1
|
Brescia C, Dattilo V, D’Antona L, Chiarella E, Tallerico R, Audia S, Rocca V, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1, a member of the nuclear-cytoplasmic trafficking-regulator complex, is the terminal-striking point of the SGK1-dependent Th17 + pathological differentiation. Front Immunol 2023; 14:1213805. [PMID: 37441077 PMCID: PMC10333757 DOI: 10.3389/fimmu.2023.1213805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The Th17+ arrangement is critical for orchestrating both innate and acquired immune responses. In this context, the serum and glucocorticoid regulated kinase 1 (SGK1) exerts a key role in the governance of IL-23R-dependent Th17+ maturation, through the phosphorylation-dependent control of FOXO1 localization. Our previous work has shown that some of the SGK1-key functions are dependent on RAN-binding protein 1 (RANBP1), a terminal gene in the nuclear transport regulation. Here, we show that RANBP1, similarly to SGK1, is modulated during Th17+ differentiation and that RANBP1 fluctuations mediate the SGK1-dependent effects on Th17+ maturation. RANBP1, as the final effector of the SGK1 pathway, affects FOXO1 transport from the nucleus to the cytoplasm, thus enabling RORγt activation. In this light, RANBP1 represents the missing piece, in an essential and rate-limiting manner, underlying the Th17+ immune asset.
Collapse
Affiliation(s)
- Carolina Brescia
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Lucia D’Antona
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rossana Tallerico
- Microbiology and Virology Unit, “Pugliese-Ciaccio” Hospital, Catanzaro, Italy
| | - Salvatore Audia
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Valentina Rocca
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosario Amato
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
2
|
Audia S, Brescia C, Dattilo V, D’Antona L, Calvano P, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers (Basel) 2023; 15:cancers15020486. [PMID: 36672435 PMCID: PMC9857238 DOI: 10.3390/cancers15020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus-cytoplasmic gradient, thus making nuclear import-export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest.
Collapse
Affiliation(s)
- Salvatore Audia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Lucia D’Antona
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Pierluigi Calvano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694084
| |
Collapse
|
3
|
Vijayaraghavan B, Jafferali MH, Figueroa RA, Hallberg E. Samp1, a RanGTP binding transmembrane protein in the inner nuclear membrane. Nucleus 2017; 7:415-23. [PMID: 27541860 PMCID: PMC5039005 DOI: 10.1080/19491034.2016.1220465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Samp1 is a transmembrane protein of the inner nuclear membrane (INM), which interacts with the nuclear lamina and the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex in interphase and during mitosis, it localizes to the mitotic spindle. Samp1 was recently found to coprecipitate a protein complex containing Ran, a GTPase with fundamental regulatory functions both in interphase and in mitosis. To investigate the interaction between Samp1 and Ran in further detail, we have designed and expressed recombinant fusion proteins of the Chaetomium thermophilum homolog of Samp1 (Ct.Samp1) and human Ran. Pulldown experiments show that Samp1 binds directly to Ran and that Samp1 binds better to RanGTP compared to RanGDP. Samp1 also preferred RanGTP over RanGDP in living tsBN2 cells. We also show that the Ran binding domain is located between amino acids 75–135 in the nucleoplasmically exposed N-terminal tail of Samp1. This domain is unique for Samp1, without homology in any other proteins in fungi or metazoa. Samp1 is the first known transmembrane protein that binds to Ran and could provide a unique local binding site for RanGTP in the INM. Samp1 overexpression resulted in increased Ran concentrations in the nuclear periphery supporting this idea.
Collapse
Affiliation(s)
| | | | | | - Einar Hallberg
- a Department of Neurochemistry , Stockholm University , Stockholm , Sweden
| |
Collapse
|
4
|
Yu KH, Levine DA, Zhang H, Chan DW, Zhang Z, Snyder M. Predicting Ovarian Cancer Patients' Clinical Response to Platinum-Based Chemotherapy by Their Tumor Proteomic Signatures. J Proteome Res 2016; 15:2455-65. [PMID: 27312948 PMCID: PMC8718213 DOI: 10.1021/acs.jproteome.5b01129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ovarian cancer is the deadliest gynecologic malignancy in the United States with most patients diagnosed in the advanced stage of the disease. Platinum-based antineoplastic therapeutics is indispensable to treating advanced ovarian serous carcinoma. However, patients have heterogeneous responses to platinum drugs, and it is difficult to predict these interindividual differences before administering medication. In this study, we investigated the tumor proteomic profiles and clinical characteristics of 130 ovarian serous carcinoma patients analyzed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), predicted the platinum drug response using supervised machine learning methods, and evaluated our prediction models through leave-one-out cross-validation. Our data-driven feature selection approach indicated that tumor proteomics profiles contain information for predicting binarized platinum response (P < 0.0001). We further built a least absolute shrinkage and selection operator (LASSO)-Cox proportional hazards model that stratified patients into early relapse and late relapse groups (P = 0.00013). The top proteomic features indicative of platinum response were involved in ATP synthesis pathways and Ran GTPase binding. Overall, we demonstrated that proteomic profiles of ovarian serous carcinoma patients predicted platinum drug responses as well as provided insights into the biological processes influencing the efficacy of platinum-based therapeutics. Our analytical approach is also extensible to predicting response to other antineoplastic agents or treatment modalities for both ovarian and other cancers.
Collapse
Affiliation(s)
| | - Douglas A Levine
- Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | | |
Collapse
|
5
|
Lucenay KS, Doostan I, Karakas C, Bui T, Ding Z, Mills GB, Hunt KK, Keyomarsi K. Cyclin E Associates with the Lipogenic Enzyme ATP-Citrate Lyase to Enable Malignant Growth of Breast Cancer Cells. Cancer Res 2016; 76:2406-18. [PMID: 26928812 DOI: 10.1158/0008-5472.can-15-1646] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
Cyclin E is altered in nearly a third of invasive breast cancers where it is a powerful independent predictor of survival in women with stage I-III disease. Full-length cyclin E is posttranslationally cleaved into low molecular weight (LMW-E) isoforms, which are tumor-specific and accumulate in the cytoplasm because they lack a nuclear localization sequence. We hypothesized that aberrant localization of cytosolic LMW-E isoforms alters target binding and activation ultimately contributing to LMW-E-induced tumorigenicity. To address this hypothesis, we used a retrovirus-based protein complementation assay to find LMW-E binding proteins in breast cancer, identifying ATP-citrate lyase (ACLY), an enzyme in the de novo lipogenesis pathway, as a novel LMW-E-interacting protein in the cytoplasm. LMW-E upregulated ACLY enzymatic activity, subsequently increasing lipid droplet formation, thereby providing cells with essential building blocks to support growth. ACLY was also required for LMW-E-mediated transformation, migration, and invasion of breast cancer cells in vitro along with tumor growth in vivo In clinical specimens of breast cancer, the absence of LMW-E and low expression of adipophilin (PLIN2), a marker of lipid droplet formation, associated with favorable prognosis, whereas overexpression of both proteins correlated with a markedly worse prognosis. Taken together, our findings establish a novel relationship between LMW-E isoforms of cyclin E and aberrant lipid metabolism pathways in breast cancer tumorigenesis, warranting further investigation in additional malignancies exhibiting their expression. Cancer Res; 76(8); 2406-18. ©2016 AACR.
Collapse
Affiliation(s)
- Kimberly S Lucenay
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Iman Doostan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tuyen Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiyong Ding
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
6
|
Fan S, Whiteman EL, Hurd TW, McIntyre JC, Dishinger JF, Liu CJ, Martens JR, Verhey KJ, Sajjan U, Margolis B. Induction of Ran GTP drives ciliogenesis. Mol Biol Cell 2011; 22:4539-48. [PMID: 21998203 PMCID: PMC3226473 DOI: 10.1091/mbc.e11-03-0267] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent work suggests an important role for the Ran importin system in cilia trafficking. At the onset of ciliogenesis, Ran GTP levels rise markedly at the centrosome. Altering Ran GTP levels by varying RanBP1 expression modulates cilia formation and trafficking. The small GTPase Ran and the importin proteins regulate nucleocytoplasmic transport. New evidence suggests that Ran GTP and the importins are also involved in conveying proteins into cilia. In this study, we find that Ran GTP accumulation at the basal bodies is coordinated with the initiation of ciliogenesis. The Ran-binding protein 1 (RanBP1), which indirectly accelerates Ran GTP → Ran GDP hydrolysis and promotes the dissociation of the Ran/importin complex, also localizes to basal bodies and cilia. To confirm the crucial link between Ran GTP and ciliogenesis, we manipulated the levels of RanBP1 and determined the effects on Ran GTP and primary cilia formation. We discovered that RanBP1 knockdown results in an increased concentration of Ran GTP at basal bodies, leading to ciliogenesis. In contrast, overexpression of RanBP1 antagonizes primary cilia formation. Furthermore, we demonstrate that RanBP1 knockdown disrupts the proper localization of KIF17, a kinesin-2 motor, at the distal tips of primary cilia in Madin–Darby canine kidney cells. Our studies illuminate a new function for Ran GTP in stimulating cilia formation and reinforce the notion that Ran GTP and the importins play key roles in ciliogenesis and ciliary protein transport.
Collapse
Affiliation(s)
- Shuling Fan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Clément M, Deshaies F, de Repentigny L, Belhumeur P. The nuclear GTPase Gsp1p can affect proper telomeric function through the Sir4 protein inSaccharomyces cerevisiae. Mol Microbiol 2006; 62:453-68. [PMID: 16956377 DOI: 10.1111/j.1365-2958.2006.05374.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The small Ras-like GTPase Ran/Gsp1p is a highly conserved nuclear protein required for the nucleocytoplasmic trafficking of macromolecules. Recent findings suggest that the Ran/Gsp1p pathway may have additional roles in several aspects of nuclear structure and function, including spindle assembly, nuclear envelope formation, nuclear pore complex assembly and RNA processing. Here, we provide evidence that Gsp1p can regulate telomeric function in Saccharomyces cerevisiae. We show that overexpression of PRP20, encoding the Gsp1p GDP/GTP nuclear exchange factor, specifically weakens telomeric silencing without detectably affecting nucleocytoplasmic transport. In addition to this silencing defect, we show that Rap1p and Sir3p delocalize from their normal telomeric foci. Interestingly, Gsp1p was found to interact genetically and physically with the telomeric component Sir4p. Taken together, these results suggest that the GSP1 pathway could regulate proper telomeric function in yeast through Sir4p.
Collapse
Affiliation(s)
- Martin Clément
- Département de microbiologie et immunologie, Université de Montréal, C P 6128, succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
8
|
Nishijima H, Nakayama JI, Yoshioka T, Kusano A, Nishitani H, Shibahara KI, Nishimoto T. Nuclear RanGAP is required for the heterochromatin assembly and is reciprocally regulated by histone H3 and Clr4 histone methyltransferase in Schizosaccharomyces pombe. Mol Biol Cell 2006; 17:2524-36. [PMID: 16540522 PMCID: PMC1474784 DOI: 10.1091/mbc.e05-09-0893] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although the Ran GTPase-activating protein RanGAP mainly functions in the cytoplasm, several lines of evidence indicate a nuclear function of RanGAP. We found that Schizosaccharomyces pombe RanGAP, SpRna1, bound the core of histone H3 (H3) and enhanced Clr4-mediated H3-lysine 9 (K9) methylation. This enhancement was not observed for methylation of the H3-tail containing K9 and was independent of SpRna1-RanGAP activity, suggesting that SpRna1 itself enhances Clr4-mediated H3-K9 methylation via H3. Although most SpRna1 is in the cytoplasm, some cofractionated with H3. Sprna1(ts) mutations caused decreases in Swi6 localization and H3-K9 methylation at all three heterochromatic regions of S. pombe. Thus, nuclear SpRna1 seems to be involved in heterochromatin assembly. All core histones bound SpRna1 and inhibited SpRna1-RanGAP activity. In contrast, Clr4 abolished the inhibitory effect of H3 on the RanGAP activity of SpRna1 but partially affected the other histones. SpRna1 formed a trimeric complex with H3 and Clr4, suggesting that nuclear SpRna1 is reciprocally regulated by histones, especially H3, and Clr4 on the chromatin to function for higher order chromatin assembly. We also found that SpRna1 formed a stable complex with Xpo1/Crm1 plus Ran-GTP, in the presence of H3.
Collapse
Affiliation(s)
- Hitoshi Nishijima
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; and
| | - Jun-ichi Nakayama
- Laboratory for Chromatin Dynamics, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | - Tomoko Yoshioka
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ayumi Kusano
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideo Nishitani
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kei-ichi Shibahara
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; and
| | - Takeharu Nishimoto
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Address correspondence to: Takeharu Nishimoto (
)
| |
Collapse
|
9
|
Steggerda SM, Paschal BM. Regulation of nuclear import and export by the GTPase Ran. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:41-91. [PMID: 12019565 DOI: 10.1016/s0074-7696(02)17012-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the control of nuclear import and export pathways by the small GTPase Ran. Transport of signal-containing cargo substrates is mediated by receptors that bind to the cargo proteins and RNAs and deliver them to the appropriate cellular compartment. Ran is an evolutionarily conserved member of the Ras superfamily that regulates all receptor-mediated transport between the nucleus and the cytoplasm. We describe the identification and characterization of the RanGTPase and its binding partners: the guanine nucleotide exchange factor, RanGEF; the GTPase activating protein, RanGAP; the soluble import and export receptors; Ran-binding domain-(RBD) containing proteins; and NTF2 and related factors.
Collapse
Affiliation(s)
- Susanne M Steggerda
- Center for Cell Signaling and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
10
|
Nicolás FJ, Moore WJ, Zhang C, Clarke PR. XMog1, a nuclear Ran-binding protein in Xenopus, is a functional homologue of Schizosaccharomyces pombe Mog1p that co-operates with RanBP1 to control generation of Ran-GTP. J Cell Sci 2001; 114:3013-23. [PMID: 11686304 DOI: 10.1242/jcs.114.16.3013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ran is a multifunctional small GTPase of the Ras superfamily that plays roles in nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. By screening a Xenopus oocyte cDNA library for Ran-GTP-binding proteins using the two-hybrid system of co-expression in yeast, we identified XMog1, a 20.4 kDa polypeptide related to Mog1p in Saccharomyces cerevisiae and similar gene products in Schizosaccharomyces pombe, Arabidopsis and mammals. We show that cDNAs encoding XMog1 and S. cerevisiae Mog1p rescue the growth defect of S. pombe cells lacking mog1, demonstrating conservation of their functions. In Xenopus somatic cells and transfected mammalian cells, XMog1 is localised to the nucleus. XMog1 alone does not stimulate Ran GTPase activity or nucleotide exchange, but causes nucleotide release from Ran-GTP and forms a complex with nucleotide-free Ran. However, in combination with Ran-binding protein 1 (RanBP1), XMog1 promotes the release of GDP and the selective binding of GTP to Ran. XMog1 and RanBP1 also promote selective GTP loading onto Ran catalysed by the nuclear guanine nucleotide exchange factor, RCC1. We propose that Mog1-related proteins, together with RanBP1, facilitate the generation of Ran-GTP from Ran-GDP in the nucleus.
Collapse
Affiliation(s)
- F J Nicolás
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | |
Collapse
|
11
|
Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 2001; 276:7246-57. [PMID: 11073942 DOI: 10.1074/jbc.m004389200] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rag A/Gtr1p are G proteins and are known to be involved in the RCC1-Ran pathway. We employed the two-hybrid method using Rag A as the bait to identify proteins binding to Rag A, and we isolated two novel human G proteins, Rag C and Rag D. Rag C demonstrates homology with Rag D (81.1% identity) and with Gtr2p of Saccharomyces cerevisiae (46.1% identity), and it belongs to the Rag A subfamily of the Ras family. Rag C and Rag D contain conserved GTP-binding motifs (PM-1, -2, and -3) in their N-terminal regions. Recombinant glutathione S-transferase fusion protein of Rag C efficiently bound to both [(3)H]GTP and [(3)H]GDP. Rag A was associated with both Rag C and Rag D in their C-terminal regions where a potential leucine zipper motif and a coiled-coil structure were found. Rag C and D were associated with both the GDP and GTP forms of Rag A. Both Rag C and Rag D changed their subcellular localization, depending on the nucleotide-bound state of Rag A. In a similar way, the disruption of S. cerevisiae GTR1 resulted in a change in the localization of Gtr2p.
Collapse
Affiliation(s)
- T Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
12
|
Oki M, Nishimoto T. Yrb1p interaction with the gsp1p C terminus blocks Mog1p stimulation of GTP release from Gsp1p. J Biol Chem 2000; 275:32894-900. [PMID: 10921930 DOI: 10.1074/jbc.m910251199] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mog1p, a multicopy suppressor of gsp1, the temperature-sensitive mutant of the Saccharomyces cerevisiae Ran homologue, binds to GTP-Gsp1p but not to GDP-Gsp1p. The function of Mog1p in the Ran cycle is as yet unknown. This study found that Mog1p releases a nucleotide from GTP-Gsp1p but not from GDP-Gsp1p. Yrb1p, the S. cerevisiae homologue of RanBP1, which is a strong inhibitor of RCC1-stimulated nucleotide release, also inhibited the Mog1p-stimulated nucleotide release from GTP-Gsp1p. At a concentration corresponding to the molar concentration of GTP-Gsp1p, Yrb1p completely inhibited the Mog1p-stimulated nucleotide release. Consistently, the Yrb1p.GTP-Gsp1p complex was more stable than the Mog1p.GTP-Gsp1p complex. Yrb1p did not inhibit the Mog1p-stimulated nucleotide release from GTP-Gsp1DeltaC. The Gsp1DeltaC protein lacks the final eight amino acids of the C terminus, and for this reason, the interaction between GTP-Gsp1DeltaC and Yrb1p was strongly reduced. On the other hand, Mog1p binds to GTP-Gsp1DeltaC more efficiently than to GTP-Gsp1p.
Collapse
Affiliation(s)
- M Oki
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
13
|
Künzler M, Gerstberger T, Stutz F, Bischoff FR, Hurt E. Yeast Ran-binding protein 1 (Yrb1) shuttles between the nucleus and cytoplasm and is exported from the nucleus via a CRM1 (XPO1)-dependent pathway. Mol Cell Biol 2000; 20:4295-308. [PMID: 10825193 PMCID: PMC85797 DOI: 10.1128/mcb.20.12.4295-4308.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Accepted: 03/29/2000] [Indexed: 11/20/2022] Open
Abstract
The RanGTP-binding protein RanBP1, which is located in the cytoplasm, has been implicated in release of nuclear export complexes from the cytoplasmic side of the nuclear pore complex. Here we show that Yrb1 (the yeast homolog of RanBP1) shuttles between the nucleus and the cytoplasm. Nuclear import of Yrb1 is a facilitated process that requires a short basic sequence within the Ran-binding domain (RBD). By contrast, nuclear export of Yrb1 requires an intact RBD, which forms a ternary complex with the Xpo1 (Crm1) NES receptor in the presence of RanGTP. Nuclear export of Yrb1, however, is insensitive towards leptomycin B, suggesting a novel type of substrate recognition between Yrb1 and Xpo1. Taken together, these data suggest that ongoing nuclear import and export is an important feature of Yrb1 function in vivo.
Collapse
Affiliation(s)
- M Künzler
- Ruprecht-Karls-Universität Heidelberg, Biochemie-Zentrum Heidelberg (BZH), Germany
| | | | | | | | | |
Collapse
|
14
|
Ouspenski II. A RanBP1 mutation which does not visibly affect nuclear import may reveal additional functions of the ran GTPase system. Exp Cell Res 1998; 244:171-83. [PMID: 9770360 DOI: 10.1006/excr.1998.4174] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ran, a nuclear GTPase, and a number of interacting proteins, including regulators RanGEF1 and RanGAP1, are involved in nucleocytoplasmic transport. We have identified a new temperature-sensitive mutation in budding yeast YRB1 gene, which encodes Ran-binding protein-1 (RanBP1). In contrast to other yrb1 alleles, the new mutation (yrb1-21) does not cause visible defects in import of nuclear proteins Npl3p, histone H2B, or beta-galactosidase fused to a nuclear localization signal. We hypothesize that the inviability of mutant cells at the restrictive temperature is caused by an additional essential function of RanBP1 other than nuclear import. This function may be revealed by the terminal phenotypes of yrb1-21, which include failure of the mitotic spindles to properly align along the mother-bud axis and accumulation of cells in late mitosis or G1 phase of the cell cycle. These features are shared, in part, by a mutation in RanGEF1, but not in RanGAP1. The yrb1-21 allele suppresses a RanGEF1 mutation, indicating that RanGEF1 and RanBP1 may be involved in the same essential function.
Collapse
Affiliation(s)
- I I Ouspenski
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| |
Collapse
|
15
|
Abstract
The nuclear pore complex can be considered to be the stationary phase of bidirectional traffic between the nucleus and the cytoplasm. The mobile phase consists of karyopherins, transport substrates, and the small GTPase Ran and its modulators. Recently, the family of karyopherins was expanded with the recognition of numerous open reading frames with limited homology to karyopherin beta 1. In several cases, the specific substrates transported by the new karyopherins have been identified, allowing the characterization of new pathways into and out of the nucleus. However, the mechanisms of transport, particularly the role of Ran, remain poorly understood.
Collapse
Affiliation(s)
- L F Pemberton
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
16
|
Nothwang HG, Rensing C, Kübler M, Denich D, Brandl B, Stubanus M, Haaf T, Kurnit D, Hildebrandt F. Identification of a novel Ran binding protein 2 related gene (RANBP2L1) and detection of a gene cluster on human chromosome 2q11-q12. Genomics 1998; 47:383-92. [PMID: 9480752 DOI: 10.1006/geno.1997.5119] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The giant 358-kDa protein Ran binding protein 2 (RanBP2/Nup358) is localized at the cytoplasmic side of the nuclear pore complex and likely constitutes the Ran-GTP binding site at the cytoplasmic face of the complex. RanBP2/Nup358 furthermore acts as a chaperone for red/green opsin molecules. Here, we report on the physical mapping of human RanBP2 between markers D2S340 and D2S1893. A duplication of the 5'-end sequence of RanBP2 occurs within 3 Mb distal to RanBP2. Detailed sequence analysis resulted in primers specific for this distal duplication. Polymerase chain reaction-based screening of cDNA libraries indicates that this transcript, called RanBP2alpha (HGMW-approved symbol RANBP2L1), is expressed in several tissues. Screening of a fetal brain cDNA library yielded a 4057-bp partial cDNA clone for RanBP2alpha. Its 5'-end is almost identical to RanBP2, whereas its 3'-part is distinct from RanBP2. Northern blot analysis using a probe of the 3'-untranslated sequence of RanBP2alpha detected in several tissues an 8-kb transcript representing the full length of the transcript. In pancreas and placenta, an additional transcript of 14 kb was detected. PAC clones containing the bona fide RanBP2 sequences were localized to 2q11-q12 by FISH analysis, and a region of high similarity was detected on 2p11-p12. In summary, we have identified a RanBP2 gene cluster on 2q11-q12 together with a novel gene termed RanBP2alpha, with high sequence similarity to RanBP2.
Collapse
Affiliation(s)
- H G Nothwang
- University Children's Hospital, Freiburg University, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
He X, Hayashi N, Walcott NG, Azuma Y, Patterson TE, Bischoff FR, Nishimoto T, Sazer S. The identification of cDNAs that affect the mitosis-to-interphase transition in Schizosaccharomyces pombe, including sbp1, which encodes a spi1p-GTP-binding protein. Genetics 1998; 148:645-56. [PMID: 9504913 PMCID: PMC1459816 DOI: 10.1093/genetics/148.2.645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Perturbations of the spi1p GTPase system in fission yeast, caused by mutation or overexpression of several regulatory proteins, result in a unique terminal phenotype that includes condensed chromosomes, a wide medial septum, and a fragmented nuclear envelope. To identify potential regulators or targets of the spi1p GTPase system, a screen for cDNAs whose overexpression results in this terminal phenotype was conducted, and seven clones that represent three genes, named med1, med2, and med3 (mitotic exit defect), were identified. Their genetic interaction with the spi1p GTPase system was established by showing that the spi1p guanine nucleotide exchange factor mutant pim1-d1ts was hypersensitive to their overexpression. med1 encodes a homologue of the human Ran-binding protein, RanBP1, and has been renamed sbp1 (spi1-binding protein). sbp1p binds to spi1p-GTP and costimulates the GTPase-activating protein (GAP)-catalyzed GTPase activity. Cells in which sbp1p is depleted or overproduced phenocopy cells in which the balance between spi1p-GTP and spi1p-GDP is perturbed by other means. Therefore, sbp1p mediates and/or regulates the essential functions of the spi1p GTPase system. med2 and med3 encode novel fission yeast proteins that, based on our phenotypic analyses, are likely to identify additional regulators or effectors of the spi1p GTPase system.
Collapse
Affiliation(s)
- X He
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 1997; 16:6535-47. [PMID: 9351834 PMCID: PMC1170258 DOI: 10.1093/emboj/16.21.6535] [Citation(s) in RCA: 502] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The GTPase Ran is essential for nuclear import of proteins with a classical nuclear localization signal (NLS). Ran's nucleotide-bound state is determined by the chromatin-bound exchange factor RCC1 generating RanGTP in the nucleus and the cytoplasmic GTPase activating protein RanGAP1 depleting RanGTP from the cytoplasm. This predicts a steep RanGTP concentration gradient across the nuclear envelope. RanGTP binding to importin-beta has previously been shown to release importin-alpha from -beta during NLS import. We show that RanGTP also induces release of the M9 signal from the second identified import receptor, transportin. The role of RanGTP distribution is further studied using three methods to collapse the RanGTP gradient. Nuclear injection of either RanGAP1, the RanGTP binding protein RanBP1 or a Ran mutant that cannot stably bind GTP. These treatments block major export and import pathways across the nuclear envelope. Different export pathways exhibit distinct sensitivities to RanGTP depletion, but all are more readily inhibited than is import of either NLS or M9 proteins, indicating that the block of export is direct rather than a secondary consequence of import inhibition. Surprisingly, nuclear export of several substrates including importin-alpha and -beta, transportin, HIV Rev and tRNA appears to require nuclear RanGTP but may not require GTP hydrolysis by Ran, suggesting that the energy for their nuclear export is supplied by another source.
Collapse
Affiliation(s)
- E Izaurralde
- University of Geneva, Department of Molecular Biology, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Pu RT, Dasso M. The balance of RanBP1 and RCC1 is critical for nuclear assembly and nuclear transport. Mol Biol Cell 1997; 8:1955-70. [PMID: 9348536 PMCID: PMC25650 DOI: 10.1091/mbc.8.10.1955] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ran is a small GTPase that is essential for nuclear transport, mRNA processing, maintenance of structural integrity of nuclei, and cell cycle control. RanBP1 is a highly conserved Ran guanine nucleotide dissociation inhibitor. We sought to use Xenopus egg extracts for the development of an in vitro assay for RanBP1 activity in nuclear assembly, protein import, and DNA replication. Surprisingly, when we used anti-RanBP1 antibodies to immunodeplete RanBP1 from Xenopus egg extracts, we found that the extracts were also depleted of RCC1, Ran's guanine nucleotide exchange factor, suggesting that these proteins form a stable complex. In contrast to previous observations using extracts that had been depleted of RCC1 only, extracts lacking both RanBP1 and RCC1 (codepleted extracts) did not exhibit defects in assays of nuclear assembly, nuclear transport, or DNA replication. Addition of either recombinant RanBP1 or RCC1 to codepleted extracts to restore only one of the depleted proteins caused abnormal nuclear assembly and inhibited nuclear transport and DNA replication in a manner that could be rescued be further addition of RCC1 or RanBP1, respectively. Exogenous mutant Ran proteins could partially rescue nuclear function in extracts without RanBP1 or without RCC1, in a manner that was correlated with their nucleotide binding state. These results suggest that little RanBP1 or RCC1 is required for nuclear assembly, nuclear import, or DNA replication in the absence of the other protein. The results further suggest that the balance of GTP- and GDP-Ran is critical for proper nuclear assembly and function in vitro.
Collapse
Affiliation(s)
- R T Pu
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5431, USA
| | | |
Collapse
|
20
|
Zolotukhin AS, Felber BK. Mutations in the nuclear export signal of human ran-binding protein RanBP1 block the Rev-mediated posttranscriptional regulation of human immunodeficiency virus type 1. J Biol Chem 1997; 272:11356-60. [PMID: 9111043 DOI: 10.1074/jbc.272.17.11356] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We identified a region in the human Ran GTPase-binding protein RanBP1 that shares similarities to the nuclear export signal of the inhibitor of the cAMP-dependent protein kinase. Mutational analysis confirmed that this region is responsible for the cytoplasmic accumulation of RanBP1 and can functionally replace the nuclear export signal of Rev of human immunodeficiency virus type 1. We showed that RanBP1 interferes with Rev-mediated expression of human immunodeficiency virus type 1, whereas the RanBP1 with inactivated nuclear export signal abrogates Rev function. Expression of a Rev-independent molecular clone, which is regulated via the constitutive transport element (CTE) of the simian retrovirus type 1, is not affected. These findings indicate that Rev and RanBP1 compete for the same nuclear export pathway, whereas Rev- and the CTE-mediated pathways are distinct. The inhibition of Rev function is independent of the ability of RanBP1 to associate with Ran and therefore, it is not likely a result of interference with Ran function. These data suggest that RanBP1 interacts with Rev at the putative nuclear receptor and, hence, shares a step in posttranscriptional pathway with Rev.
Collapse
Affiliation(s)
- A S Zolotukhin
- Human Retrovirus Pathogenesis Group, NCI-Frederick Cancer Research and Development Center, ABL-Basic Research Program, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
21
|
Noguchi E, Hayashi N, Nakashima N, Nishimoto T. Yrb2p, a Nup2p-related yeast protein, has a functional overlap with Rna1p, a yeast Ran-GTPase-activating protein. Mol Cell Biol 1997; 17:2235-46. [PMID: 9121474 PMCID: PMC232073 DOI: 10.1128/mcb.17.4.2235] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Ran-GTPase cycle is important for nucleus-cytosol exchange of macromolecules and other nuclear processes. We employed the two-hybrid method to identify proteins interacting with Ran and the Ran GTP/GDP exchange factor. Using PRP20, encoding the Ran GTP/GDP exchange factor, we identified YRB1, previously identified as a protein able to interact with human Ran GTP/GDP exchange factor RCC1 in the two-hybrid system. Using GSP1, encoding the yeast Ran, as bait, we isolated YRB2. YRB2 encodes a protein containing a Ran-binding motif similar to that found in Yrb1p and Nup2p. Yrb1p is located in the cytosol whereas Nup2p is nuclear. Similar to Yrb1p, Yrb2p bound to GTP-Gsp1p but not to GDP-Gsp1p and enhanced the GTPase-activating activity of Rna1p. However, unlike Yrb1p, Yrb2p did not inhibit the nucleotide-releasing activity of Prp20p. While overproduction of Yrb1p inhibited the growth of a mutant possessing a PRP20 mutation (srm1-1) and suppressed the rna1-1 mutation, overproduction of Yrb2p showed no effect on the growth of these mutants. Disruption of YRB2 made yeast cold sensitive and was synthetically lethal with rna1-1 but not with nup2delta. Nuclear protein import and the mRNA export were normal in strains possessing mutations of YRB2. We propose that Yrb2p is involved in the nuclear processes of the Ran-GTPase cycle which are not related to nucleus-cytosol exchange of macromolecules.
Collapse
Affiliation(s)
- E Noguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
22
|
Chi NC, Adam EJ, Visser GD, Adam SA. RanBP1 stabilizes the interaction of Ran with p97 nuclear protein import. J Cell Biol 1996; 135:559-69. [PMID: 8909533 PMCID: PMC2121062 DOI: 10.1083/jcb.135.3.559] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Three factors have been identified that reconstitute nuclear protein import in a permeabilized cell assay: the NLS receptor, p97, and Ran/TC4. Ran/TC4, in turn, interacts with a number of proteins that are involved in the regulation of GTP hydrolysis or are components of the nuclear pore. Two Ran-binding proteins, RanBP1 and RanBP2, form discrete complexes with p97 as demonstrated by immunoadsorption from HeLa cell extracts fractionated by gel filtration chromatography. A > 400-kD complex contains p97, Ran, and RanBP2. Another complex of 150-300 kD was comprised of p97, Ran, and RanBP1. This second trimeric complex could be reconstituted from recombinant proteins. In solution binding assays, Ran-GTP bound p97 with high affinity, but the binding of Ran-GDP to p97 was undetectable. The addition of RanBP1 with Ran-GDP or Ran-GTP increased the affinity of both forms of Ran for p97 to the same level. Binding of Ran-GTP to p97 dissociated p97 from immobilized NLS receptor while the Ran-GDP/RanBP1/p97 complex did not dissociate from the receptor. In a digitonin-permeabilized cell docking assay, RanBP1 stabilizes the receptor complex against temperature-dependent release from the pore. When added to an import assay with recombinant NLS receptor, p97 and Ran-GDP, RanBP1 significantly stimulates transport. These results suggest that RanBP1 promotes both the docking and translocation steps in nuclear protein import by stabilizing the interaction of Ran-GDP with p97.
Collapse
Affiliation(s)
- N C Chi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
23
|
Avis JM, Clarke PR. Ran, a GTPase involved in nuclear processes: its regulators and effectors. J Cell Sci 1996; 109 ( Pt 10):2423-7. [PMID: 8923203 DOI: 10.1242/jcs.109.10.2423] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ran is a small GTPase that has been implicated in a variety of nuclear processes, including the maintainance of nuclear structure, protein import, mRNA processing and export, and cell cycle regulation. There has been significant progress in determining the role of Ran in nuclear protein import. However, it has been unclear whether this role is sufficient to account for the diverse effects of disrupting Ran functions. Recently, several proteins have been identified that bind specifically to Ran and are, therefore, possible effectors. Other experiments using dominant mutants of Ran that block its GTP/GDP cycle have suggested that Ran may have multiple roles. Here, these results are summarised and discussed with respect to the action of Ran.
Collapse
Affiliation(s)
- J M Avis
- School of Biological Sciences, University of Manchester, UK
| | | |
Collapse
|
24
|
Nakashima N, Hayashi N, Noguchi E, Nishimoto T. Putative GTPase Gtr1p genetically interacts with the RanGTPase cycle in Saccharomyces cerevisiae. J Cell Sci 1996; 109 ( Pt 9):2311-8. [PMID: 8886981 DOI: 10.1242/jcs.109.9.2311] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to identify a protein interacting with RCC1, a guanine nucleotide-exchange factor for the nuclear GTPase Ran, we isolated a series of cold-sensitive suppressors of mtr1-2, a temperature-sensitive mutant of the Saccharomyces cerevisiae RCC1 homologue. One of the isolated suppressor mutants was mutated in the putative GTPase Gtr1p, being designated as gtr1-11. It also suppressed other alleles of mtr1-2, srm1-1 and prp20-1 in contrast to overexpression of the S. cerevisiae Ran/TC4 homologue Gsp1p, previously reported to suppress prp20-1, but not mtr1-2 or srm1-1. Furthermore, gtr1-11 suppressed the rna1-1, temperature-sensitive mutant of the Gsp1p GTPase-activating protein, but not the srp1-31, temperature-sensitive mutant of the S. cerevisiae importin alpha homologue. mtr1-2, srm1-1 and prp20-1 were also suppressed by overexpression of the mutated Gtr1p, Gtr1-11p. In summary, Gtr1p that was localized in the cytoplasm by immunofluoresence staining was suggested to function as a negative regulator for the Ran/TC4 GTPase cycle.
Collapse
Affiliation(s)
- N Nakashima
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
25
|
Richards SA, Lounsbury KM, Carey KL, Macara IG. A nuclear export signal is essential for the cytosolic localization of the Ran binding protein, RanBP1. J Cell Biol 1996; 134:1157-68. [PMID: 8794858 PMCID: PMC2120988 DOI: 10.1083/jcb.134.5.1157] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RanBP1 is a Ran/TC4 binding protein that can promote the interaction between Ran and beta-importin /beta-karyopherin, a component of the docking complex for nuclear protein cargo. This interaction occurs through a Ran binding domain (RBD). Here we show that RanBP1 is primarily cytoplasmic, but the isolated RBD accumulates in the nucleus. A region COOH-terminal to the RBD is responsible for this cytoplasmic localization. This domain acts heterologously, localizing a nuclear cyclin B1 mutant to the cytoplasm. The domain contains a nuclear export signal that is necessary but not sufficient for the nuclear export of a functional RBD In transiently transfected cells, epitope-tagged RanBP1 promotes dexamethasone-dependent nuclear accumulation of a glucocorticoid receptor-green fluorescent protein fusion, but the isolated RBD potently inhibits this accumulation. The cytosolic location of RanBP1 may therefore be important for nuclear protein import. RanBP1 may provide a key link between the nuclear import and export pathways.
Collapse
Affiliation(s)
- S A Richards
- Department of Pathology, University of Vermont, Burlington 05405-0068, USA.
| | | | | | | |
Collapse
|