. R4 is most similar in structure and in sequence to the element Dong, which is not specialized for insertion into rRNA units. Thus R4 represents a separate non-LTR retrotransposable element that has become specialized for insertion in the rRNA genes of its host. Using oligonucleotide primers directed to a conserved region of the reverse transcriptase encoding domain, insertions in the R4 site were also amplified from Parascaris equorum and Haemonchus contortus. Why several non-LTR retrotransposable elements have become specialized for insertion into a short (87 bp) region of the large subunit rRNA gene is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Ascaridoidea/genetics
- Ascaris lumbricoides/genetics
- Base Sequence
- Binding Sites
- Cloning, Molecular
- DNA Primers
- DNA, Helminth/genetics
- DNA, Ribosomal/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Haemonchus/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nematoda/genetics
- Phylogeny
- Polymerase Chain Reaction
- RNA, Helminth/biosynthesis
- RNA, Helminth/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- Repetitive Sequences, Nucleic Acid
- Retroelements
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
Collapse
Affiliation(s)
- W D Burke
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | |
Collapse
|
23
|
Sezutsu H, Nitasaka E, Yamazaki T. Evolution of the LINE-like I element in the Drosophila melanogaster species subgroup. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:168-78. [PMID: 7500938 DOI: 10.1007/bf00290363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
LINE-like retrotransposons, the so-called I elements, control the system of I-R (inducer-reactive) hybrid dysgenesis in Drosophila melanogaster. I elements are present in many Drosophila species. It has been suggested that active, complete I elements, located at different sites on the chromosomes, invaded natural populations of D. melanogaster recently (1920-1970). But old strains lacking active I elements have only defective I elements located in the chromocenter. We have cloned I elements from D. melanogaster and the melanogaster subgroup. In D. melanogaster, the nucleotide sequences of chromocentral I elements differed from those on chromosome arms by as much as 7%. All the I elements of D. mauritiana and D. sechellia are more closely related to the chromosomal I elements of D. melanogaster than to the chromocentral I elements in any species. No sequence difference was observed in the surveyed region between two chromosomal I elements isolated from D. melanogaster and one from D. simulans. These findings strongly support the idea that the defective chromocentral I elements of D. melanogaster originated before the species diverged and the chromosomal I elements were eliminated. The chromosomal I elements reinvaded natural populations of D. melanogaster recently, and were possibly introduced from D. simulans by horizontal transmission.
Collapse
Affiliation(s)
- H Sezutsu
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
24
|
Contursi C, Minchiotti G, Di Nocera PP. Identification of sequences which regulate the expression of Drosophila melanogaster Doc elements. J Biol Chem 1995; 270:26570-6. [PMID: 7592878 DOI: 10.1074/jbc.270.44.26570] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Long interspersed nuclear elements (LINEs) are mobile DNA elements which propagate by reverse transcription of RNA intermediates. LINEs lack long terminal repeats, and their expression is controlled by promoters located inside to the transcribed region of unit-length DNA copies. Doc elements constitute one of the seven families of LINEs found in Drosophila melanogaster. Plasmids in which the chloramphenicol acetyltransferase (CAT) gene is preceded by DNA segments from different Doc family members were used as templates for transient expression assays in Drosophila S2 cells. Transcription is initiated at the 5' end of Doc elements within hexamers fitting the consensus (C/G)AYTCG and is regulated by a DNA region which is located approximately 20 base pairs (bp) downstream from the RNA start site(s). The region includes a sequence (RGACGTGY motif, or DE2) which stimulates transcription in other Drosophila LINEs, and two adjacent elements, DE1 and DE3. Moving the downstream region either 4 bp away from, or 5 bp closer to the RNA start site region inhibited transcription. Sequences located approximately 200 bp downstream from the Doc 5' end repressed CAT expression in an orientation- and position-dependent manner. The inhibition reflects impaired translation of the CAT gene possibly consequent to the interaction of specific Doc RNA sequences with a cellular component.
Collapse
Affiliation(s)
- C Contursi
- Dipartimento di Biologia e Patologie Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Italy
| | | | | |
Collapse
|
25
|
Wang S, Young F, Hickey DA. Genomic organization and expression of a trypsin gene from the spruce budworm, Choristoneura fumiferana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1995; 25:899-908. [PMID: 7550246 DOI: 10.1016/0965-1748(95)00022-n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A 7 kb (kilobase) genomic fragment containing a trypsin gene from the spruce budworm Choristoneura fumiferana was isolated and sequenced. The coding sequence is interrupted by two introns; these occur at the same positions as the first two introns of mammalian trypsin genes. The three exons encode 256 amino acids. The deduced protein sequence displays all of the structural features that characterize trypsin enzymes in other eukaryotic organisms. Genomic Southern hybridization showed that there is only one copy of the trypsin gene in the Choristoneura genome. This gene is expressed in the insect midgut, where the pH is extremely high. The complete lack of Lysine residues may be an adaptation to the high pH conditions. Extensive sequencing of the flanking regions did not reveal the presence of any linked trypsin-encoding genes. Instead, several short repetitive sequences and a sequence homologous to a Drosophila reverse transcriptase gene was identified in this genomic region.
Collapse
Affiliation(s)
- S Wang
- Department of Biology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
26
|
Carmena M, González C. Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma 1995; 103:676-84. [PMID: 7664614 DOI: 10.1007/bf00344228] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In situ hybridisation to mitotic chromosomes shows that sequences homologous to different Drosophila melanogaster transposable elements are widely distributed not only in beta but also in alpha-heterochromatin. Clusters of these sequences are detected in most proximal positions. They colocalise with known satellite sequences in several regions, but are also located in places where no known sequence has been mapped so far. The pattern of hybridisation is dinstinctive and specific for each element, and presents constant features in six different D. melanogaster strains studied. The entirely heterochromatic Y chromosome contains large amounts of these sequences. Additionally, some of these sequences appear to be present in substantial quantities in the smallest minichromosome of Drosophila, Dp(1;f)1187.
Collapse
Affiliation(s)
- M Carmena
- Department of Anatomy and Physiology, CRC Cell Cycle Genetics Group, Medical Sciences Institute. The University of Dundee, Dundee DD14HN, Scotland
| | | |
Collapse
|
27
|
Varricchio P, Gargiulo G, Graziani F, Manzi A, Pennacchio F, Digilio M, Tremblay E, Malva C. Characterization of Aphidius ervi (Hymenoptera, Braconidae) ribosomal genes and identification of site-specific insertion elements belonging to the non-LTR retrotransposon family. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1995; 25:603-612. [PMID: 7787843 DOI: 10.1016/0965-1748(94)00102-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We performed a molecular analysis of the Aphidius ervi ribosomal gene structure. This insect belongs to a set of closely related Aphidiinae species of the genus Aphidius Nees, of relevant interest in biological control. We constructed A. ervi genomic libraries, cloned and characterized several rDNA repeating units and sequenced different regions of the rDNA cistrons. We have found that insertion sequences interrupt the A. ervi 28S rDNA genes: the sequences of the two 5' and 3' insertion-28S junctions show that the elements are present at the position where R1 elements have been found in various insect species. In addition, the insertion of the element produces a duplication of the 14 nt target region. The sequence analysis indicates that the A. ervi elements belong to the R1 retrotransposon family with a highly conserved reverse transcriptase domain.
Collapse
Affiliation(s)
- P Varricchio
- Dipartimento di Entomologia e Zoologia Agraria, Università di Napoli, Portici, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Udomkit A, Forbes S, Dalgleish G, Finnegan DJ. BS a novel LINE-like element in Drosophila melanogaster. Nucleic Acids Res 1995; 23:1354-8. [PMID: 7753626 PMCID: PMC306861 DOI: 10.1093/nar/23.8.1354] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transposable elements with long terminal inverted repeats are rare and only one family of elements of this sort has been identified in the genome of Drosophila melanogaster. An insertion associated with the HSBS mutation of the achaete-scute complex has been reported to be a second element of this type. We have determined the complete sequence of this insertion and have shown that it is in fact two copies of a new LINE-like transposable element, that we have called BS, inserted in opposite orientation 337 bp apart. Like other elements of this type, BS has two open reading frames that appear to encode a gag-like polypeptide and a reverse transcriptase. There are few complete BS elements in the five strains of D.melanogaster that we have tested and they appear to transpose infrequently. The events that may have lead to the double BS insertion are discussed in terms of the supposed mechanism of transposition of LINE-like elements.
Collapse
Affiliation(s)
- A Udomkit
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | |
Collapse
|
29
|
Minchiotti G, Contursi C, Graziani F, Gargiulo G, Di Nocera PP. Expression of Drosophila melanogaster F elements in vivo. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:152-9. [PMID: 7816022 DOI: 10.1007/bf00283262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drosophila melanogaster F elements are mobile, oligo(A)-terminated DNA sequences that probably propagate by the retrotranscription of RNA intermediates. Polyadenylated transcripts corresponding in size to full-length (4.7 kb) family members were detected in the Drosophila melanogaster Canton-S strain from 2nd larval instar to the adult stage. RNA accumulation reached a maximum in pupae. In the adult, F elements are transcribed in both sexes. F expression is directed in vivo by the intragenic promoter (Fin) located at the 5' end of F. Whole-mount hybridizations were carried out to define the site of synthesis of full-length transcripts found in the ovary. Selective RNA accumulation was not detected in the cytoplasm of any specific cell type. Stained nuclear dots were observed in nurse cells from stage 2-3 to the end of oogenesis. RNase treatment of egg chambers prior to the addition of the probe led to disappearance of the nuclear dots and appearance of a cytoplasmic hybridization signal suggesting leakage of nuclear transcripts. Transgenic lines harbouring the chloramphenicol acetyltransferase (CAT) gene under the control of the Fin promoter were obtained. In independent lines, CAT enzyme levels mirror the ontogenetic profile of F expression drawn from Northern RNA blotting data. An antisense promoter (Fout) that is located downstream from the Fin promoter and transcribe too bords the 5' end of F seems to be constitutively expressed in the fly.
Collapse
Affiliation(s)
- G Minchiotti
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina, Università degli Studi di Napoli Federico II, Italy
| | | | | | | | | |
Collapse
|
30
|
Quiring R, Walldorf U, Kloter U, Gehring WJ. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 1994; 265:785-9. [PMID: 7914031 DOI: 10.1126/science.7914031] [Citation(s) in RCA: 746] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A Drosophila gene that contains both a paired box and a homeobox and has extensive sequence homology to the mouse Pax-6 (Small eye) gene was isolated and mapped to chromosome IV in a region close to the eyeless locus. Two spontaneous mutations, ey2 and eyR, contain transposable element insertions into the cloned gene and affect gene expression, particularly in the eye primordia. This indicates that the cloned gene encodes ey. The finding that ey of Drosophila, Small eye of the mouse, and human Aniridia are encoded by homologous genes suggests that eye morphogenesis is under similar genetic control in both vertebrates and insects, in spite of the large differences in eye morphology and mode of development.
Collapse
Affiliation(s)
- R Quiring
- Department of Cell Biology, University of Basel, Switzerland
| | | | | | | |
Collapse
|
31
|
Abstract
Mobile elements known as LINEs are members of a superfamily of repeated DNA conserved from protozoa to man. These sequences propagate by the retrotranscription of RNA intermediates and differ in many respects from retroviruses. Whereas most eukaryotic genomes host a single LINE family, several families of LINE-like sequences or type II retrotransposons coexist in the fruit fly Drosophila melanogaster. Properties and features of these elements are discussed in this work.
Collapse
Affiliation(s)
- P P Di Nocera
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli, Italy
| | | | | |
Collapse
|
32
|
Biessmann H, Kasravi B, Bui T, Fujiwara G, Champion LE, Mason JM. Comparison of two active HeT-A retroposons of Drosophila melanogaster. Chromosoma 1994; 103:90-8. [PMID: 8055715 DOI: 10.1007/bf00352317] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HeT-A elements are Drosophila melanogaster LINE-like retroposons that transpose to broken chromosome ends by attaching themselves with an oligo(A) tail. Since this family of elements is believed to be involved in the vital function of telomere elongation in Drosophila, it is important to understand their transposition mechanism and the molecular aspects of activity. By comparison of several elements we have defined here the unit length of HeT-A elements to be approximately 6 kb. Also, we studied an active HeT-A element that had transposed very recently to the end of a terminally deleted X chromosome. The 12 kb of newly transposed DNA consisted of a tandem array of three different HeT-A elements joined by oligo(A) tails to each other and to the chromosome end broken in the yellow gene. Such an array may have transposed as a single unit or resulted from rapid successive transpositions of individual HeT-A elements. By sequence comparison with another recently transposed HeT-A element, conserved domains in the single open reading frame (ORF), encoding a gag-like polypeptide, of these elements were defined. We conclude that for transposition an intact ORF is required in cis, while the reverse transcriptase is not encoded on the HeT-A element but is provided in trans. This would make HeT-A elements dependent on an external reverse transcriptase for transposition and establish control of the genome over the activity of HeT-A elements. This distinguishes the Drosophila HeT-A element, which has been implicated in Drosophila telomere elongation, from the other, 'selfish' LINE-like elements.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | | | | | | | | | |
Collapse
|
33
|
Cambareri EB, Helber J, Kinsey JA. Tad1-1, an active LINE-like element of Neurospora crassa. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:658-65. [PMID: 7512193 DOI: 10.1007/bf00283420] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tad is a LINE-like retrotransposon of Neurospora crassa. The element was originally detected and cloned using the am gene as a transposon trap in hybrid strains derived from a cross of Adiopodoume (a wild collected strain) and a laboratory strain devoid of Tad elements. We report the cloning and sequencing of an active Tad element, Tad1-1, which is capable of independent transposition. Transposition was demonstrated by screening for transfer of the element from a donor nucleus that contained the Tad1-1 element as the only active Tad, into a naive nucleus within a forced heterokaryon. We also report here the sequence analysis of Tad1-1, and its comparison with the sequence of another active element, Tad3-2. These elements are approximately 7 kb in length. They contain two long open reading frames (ORFs) encoded on the strand of the same polarity as the full-length transcript. ORF1 encodes a putative protein of 486 amino acids. Homology to the first ORF of other LINE elements is confined to three cysteine-rich motifs, located near the carboxy-terminus, that are thought to be involved in binding nucleic acids. The second ORF is 1156 amino acids in length and shows homology to the reverse transcriptase domains of various retroviruses and retrotransposons. Tad1-1 and Tad3-2 differ in only ten positions over their whole length.
Collapse
Affiliation(s)
- E B Cambareri
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160
| | | | | |
Collapse
|
34
|
Csink AK, Linsk R, Birchler JA. Mosaic suppressor, a gene in Drosophila that modifies retrotransposon expression and interacts with zeste. Genetics 1994; 136:573-83. [PMID: 8150284 PMCID: PMC1205809 DOI: 10.1093/genetics/136.2.573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A newly identified locus in Drosophila melanogaster, Mosaic suppressor (Msu), is described. This gene modifies the expression of white-apricot (wa), which is a copia retrotransposon-induced allele of the white gene. In addition to suppressing wa in a mosaic fashion, this mutation suppresses or enhances the expression of several other retrotransposon induced white alleles. Mutations in Msu alter copia transcript abundance and may regulate the expression of several other retrotransposons. While each of the two Msu isolates is homozygous lethal, heteroallelic escapers occur at a low frequency. These escapers act not only as strong suppressors of wa, but also as a recessive enhancer of synaptic-dependent gene expression at white. The mutation described here suggests a connection between the regulation of specific transcriptional units such as retrotransposons and more global synapsis dependent regulatory effects.
Collapse
Affiliation(s)
- A K Csink
- Division of Biological Sciences, University of Missouri, Columbia 65211
| | | | | |
Collapse
|
35
|
Raha D, Carlson J. OS9: a novel olfactory gene of Drosophila expressed in two olfactory organs. JOURNAL OF NEUROBIOLOGY 1994; 25:169-84. [PMID: 8021646 DOI: 10.1002/neu.480250208] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel olfactory gene, OS9, has been identified in Drosophila by subtractive hybridization. OS9 transcripts have been detected in the third antennal segment, the primary olfactory organ in Drosophila, and in the maxillary palp, which has recently been shown to have olfactory function. The OS9 gene thus represents a molecular link between two distinct olfactory tissues in Drosophila. Little if any OS9 expression has been detected in other segments of the antenna or in other tissues examined. The gene is located in region 38AB on the cytogenetic map. OS9 encodes a protein of 159 amino acids, which contains a putative leucine zipper. Polyclonal antibodies raised against the C-terminal half of the encoded protein react with a 24 kD antennal protein. Antisera raised against both C-terminal and N-terminal halves of the OS9 protein appear to react with cell nuclei in both the third antennal segment and the maxillary palp; interestingly, both antisera also stain cells in the head, including photoreceptor nuclei, as if OS9 were an olfactory-specific member of a family of nuclear proteins, possibly transcription factors.
Collapse
Affiliation(s)
- D Raha
- Department of Biology, Yale University, New Haven, Connecticut 06511-8112
| | | |
Collapse
|
36
|
Vaury C, Chaboissier MC, Drake ME, Lajoinie O, Dastugue B, Pélisson A. The Doc transposable element in Drosophila melanogaster and Drosophila simulans: genomic distribution and transcription. Genetica 1994; 93:117-24. [PMID: 7813908 DOI: 10.1007/bf01435244] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mobile element Doc is similar in structure and coding potential to the LINE families found in various organisms. In this paper, we analyze the insertional and structural polymorphism of this element and show that it appears to have a long evolutionary history in the genome of D. melanogaster. Like the family of I elements, the Doc family seems to display three types of elements: full length elements, defective members that have recently transposed and long since immobilized members common to each D. melanogaster strain. These three classes of Doc elements seem to be present in D. simulans, a closely related species to D. melanogaster. Furthermore, we show that Doc is transcribed as a polyadenylated RNA of about 5 kb in length, presumed to be a full length RNA. This transcript is present in different tissues and at different stages of Drosophila development. These results are compared with previous records on the chromosomal distribution of LINEs or other transposable element families. Doc transcription is analyzed in an attempt to understand the link between Doc transcription and transposition.
Collapse
Affiliation(s)
- C Vaury
- INSERM unité 384, Faculté de Médecine, Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
37
|
Busseau I, Chaboissier MC, Pélisson A, Bucheton A. I factors in Drosophila melanogaster: transposition under control. Genetica 1994; 93:101-16. [PMID: 7813907 DOI: 10.1007/bf01435243] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
I factors are responsible for the I-R system of hybrid dysgenesis in Drosophila melanogaster. They belong to the LINE class of mobile elements, which transpose via reverse transcription of a full-length RNA intermediate. I factors are active members of the I element family, which also contains defective I elements that are immobilized within peri-centromeric heterochromatin and represent very old components of the genome. Active I factors have recently invaded natural populations of Drosophila melanogaster, giving rise to inducer strains. Reactive strains, devoid of active I factors, derive from old laboratory stocks established before the invasion. Transposition of I factors is activated at very high frequencies in the germline of hybrid females issued from crosses between females from reactive strains and males from inducer strains. It results in the production of high rates of mutations and chromosomal rearrangements as well as in a particular syndrome of sterility. The frequency of transposition of I factors is dependent on the amount of full-length RNA that is synthesized from an internal promoter. This full-length RNA serves both as an intermediate of transposition and presumably as a messenger for protein synthesis. Regulators of transposition apparently affect transcription initiation from the internal promoter. The data presented here lead to the proposal of a tentative model for transposition.
Collapse
Affiliation(s)
- I Busseau
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
38
|
Sabl JF, Birchler JA. Dosage dependent modifiers of white alleles in Drosophila melanogaster. Genet Res (Camb) 1993; 62:15-22. [PMID: 8405989 DOI: 10.1017/s0016672300031517] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
As part of a study to identify dosage-sensitive modifiers of the white eye colour locus and the retrotransposon, copia, a segmental aneuploid screen was conducted. It surveys the autosomal complement of the genome for dosage dependent modifiers of white, including ones effective upon retrotransposon insertion-induced alleles. Several regions were found which, when present as a segmental trisomy, affected one or more of the alleles tested in a strong and consistent fashion. Two of these regions have been identified as containing previously described modifiers, Darkener-of-apricot and Inverse regulator-a. The remainder identify new white allele modifiers. Selected segmental monosomics were also tested where possible for regions exhibiting a trisomic effect. At least three regions were found to have a dosage-dependent effect in one, two and three copies.
Collapse
Affiliation(s)
- J F Sabl
- Biological Laboratories, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
39
|
Biessmann H, Kasravi B, Jakes K, Bui T, Ikenaga K, Mason JM. The genomic organization of HeT-A retroposons in Drosophila melanogaster. Chromosoma 1993; 102:297-305. [PMID: 8391971 DOI: 10.1007/bf00661272] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Members of the Drosophila HeT-A family of transposable elements are LINE-like retroposons that are found at telomeres and in centric heterochromatin. We recently characterized an active HeT-A element that had transposed to a broken chromosome end fewer than nine generations before it was isolated. The sequence arrangement of this element, called 9D4, most likely represents the organization of an actively transposing member of the HeT-A family. Here we assess the degree of divergence among members of the HeT-A family and test a model of telomere length maintenance based on HeT-A transposition. The region containing the single open reading frame of this element appears to be more highly conserved than the non-coding regions. The HeT-A element has been implicated in the Drosophila telomere elongation process, because frequent transpositions to chromosome ends are sufficient to counter-balance nucleotide loss due to incomplete DNA replication. The proposed elongation model and the hypothetical mechanism of HeT-A transposition predict a predominant orientation of HeT-A elements with their oligo (A) tails facing proximally at chromosome ends, as well as the existence of irregular tandem arrays of HeT-A elements at chromosome ends resulting from transposition of new HeT-A elements onto chromosome ends with existing elements. Twenty-nine different HeT-A fragments were isolated from directional libraries that were enriched in terminal DNA fragments. Sequence analyses of these fragments and comparisons with the organization of the HeT-A element, 9D4, fit these two predictions and support the model of Drosophila telomere elongation by transposition of HeT-A elements.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | | | | | | | | | |
Collapse
|
40
|
Blinov AG, Sobanov YV, Bogachev SS, Donchenko AP, Filippova MA. The Chironomus thummi genome contains a non-LTR retrotransposon. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:412-20. [PMID: 8387152 DOI: 10.1007/bf00279446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nineteen recombinant phages containing DNA from the region of Balbiani ring a (BRa), which develops on chromosome IV in cells of the special lobe of the Chironomus thummi salivary gland, were isolated from a Chironomus thummi genomic library. Three of the clones contained transposable element sequences that hybridized to more than 100 sites on all four Chironomus chromosomes, including constant and variable sites. Two handogous clones, lambda 24 (which lacks the transposable element) and lambda 43 (which contains this insertion) were investigated by nucleotide sequence analysis. The complete nucleotide sequence of the 4.8 kb transposable element from Chironomus thummi (NLR1Cth) is reported here. This element contains two overlapping open reading frames of 1887 (ORF1) and 2649 bp (ORF2). Three cysteine motifs are found in the sequence of ORF1. Sequence similarity was found between ORF2 and known genes of viruses and transposable elements which encode reverse transcriptase. The NLR1Cth element has no long terminal repeats and is flanked by short direct repeats of the sequence TATCACTGACAAC. A 24 bp poly(dA) sequence was found at the 3' end of the element. Based upon its structural organization and comparative analysis of its nucleotide sequence we suggest that this NLR1Cth element belongs to the class of non-LTR retrotransposons. The genomic clone pC6.10 was previously obtained by microdissection and cloning of DNA from polytene chromosome IV of Chironomus thummi. A 2.4 kb insertion contained part of the 3' terminal region of the NLR1Cth element, but this differed in sequence from the first copy by several nucleotide substitutions and a shorter poly (dA) tract at the 3' end.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A G Blinov
- Institute of Cytology and Genetics, Siberian Department of the Russian Academy of Sciences, Novosibirsk, Prospect Lavrentjeva
| | | | | | | | | |
Collapse
|
41
|
Leeton PR, Smyth DR. An abundant LINE-like element amplified in the genome of Lilium speciosum. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:97-104. [PMID: 7681139 DOI: 10.1007/bf00282789] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genomes of Lilium species are very large, containing 30-40 million kilobase pairs of DNA. An abundant fragment of 3.5 kb was released by BamHI digestion of genomic DNA of Lilium speciosum. Analysis of 20 genomic clones containing sequences homologous to the fragment showed it to be part of a 4.45 kb dispersed repeat, which was named del2. Sequence analysis of one full element and regions of four others revealed del2 to be a non-LTR (long terminal repeat) retrotransposon. It is flanked by short direct repeats of from 4 to 13 bp and a run of adenines occurs at one end (the proposed 3' end), 63 bp downstream from a polyadenylation signal. A possible RNA polymerase II promoter similar to that found in Drosophila I and F group elements is present internally 30 bp downstream from the 5' end. Two degenerate open reading frames (ORFs) are present, the 5' ORF containing a gag-related cysteine motif, and the 3' ORF containing a different cysteine motif also found in most non-LTR retrotransposons. The 3' ORF also has regions with homology to reverse transcriptase sequences, which are most similar to those in Cin4 of maize, the L1 LINE elements of humans and mice and the R2 ribosomal DNA inserts of insects. The majority of del2 elements occur as the full 4.45 kb element. They account for an estimated 4% of the L. speciosum genome and are present in approximately 250,000 copies. del2-related sequences were also detected in 12 other monocot species.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P R Leeton
- Department of Genetics and Developmental Biology, Monash University, Clayton, Melbourne, Vic. Australia
| | | |
Collapse
|
42
|
Boussy IA, Charles L, Hamelin MH, Periquet G, Shapiro DY. The occurrence of the transposable element pogo in Drosophila melanogaster. Genetica 1993; 88:1-10. [PMID: 8397138 DOI: 10.1007/bf02424447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We examined the genomic occurrence of the transposable element pogo in over 120 strains of Drosophila melanogaster, from around the world and from different eras. All had multiple copies of a 2.1 kilobase (kb) pogo element, and multiple copies of several size classes between 1.0 and 1.8 kb. There were differences between strains in intensities or presences of deletion-derivative size classes, suggesting current or recent mobility in the species. We were unable to find any pogo-hybridization in eight other species in the genus, in three subgenera, or in the related Scaptomyza pallida. The pogo element may be a 'middle-aged' element in the genome of D. melanogaster, having entered the species since its divergence from its sibling species, but long before the P and hobo elements.
Collapse
Affiliation(s)
- I A Boussy
- Department of Biology, Loyola University of Chicago, IL 60626
| | | | | | | | | |
Collapse
|
43
|
HeT-A, a transposable element specifically involved in "healing" broken chromosome ends in Drosophila melanogaster. Mol Cell Biol 1992. [PMID: 1324409 DOI: 10.1128/mcb.12.9.3910] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight terminally deleted Drosophila melanogaster chromosomes have now been found to be "healed." In each case, the healed chromosome end had acquired sequence from the HeT DNA family, a complex family of repeated sequences found only in telomeric and pericentric heterochromatin. The sequences were apparently added by transposition events involving no sequence homology. We now report that the sequences transposed in healing these chromosomes identify a novel transposable element, HeT-A, which makes up a subset of the HeT DNA family. Addition of HeT-A elements to broken chromosome ends appears to be polar. The proximal junction between each element and the broken chromosome end is an oligo(A) tract beginning 54 nucleotides downstream from a conserved AATAAA sequence on the strand running 5' to 3' from the chromosome end. The distal (telomeric) ends of HeT-A elements are variably truncated; however, we have not yet been able to determine the extreme distal sequence of a complete element. Our analysis covers approximately 2,600 nucleotides of the HeT-A element, beginning with the oligo(A) tract at one end. Sequence homology is strong (greater than 75% between all elements studied). Sequence may be conserved for DNA structure rather than for protein coding; even the most recently transposed HeT-A elements lack significant open reading frames in the region studied. Instead, the elements exhibit conserved short-range sequence repeats and periodic long-range variation in base composition. These conserved features suggest that HeT-A elements, although transposable elements, may have a structural role in telomere organization or maintenance.
Collapse
|
44
|
Biessmann H, Valgeirsdottir K, Lofsky A, Chin C, Ginther B, Levis RW, Pardue ML. HeT-A, a transposable element specifically involved in "healing" broken chromosome ends in Drosophila melanogaster. Mol Cell Biol 1992; 12:3910-8. [PMID: 1324409 PMCID: PMC360270 DOI: 10.1128/mcb.12.9.3910-3918.1992] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Eight terminally deleted Drosophila melanogaster chromosomes have now been found to be "healed." In each case, the healed chromosome end had acquired sequence from the HeT DNA family, a complex family of repeated sequences found only in telomeric and pericentric heterochromatin. The sequences were apparently added by transposition events involving no sequence homology. We now report that the sequences transposed in healing these chromosomes identify a novel transposable element, HeT-A, which makes up a subset of the HeT DNA family. Addition of HeT-A elements to broken chromosome ends appears to be polar. The proximal junction between each element and the broken chromosome end is an oligo(A) tract beginning 54 nucleotides downstream from a conserved AATAAA sequence on the strand running 5' to 3' from the chromosome end. The distal (telomeric) ends of HeT-A elements are variably truncated; however, we have not yet been able to determine the extreme distal sequence of a complete element. Our analysis covers approximately 2,600 nucleotides of the HeT-A element, beginning with the oligo(A) tract at one end. Sequence homology is strong (greater than 75% between all elements studied). Sequence may be conserved for DNA structure rather than for protein coding; even the most recently transposed HeT-A elements lack significant open reading frames in the region studied. Instead, the elements exhibit conserved short-range sequence repeats and periodic long-range variation in base composition. These conserved features suggest that HeT-A elements, although transposable elements, may have a structural role in telomere organization or maintenance.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Studies of transcriptional control sequences responsible for regulated and basal-level RNA synthesis from promoters of Drosophila melanogaster retrotransposons reveal novel aspects of gene regulation and lead to identification of trans-acting factors that can be involved in RNA polymerase II transcription not only of retrotransposons, but of many other cellular genes. Comparisons between promoters of retrotransposons and some other Drosophila genes demonstrate that there is a greater variety in basal promoter structure than previously thought and that many promoters may contain essential sequences downstream from the RNA start site.
Collapse
Affiliation(s)
- I R Arkhipova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
46
|
Tudor M, Lobocka M, Goodell M, Pettitt J, O'Hare K. The pogo transposable element family of Drosophila melanogaster. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:126-34. [PMID: 1313144 DOI: 10.1007/bf00299145] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 190 bp insertion is associated with the white-eosin mutation in Drosophila melanogaster. This insertion is a member of a family of transposable elements, pogo elements, which is of the same class as the P and hobo elements of D. melanogaster. Strains typically have many copies of a 190 bp element, 10-15 elements 1.1-1.5 kb in size and several copies of a 2.1 kb element. The smaller elements all appear to be derived from the largest by single internal deletions so that all elements share terminal sequences. They either always insert at the dinucleotide TA and have perfect 21 bp terminal inverse repeats, or have 22 bp inverse repeats and produce no duplication upon insertion. Analysis by DNA blotting of their distribution and occupancy of insertion sites in different strains suggests that they may be less mobile than P or hobo. The DNA sequence of the largest element has two long open reading frames on one strand which are joined by splicing as indicated by cDNA analysis. RNAs of this strand are made, whose sizes are similar to the major size classes of elements. A protein predicted by the DNA sequence has significant homology with a human centrosomal-associated protein, CENP-B. Homologous sequences were not detected in other Drosophila species, suggesting that this transposable element family may be restricted to D. melanogaster.
Collapse
Affiliation(s)
- M Tudor
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | |
Collapse
|
47
|
Birchler JA. Expression of cis-regulatory mutations of the white locus in metafemales of Drosophila melanogaster. Genet Res (Camb) 1992; 59:11-8. [PMID: 1572532 DOI: 10.1017/s0016672300030123] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
At the white eye colour locus, there are a number of alleles that have altered expression between males and females. To test these regulatory mutations of the white eye colour locus for their phenotypic expression in metafemales (3X; 2A) compared to diploid females and males, eleven alleles or transduced copies of white were analysed. Two alleles that exhibit dosage compensation between males and females (apricot, blood) also exhibit dosage compensation in metafemales. White-ivory and white-eosin, which fail to dosage compensate in males compared to females, but that are distinct physical lesions, also show a dosage effect in metafemales. Two alleles with greater expression in males than females (spotted, spotted-55) exhibit even lower expression in metafemales. Lastly, five transduced copies of white carrying three different lengths of the white promoter, but that all exhibit higher expression in males, show reduced expression in metafemales, exhibiting an inverse correlation between the level of expression and the dosage of the X chromosome. Because these alleles of white respond to dosage compensation in metafemales as a continuum of the male and female responses, it is concluded that the same basic mechanism of dosage compensation is involved and that the dosage of the X chromosome conditions the sexually dimorphic expression.
Collapse
Affiliation(s)
- J A Birchler
- Biological Laboratories, Harvard University, Cambridge, MA 02138
| |
Collapse
|
48
|
von Sternberg RM, Novick GE, Gao GP, Herrera RJ. Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA. Genetica 1992; 86:215-46. [PMID: 1334910 DOI: 10.1007/bf00133722] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transposable and interspersed repetitive elements (TIREs) are ubiquitous features of both prokaryotic and eukaryotic genomes. However, controversy has arisen as to whether these sequences represent useless 'selfish' DNA elements, with no cellular function, as opposed to useful genetic units. In this review, we selected two insect species, the Dipteran Drosophila and the Lepidopteran Bombyx mori (the silkmoth), in an attempt to resolve this debate. These two species were selected on the basis of the special interest that our laboratory has had over the years in Bombyx with its well known molecular and developmental biology, and the wealth of genetic data that exist for Drosophila. In addition, these two species represent contrasting repetitive element types and patterns of distribution. On one hand, Bombyx exhibits the short interspersion pattern in which Alu-like TIREs predominate while Drosophila possesses the long interspersion pattern in which retroviral-like TIREs are prevalent. In Bombyx, the main TIRE family is Bm-1 while the Drosophila group contains predominantly copia-like elements, non-LTR retroposons, bacterial-type retroposons and fold-back transposable elements sequences. Our analysis of the information revealed highly non-random patterns of both TIRE biology and evolution, more indicative of these sequences acting as genomic symbionts under cellular regulation rather than useless or selfish junk DNA. In addition, we extended our analysis of potential TIRE functionality to what is known from other eukaryotic systems. From this study, it became apparent that these DNA elements may have originated as innocuous or selfish sequences and then adopted functions. The mechanism for this conversion from non-functionality to specific roles is a process of coevolution between the repetitive element and other cellular DNA often times in close physical proximity. The resulting interdependence between repetitive elements and other cellular sequences restrict the number of evolutionarily successful mutational changes for a given function or cistron. This mutual limitation is what we call genome canalization. Well documented examples are discussed to support this hypothesis and a mechanistic model is presented for how such genomic canalization can occur. Also proposed are empirical studies which would support or invalidate aspects of this hypothesis.
Collapse
Affiliation(s)
- R M von Sternberg
- Department of Biological Sciences, Florida International University, Miami 33199
| | | | | | | |
Collapse
|