1
|
Guo Y, Wang T, Lu X, Li W, Lv X, Peng Q, Zhang J, Gao J, Hu M. Comparative genome-wide analysis of circular RNAs in Brassica napus L.: target-site versus non-target-site resistance to herbicide stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:176. [PMID: 38969812 DOI: 10.1007/s00122-024-04678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.
Collapse
Affiliation(s)
- Yue Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ting Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinyu Lu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weilong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinlei Lv
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Peng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianqin Gao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
2
|
Hu M, Zhang H, Kong L, Ma J, Wang T, Lu X, Guo Y, Zhang J, Guan R, Chu P. Comparative proteomic and physiological analyses reveal tribenuron-methyl phytotoxicity and nontarget-site resistance mechanisms in Brassica napus. PLANT, CELL & ENVIRONMENT 2023; 46:2255-2272. [PMID: 37102754 DOI: 10.1111/pce.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
The application of herbicides is the most effective strategy for weed control and the development of herbicide-resistant crops will facilitate the weed management. The acetolactate synthase-inhibiting herbicide, tribenuron-methyl (TBM), is broadly used for weed control. However, its application in rapeseed field is restricted since rapeseed is sensitive to TBM. Herein, an integrated study of cytological, physiological and proteomic analysis of the TBM-resistant rapeseed mutant M342 and its wild-type (WT) plants was conducted. After TBM spraying, M342 showed improved tolerance to TBM, and proteins implicated in non-target-site resistance (NTSR) to herbicides had a significantly higher level in M342 as compared with the WT. Differentially accumulated proteins (DAPs) between these two genotypes were enriched in glutathione metabolism and oxidoreduction coenzyme metabolic process, which protected the mutant from oxidative stress triggered by TBM. Important DAPs related to stress or defence response were up-accumulated in M342 regardless of the TBM treatment, which might serve as the constitutive part of NTSR to TBM. These results provide new clues for further exploration of the NTSR mechanism in plants and establish a theoretical basis for the development of herbicide-resistant crops.
Collapse
Affiliation(s)
- Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongkun Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lingna Kong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Juanjuan Ma
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ting Wang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xinyu Lu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yue Guo
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Pu Chu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Wang H, Lv H, Sha T, Huang Q, Guo Y, Hu S. Genetic origin and expression patterns of acetohydroxyacid synthase multigene family in Brassica juncea and B. carinata and their progenitors. PHYSIOLOGIA PLANTARUM 2022; 174:e13669. [PMID: 35293615 DOI: 10.1111/ppl.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Acetohydroxyacid synthase (AHAS), the key enzyme in the branched-chain amino acids leucine, isoleucine, and valine biosynthesis pathway, has gained intensive investigation because it is the target of five different AHAS herbicides widely used to control weeds in farmland. In the present study, the AHAS gene family in Brassica juncea and B. carinata and their progenitor species was characterized in combination with bioinformatics, gene-specific PCR and qRT-PCR analyses. The results indicated that B. juncea contains four AHAS genes, of them, BjuAHAS3 and BjuAHAS4 originated from the A genome donor of B. rapa, whereas BjuAHAS6 and BjuAHAS7 from the B genome donor of B. nigra. BjuAHAS3 and BjuAHAS6 are predicted to be functional and constitutively expressed in all vegetative and reproductive tissues in the tested B. juncea accessions. B. carinata contains five AHAS genes, of them, BcaAHAS1, BcaAHAS2, and BcaAHAS5 originated from the C genome donor of B. oleracea, whereas BcaAHAS6 and BcaAHAS7 came from the B genome donor of B. nigra. BcaAHAS1, BcaAHAS2, and BcaAHAS6 are predicted to be functional. BcaAHAS1 and BcaAHAS6 are constitutively expressed in all vegetative and reproductive tissues in the tested B. carinata accessions, however, BcaAHAS2 is mainly expressed in siliques. In addition, translocation events for the AHAS1, AHAS2, and AHAS7 genes occurred when the three amphidiploids species B. napus, B. juncea, and B. carinata were formed by hybridization of their respective diploid species. The findings in this study will provide important basic information for the breeding of herbicide-resistant varieties in B. juncea and B. carinata.
Collapse
Affiliation(s)
- Hongmei Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Huijie Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianjin Sha
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianxin Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Wang B, He Y, Wen X, Niu C, Xi Z. Prediction on the Resistance of Acetohydroxyacid Synthase Mutants to Herbicide Flumetsulam. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21110526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Sun Z, Li X, Wang K, Zhao P, Li J, Wang W, Ahmed M, Shafi J, Zhao B, Fu D, Zhu H, Ji M. Molecular basis of cross-resistance to acetohydroxy acid synthase-inhibiting herbicides in Sagittaria trifolia L. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104795. [PMID: 33771266 DOI: 10.1016/j.pestbp.2021.104795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Acetohydroxy acid synthase (AHAS)-inhibiting herbicides are one of the most commonly used herbicides for controlling the growth of Sagittaria trifolia L. in paddy fields in Northeastern China. In this study, we collected five suspected resistant populations of S. trifolia (R1-R5) from three different provinces of Northeastern China. The results of whole-plant bioassays revealed that those populations showed high level of resistance to bensulfuron-methyl with resistance index (GR50 R/S) ranging from 39.90 to 88.50. The results of AHAS-activity assays were consistent with the results of the whole-plant bioassays. The AHAS gene analysis showed that R2 and R3 populations contained Pro-197-Leu mutations that were highly resistant to penoxsulam; R1 and R4 populations contained Pro-197-Ser mutations that were highly resistant to bispyribac‑sodium; R5 population contained Trp-574-Leu mutation that showed high resistance to IMI, PT, PTB and SU herbicides. The AHAS with resistance mutations showed less sensitivity to feedback inhibition by BCAAs and R genotypes had increased free BCAAs.
Collapse
Affiliation(s)
- Zhonghua Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiuwei Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Kai Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ping Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jing Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Weijing Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Maqsood Ahmed
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jamil Shafi
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad 56300, Pakistan
| | - Bochui Zhao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Danni Fu
- Medical College, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - He Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
6
|
Guo Y, Cheng L, Long W, Gao J, Zhang J, Chen S, Pu H, Hu M. Synergistic mutations of two rapeseed AHAS genes confer high resistance to sulfonylurea herbicides for weed control. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2811-2824. [PMID: 32556395 DOI: 10.1007/s00122-020-03633-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
A double mutant 5N of rapeseed was obtained with a synergistic effect of high resistance to sulfonylurea herbicide. Excellent weed control was observed in Ning R201 created by 5N resources. Sulfonylurea herbicides, which inhibit acetohydroxyacid synthase (AHAS), have become the most widely used herbicides worldwide. However, weed control in rapeseed crop production remains challenging in China due to the shortage of available herbicide-resistant cultivars. In this study, we developed a rapeseed line (PN19) with sulfonylurea herbicide resistance through seed mutagenesis. Molecular analysis revealed a Trp-574-Leu mutation in BnAHAS1-2R of PN19 according to the sequence of Arabidopsis thaliana, and an allele-specific cleaved amplified polymorphic sequence marker was developed to target the point mutation. A double mutant (5N) with very high sulfonylurea resistance was then created through pyramiding two mutant genes of PN19 and M342 by molecular marker-assisted selection. Herbicide resistance identification, toxicology testing, and an in vitro enzyme activity assay of AHAS in 5N indicated that each mutant was four and eight times more resistant to sulfonylurea than M342 and PN19, respectively. Protein structure analysis of AHAS1 demonstrated that the leucine of mutant Trp-574-Leu destroyed the original π-plane stacking effect of the local region for tribenuron-methyl binding, leading to herbicide tolerance. Isobole graph analysis showed a significant synergistic effect of the combination of two mutant genes in 5N for improved tolerance to sulfonylurea herbicides. Finally, we bred rapeseed variety Ning R201 using 5N herbicide resistance resources, and observed excellent weed control performance. Together, these results demonstrate the practical value of 5N application for optimizing and simplifying rapeseed cultivation in China.
Collapse
Affiliation(s)
- Yue Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Li Cheng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
| | - Weihua Long
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jianqin Gao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Song Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huiming Pu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China.
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China.
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
7
|
Chhalliyil P, Ilves H, Kazakov SA, Howard SJ, Johnston BH, Fagan J. A Real-Time Quantitative PCR Method Specific for Detection and Quantification of the First Commercialized Genome-Edited Plant. Foods 2020; 9:foods9091245. [PMID: 32906573 PMCID: PMC7556030 DOI: 10.3390/foods9091245] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Abstract
Discussion regarding the regulatory status of genome-edited crops has focused on precision of editing and on doubts regarding the feasibility of analytical monitoring compliant with existing GMO regulations. Effective detection methods are important, both for regulatory enforcement and traceability in case of biosafety, environmental or socio-economic impacts. Here, we approach the analysis question for the first time in the laboratory and report the successful development of a quantitative PCR detection method for the first commercialized genome-edited crop, a canola with a single base pair edit conferring herbicide tolerance. The method is highly sensitive and specific (quantification limit, 0.05%), compatible with the standards of practice, equipment and expertise typical in GMO laboratories, and readily integrable into their analytical workflows, including use of the matrix approach. The method, validated by an independent laboratory, meets all legal requirements for GMO analytical methods in jurisdictions such as the EU, is consistent with ISO17025 accreditation standards and has been placed in the public domain. Having developed a qPCR method for the most challenging class of genome edits, single-nucleotide variants, this research suggests that qPCR-based method development may be applicable to virtually any genome-edited organism. This advance resolves doubts regarding the feasibility of extending the regulatory approach currently employed for recombinant DNA-based GMOs to genome-edited organisms.
Collapse
Affiliation(s)
- Pradheep Chhalliyil
- Health Research Institute, 505 Dimick Drive, P.O. Box 370, Fairfield, IA 52556, USA;
| | - Heini Ilves
- Somagenics, Inc., 2161 Delaware Ave, Suite E, Santa Cruz, CA 95060, USA; (H.I.); (S.A.K.); (B.H.J.)
| | - Sergei A. Kazakov
- Somagenics, Inc., 2161 Delaware Ave, Suite E, Santa Cruz, CA 95060, USA; (H.I.); (S.A.K.); (B.H.J.)
| | - Stephanie J. Howard
- The Sustainability Council of New Zealand, P.O. Box 24304, Wellington 6142, New Zealand;
| | - Brian H. Johnston
- Somagenics, Inc., 2161 Delaware Ave, Suite E, Santa Cruz, CA 95060, USA; (H.I.); (S.A.K.); (B.H.J.)
| | - John Fagan
- Health Research Institute, 505 Dimick Drive, P.O. Box 370, Fairfield, IA 52556, USA;
- Correspondence: ; Tel.: +1-641-451-5454
| |
Collapse
|
8
|
Inheritance and Molecular Characterization of a Novel Mutated AHAS Gene Responsible for the Resistance of AHAS-Inhibiting Herbicides in Rapeseed ( Brassica napus L.). Int J Mol Sci 2020; 21:ijms21041345. [PMID: 32079260 PMCID: PMC7072869 DOI: 10.3390/ijms21041345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 11/25/2022] Open
Abstract
The use of herbicides is an effective and economic way to control weeds, but their availability for rapeseed is limited due to the shortage of herbicide-resistant cultivars in China. The single-point mutation in the acetohydroxyacidsynthase (AHAS) gene can lead to AHAS-inhibiting herbicide resistance. In this study, the inheritance and molecular characterization of the tribenuron-methyl (TBM)-resistant rapeseed (Brassica napus L.) mutant, K5, are performed. Results indicated that TBM-resistance of K5 was controlled by one dominant allele at a single nuclear gene locus. The novel substitution of cytosine with thymine at position 544 in BnAHAS1 was identified in K5, leading to the alteration of proline with serine at position 182 in BnAHAS1. The TBM-resistance of K5 was approximately 100 times that of its wild-type ZS9, and K5 also showed cross-resistance to bensufuron-methyl and monosulfuron-ester sodium. The BnAHAS1544T transgenic Arabidopsis exhibited higher TBM-resistance than that of its wild-type, which confirmed that BnAHAS1544T was responsible for the herbicide resistance of K5. Simultaneously, an allele-specific marker was developed to quickly distinguish the heterozygous and homozygous mutated alleles BnAHAS1544T. In addition, a method for the fast screening of TBM-resistant plants at the cotyledon stage was developed. Our research identified and molecularly characterized one novel mutative AHAS allele in B. napus and laid a foundation for developing herbicide-resistant rapeseed cultivars.
Collapse
|
9
|
Han YJ, Kim JI. Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. PLANT BIOTECHNOLOGY REPORTS 2019; 13:447-457. [PMID: 0 DOI: 10.1007/s11816-019-00575-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/26/2019] [Indexed: 05/27/2023]
|
10
|
Lv J, Huang Q, Sun Y, Qu G, Guo Y, Zhang X, Zhao H, Hu S. Male Sterility of an AHAS-Mutant Induced by Tribenuron-Methyl Solution Correlated With the Decrease of AHAS Activity in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2018; 9:1014. [PMID: 30061911 PMCID: PMC6055054 DOI: 10.3389/fpls.2018.01014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/21/2018] [Indexed: 05/31/2023]
Abstract
Tribenuron-methyl (TBM), an acetohydroxyacid synthase (AHAS)-inhibiting herbicide, can be used as an efficient chemical hybridization agent to induce male sterility for practical utilization of heterosis in rapeseed (Brassica napus L.). Utilization of rapeseed mutants harboring herbicide-resistant AHAS alleles as the male parent can simplify the hybrid seed production protocol. Here we characterized a novel TBM-resistant mutant K5 derived from an elite rapeseed variety, Zhongshuang No. 9 (ZS9), by ethyl methyl sulfonate mutagenesis. Comparative analysis of three BnAHAS genes (BnAHAS1, BnAHAS2, and BnAHAS3) between the mutant K5 and ZS9 identified a C-to-T transition at 544 from the translation start site in BnAHAS1 in K5 (This resistant allele is referred to as BnAHAS1544T ), which resulted in a substitution of proline with serine at 182 in BnAHAS1. Both ZS9 and K5 plants could be induced complete male sterility under TBM treatment (with 0.10 and 20 mg⋅L-1 of TBM, respectively). The relationship between TBM-induced male sterility (Y) and the relative AHAS activity of inflorescences (X) could be described as a modified logistic function, Y = 100-A/(1+Be(-KX)) for the both genotypes, although the obtained constants A, B, and K were different in the functions of ZS9 and K5. Transgenic Arabidopsis plants expressing BnAHAS1544T exhibited a higher TBM resistance of male reproductive organ than wild type, which confirmed that the Pro-182-Ser substitution in BnAHAS1 was responsible for higher TBM-resistance of male reproductive organs. Taken together, our findings provide a novel valuable rapeseed mutant for hybrid breeding by chemical hybridization agents and support the hypothesis that AHAS should be the target of the AHAS-inhibiting herbicide TBM when it is used as chemical hybridization agent in rapeseed.
Collapse
Affiliation(s)
- Jinyang Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, China
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qianxin Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, China
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yanyan Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, China
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Gaoping Qu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, China
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yuan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, China
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaojuan Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, China
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Huixian Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, China
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, China
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing. PLoS One 2017; 12:e0184917. [PMID: 28950015 PMCID: PMC5614533 DOI: 10.1371/journal.pone.0184917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 09/02/2017] [Indexed: 01/07/2023] Open
Abstract
Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant rapeseed in response to AHAS herbicides, but also demonstrates that miRNAs may be involved in AHAS herbicides tolerance.
Collapse
|
12
|
Li H, Li J, Zhao B, Wang J, Yi L, Liu C, Wu J, King GJ, Liu K. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:107-18. [PMID: 25504538 DOI: 10.1007/s00122-014-2415-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/11/2014] [Indexed: 05/24/2023]
Abstract
Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.
Collapse
Affiliation(s)
- Haitao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Metz P, Nap J. A transgene-centred approach to the biosafety of transgenic plants: overview of selection and reporter genes. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/plb.1997.46.1.25] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Grundman O, Khozin-Goldberg I, Raveh D, Cohen Z, Vyazmensky M, Boussiba S, Shapira M. Cloning, mutagenesis, and characterization of the microalga Parietochloris incisa acetohydroxyacid synthase, and its possible use as an endogenous selection marker. Biotechnol Bioeng 2012; 109:2340-8. [PMID: 22488216 DOI: 10.1002/bit.24515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 03/04/2012] [Accepted: 03/23/2012] [Indexed: 11/10/2022]
Abstract
Parietochloris incisa is an oleaginous fresh water green microalga that accumulates an unusually high content of the valuable long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid within triacylglycerols in cytoplasmic lipid bodies. Here, we describe cloning and mutagenesis of the P. incisa acetohydroxyacid synthase (PiAHAS) gene for use as an herbicide resistance selection marker for transformation. Use of an endogenous gene circumvents the risks and regulatory difficulties of cultivating antibiotic-resistant organisms. AHAS is present in plants and microorganisms where it catalyzes the first essential step in the synthesis of branched-chain amino acids. It is the target enzyme of the herbicide sulfometuron methyl (SMM), which effectively inhibits growth of bacteria and plants. Several point mutations of AHAS are known to confer herbicide resistance. We cloned the cDNA that encodes PiAHAS and introduced a W605S point mutation (PimAHAS). Catalytic activity and herbicide resistance of the wild-type and mutant proteins were characterized in the AHAS-deficient E. coli, BUM1 strain. Cloned PiAHAS wild-type and mutant genes complemented AHAS-deficient bacterial growth. Furthermore, bacteria expressing the mutant PiAHAS exhibited high resistance to SMM. Purified PiAHAS wild-type and mutant proteins were assayed for enzymatic activity and herbicide resistance. The W605S mutation was shown to cause a twofold decrease in enzymatic activity and in affinity for the Pyruvate substrate. However, the mutant exhibited 7 orders of magnitude higher resistance to the SMM herbicide than that of the wild type.
Collapse
Affiliation(s)
- Omer Grundman
- Microalgal Biotechnology Laboratory, French Associates Institute of Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Expression, characterization, and site-directed mutation of a multiple herbicide-resistant acetohydroxyacid synthase (rAHAS) from Pseudomonas sp. Lm10. Curr Microbiol 2011; 63:145-50. [PMID: 21638043 DOI: 10.1007/s00284-011-9953-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
A multiple herbicide-resistant acetohydroxyacid synthase (rAHAS) gene was cloned from Pseudomonas sp. Lm10. Sequence analysis showed that the rAHAS regulatory subunit was identical to that of Pseudomonas putida KT2440 (sensitive AHAS, sAHAS), whereas six different sites [H134→N (rAHAS→sAHAS), A135→P, S136→T, I210→V, F264→Y, and S486→W] were found in the catalytic subunit. The rAHAS and sAHAS were over expressed, purified and characterized. rAHAS showed higher resistance to four kinds of AHAS-inhibitor herbicides than sAHAS. The resistance factor of rAHAS was 56.0-fold, 12.6-fold, 6.5-fold, and 9.2-fold as compared with sAHAS when metsulfuron-methyl, imazethapyr, flumetsulam, and pyriminobac-methyl used as inhibitor, respectively. The specific activity of rAHAS was lower than that of sAHAS and the K (m) value of rAHAS for pyruvate was approximately onefold higher than the corresponding value for sAHAS. Data from site-directed mutagenesis demonstrated that alteration at A135, F264, and S486 resulted in resistance reduction, while the mutation at H134, S136, and I210 has little effect on the resistance. A135 was mainly responsible for resistance to imidazolinone; F264 conferred resistance to sulfonylurea and triazolopyrimidine sulfonamide; and S486 showed multiple herbicides resistance to the four herbicides.
Collapse
|
16
|
Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl Acad Sci U S A 2011; 108:8909-13. [PMID: 21551103 DOI: 10.1073/pnas.1105612108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Induced mutagenesis can be an effective way to increase variability in self-pollinated crops for a wide variety of agronomically important traits. Crop resistance to a given herbicide can be of practical value to control weeds with efficient chemical use. In some crops (for example, wheat, maize, and canola), resistance to imidazolinone herbicides (IMIs) has been introduced through mutation breeding and is extensively used commercially. However, this production system imposes plant-back restrictions on rotational crops because of herbicide residuals in the soil. In the case of barley, a preferred rotational crop after wheat, a period of 9-18 mo is required. Thus, introduction of barley varieties showing resistance to IMIs will provide greater flexibility as a rotational crop. The objective of the research reported was to identify resistance in barley for IMIs through induced mutagenesis. To achieve this objective, a sodium azide-treated M(2)/M(3) population of barley cultivar Bob was screened for resistance against acetohydroxy acid synthase (AHAS)-inhibiting herbicides. The phenotypic screening allowed identification of a mutant line showing resistance against IMIs. Molecular analysis identified a single-point mutation leading to a serine 653 to asparagine amino acid substitution in the herbicide-binding site of the barley AHAS gene. The transcription pattern of the AHAS gene in the mutant (Ser653Asn) and WT has been analyzed, and greater than fourfold difference in transcript abundance was observed. Phenotypic characteristics of the mutant line are promising and provide the base for the release of IMI-resistant barley cultivar(s).
Collapse
|
17
|
Yu Q, Han H, Vila-Aiub MM, Powles SB. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3925-34. [PMID: 20627897 PMCID: PMC2935867 DOI: 10.1093/jxb/erq205] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Twenty-two amino acid substitutions at seven conserved amino acid residues in the acetohydroxyacid synthase (AHAS) gene have been identified to date that confer target-site resistance to AHAS-inhibiting herbicides in biotypes of field-evolved resistant weed species. However, the effect of resistance mutations on AHAS functionality and plant growth has been investigated for only a very few mutations. This research investigates the effect of various AHAS resistance mutations in Lolium rigidum on AHAS functionality and plant growth. The enzyme kinetics of AHAS from five purified L. rigidum populations, each homozygous for the resistance mutations Pro-197-Ala, Pro-197-Arg, Pro-197-Gln, Pro-197-Ser or Trp-574-Leu, were characterized and the pleiotropic effect of three mutations on plant growth was assessed via relative growth rate analysis. All these resistance mutations endowed a herbicide-resistant AHAS and most resulted in higher extractable AHAS activity, with no-to-minor changes in AHAS kinetics. The Pro-197-Arg mutation slightly (but significantly) increased the K(m) for pyruvate and remarkably increased sensitivity to feedback inhibition by branched chain amino acids. Whereas the Pro-197-Ser and Trp-574-Leu mutations exhibited no significant effects on plant growth, the Pro-197-Arg mutation resulted in lower growth rates. It is clear that, at least in L. rigidum, these five AHAS resistance mutations have no major impact on AHAS functionality and hence probably no plant resistance costs. These results, in part, explain why so many Pro-197 AHAS resistance mutations in AHAS have evolved and why the Pro-197-Ser and the Trp-574-Leu AHAS resistance mutations are frequently found in many weed species.
Collapse
|
18
|
Duggleby RG, McCourt JA, Guddat LW. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:309-24. [PMID: 18234503 DOI: 10.1016/j.plaphy.2007.12.004] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Indexed: 05/04/2023]
Abstract
Plants and microorganisms synthesize valine, leucine and isoleucine via a common pathway in which the first reaction is catalysed by acetohydroxyacid synthase (AHAS, EC 2.2.1.6). This enzyme is of substantial importance because it is the target of several herbicides, including all members of the popular sulfonylurea and imidazolinone families. However, the emergence of resistant weeds due to mutations that interfere with the inhibition of AHAS is now a worldwide problem. Here we summarize recent ideas on the way in which these herbicides inhibit the enzyme, based on the 3D structure of Arabidopsis thaliana AHAS. This structure also reveals important clues for understanding how various mutations can lead to herbicide resistance.
Collapse
Affiliation(s)
- Ronald G Duggleby
- RDBiotech, 22 Parklands Boulevard, Little Mountain, Queensland 4551, Australia.
| | | | | |
Collapse
|
19
|
Manabe Y, Tinker N, Colville A, Miki B. CSR1, the sole target of imidazolinone herbicide in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2007; 48:1340-58. [PMID: 17693453 DOI: 10.1093/pcp/pcm105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The imidazolinone-tolerant mutant of Arabidopsis thaliana, csr1-2(D), carries a mutation equivalent to that found in commercially available Clearfield crops. Despite their widespread usage, the mechanism by which Clearfield crops gain imidazolinone herbicide tolerance has not yet been fully characterized. Transcription profiling of imazapyr (an imidazolinone herbicide)-treated wild-type and csr1-2(D) mutant plants using Affymetrix ATH1 GeneChip microarrays was performed to elucidate further the biochemical and genetic mechanisms of imidazolinone resistance. In wild-type shoots, the genes which responded earliest to imazapyr treatment were detoxification-related genes which have also been shown to be induced by other abiotic stresses. Early-response genes included steroid sulfotransferase (ST) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), as well as members of the glycosyltransferase, glutathione transferase (GST), cytochrome P450, ATP-binding cassette (ABC) transporter, multidrug and toxin extrusion (MATE) and alternative oxidase (AOX) protein families. Later stages of the imazapyr response involved regulation of genes participating in biosynthesis of amino acids, secondary metabolites and tRNA. In contrast to the dynamic changes in the transcriptome profile observed in imazapyr-treated wild-type plants, the transcriptome of csr1-2(D) did not exhibit significant changes following imazapyr treatment, compared with mock-treated csr1-2(D). Further, no substantial difference was observed between wild-type and csr1-2(D) transcriptomes in the absence of imazapyr treatment. These results indicate that CSR1 is the sole target of imidazolinone and that the csr1-2(D) mutation has little or no detrimental effect on whole-plant fitness.
Collapse
Affiliation(s)
- Yuzuki Manabe
- Bioproducts and Bioprocesses, Research Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
20
|
Corbett CAL, Tardif FJ. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a review. PEST MANAGEMENT SCIENCE 2006; 62:584-97. [PMID: 16718739 DOI: 10.1002/ps.1219] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Resistance to herbicides inhibiting acetolactate synthase (ALS) has been increasing at a faster rate than in any other herbicide group. The great majority of these cases are due to various single-nucleotide polymorphisms in the ALS gene endowing target site resistance. Many diagnostic techniques have been devised in order to confirm resistance and help producers to adopt the best management strategies. Recent advances in DNA technologies coupled with the knowledge of sequence information have allowed the development of accurate and rapid diagnostic tests. While whole plant-based diagnostic techniques such as seedling bioassays or enzyme-based in vitro bioassays provide accurate results, they tend to be labour- and/or space-intensive and will only respond to the particular herbicides tested, making resolution of cross-resistance patterns more difficult. Successful DNA-based diagnosis of ALS inhibitor resistance has been achieved with three main techniques, (1) restriction fragment length polymorphism, (2) polymerase chain reaction amplification of specific alleles and (3) denaturing high-performance liquid chromatography. All DNA-based techniques are relatively rapid and provide clear identification of the mutations causing resistance. Resistance based on non-target mechanisms is not identified by these DNA-based methods; however, given the prevalence of target site-based ALS inhibitor resistance, this is a minor inconvenience.
Collapse
Affiliation(s)
- Cheryl-Ann L Corbett
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
21
|
McCourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 2006; 31:173-210. [PMID: 16699828 DOI: 10.1007/s00726-005-0297-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.
Collapse
Affiliation(s)
- J A McCourt
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
22
|
The Catalytic Role of the W573 in the Mobile Loop of Recombinant Acetohydroxyacid Synthase from Tobacco. B KOREAN CHEM SOC 2006. [DOI: 10.5012/bkcs.2006.27.4.549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL. Imidazolinone-tolerant crops: history, current status and future. PEST MANAGEMENT SCIENCE 2005; 61:246-57. [PMID: 15627242 DOI: 10.1002/ps.993] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Imidazolinone herbicides, which include imazapyr, imazapic, imazethapyr, imazamox, imazamethabenz and imazaquin, control weeds by inhibiting the enzyme acetohydroxyacid synthase (AHAS), also called acetolactate synthase (ALS). AHAS is a critical enzyme for the biosynthesis of branched-chain amino acids in plants. Several variant AHAS genes conferring imidazolinone tolerance were discovered in plants through mutagenesis and selection, and were used to create imidazolinone-tolerant maize (Zea mays L), wheat (Triticum aestivum L), rice (Oryza sativa L), oilseed rape (Brassica napus L) and sunflower (Helianthus annuus L). These crops were developed using conventional breeding methods and commercialized as Clearfield* crops from 1992 to the present. Imidazolinone herbicides control a broad spectrum of grass and broadleaf weeds in imidazolinone-tolerant crops, including weeds that are closely related to the crop itself and some key parasitic weeds. Imidazolinone-tolerant crops may also prevent rotational crop injury and injury caused by interaction between AHAS-inhibiting herbicides and insecticides. A single target-site mutation in the AHAS gene may confer tolerance to AHAS-inhibiting herbicides, so that it is technically possible to develop the imidazolinone-tolerance trait in many crops. Activities are currently directed toward the continued improvement of imidazolinone tolerance and development of new Clearfield* crops. Management of herbicide-resistant weeds and gene flow from crops to weeds are issues that must be considered with the development of any herbicide-resistant crop. Thus extensive stewardship programs have been developed to address these issues for Clearfield* crops.
Collapse
Affiliation(s)
- Siyuan Tan
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC 27709-3528, USA.
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Galeazzi R, Marucchini C, Orena M, Zadra C. Stereoelectronic properties and activity of some imidazolinone herbicides: a computational approach☆. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.theochem.2003.08.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Kochevenko A, Willmitzer L. Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate syntase gene. PLANT PHYSIOLOGY 2003; 132:174-84. [PMID: 12746523 PMCID: PMC166963 DOI: 10.1104/pp.102.016857] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Revised: 12/03/2002] [Accepted: 02/12/2003] [Indexed: 05/20/2023]
Abstract
Single amino acid substitutions at either of two crucial positions in acetolactate synthase (ALS) result in a chlorsulfuron-insensitive form of this enzyme and, as a consequence, a herbicide-resistant phenotype. Here, we describe the successful in vivo targeting of endogenous tobacco (Nicotiana tabacum) ALS genes using chimeric RNA/DNA and all-DNA oligonucleotides at two different locations. Similar number of conversion events with two different chimeras indicates the absence of restricting influence of genomic target sequence on the gene repair in tobacco. Chlorsulfuron-resistant plants were regenerated from calli after mesophyll protoplast electroporation or leaf tissue particle bombardment with these specifically constructed chimeras. Sequence analysis and enzyme assays proved the resulting alterations to ALS at both DNA and protein levels. Furthermore, foliar application of chlorsulfuron confirmed the development of resistant phenotypes. Lines with proline-196-alanine, threonine, glutamine, or serine substitutions or with tryptophan-573-leucine substitutions were highly resistant at both cellular and whole plant levels, whereas lines with proline-196-leucine substitutions were less resistant. The stability of these modifications was demonstrated by the continuous growth of calli on chlorsulfuron-containing medium and by the transmission of herbicide resistance to progeny in a Mendelian manner. Ability of haploid state to promote chimera-mediated conversions is discussed.
Collapse
Affiliation(s)
- Andrej Kochevenko
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany.
| | | |
Collapse
|
27
|
Jia M, Keutgen N, Matsuhashi S, Mitzuniwa C, Ito T, Fujimura T, Hashimoto S. Ion chromatographic analysis of selected free amino acids and cations to investigate the change of nitrogen metabolism by herbicide stress in soybean (glycine max). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:276-80. [PMID: 11305252 DOI: 10.1021/jf990344c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A simple and reliable method for the determination of NH4+, K+, Na+, aspartic acid, asparagine, glutamine, and alanine by ion chromatography has been developed. It is suitable for monitoring changes of nitrogen metabolism in soybean because it can accurately measure concentrations o asparagine and NH4+, two key substances for nitrogen storage and transport in this plant species Analysis of asparagine distribution in soybean indicated that higher levels (up to 18.4 micromol g(-1) of fresh mass) occur in stems and lower levels in roots (2.0 micromol g(-1) of fresh mass) and leaves (1.6 micromol g(-1) of fresh mass). When the herbicide metsulfuron-methyl (0.5, 5, and 50 ppb) was applied via the nutrient solution to the root system, asparagine concentrations increased 3-6 times in stems roots, and leaves. Metsulfuron-methyl is known to impair the synthesis of branched amino acids and, in consequence, protein synthesis. Thus, nitrogen consumption was limited, leading to ar accumulation of asparagine. The possible use of this physiological response in agricultural practice to identify herbicide stress in soybean and to detect low-level residues of sulfonylurea herbicides ir the soil is discussed.
Collapse
Affiliation(s)
- M Jia
- Environmental Conservation Technology Laboratory, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Takasaki, Gumma, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Chong CK, Choi JD. Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase. Biochem Biophys Res Commun 2000; 279:462-7. [PMID: 11118309 DOI: 10.1006/bbrc.2000.3958] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetolactate synthase (ALS) is the common enzyme in the biosynthetic pathways leading to valine, leucine, and isoleucine in plants and microorganisms. ALS is the target site of several classes of structurally unrelated herbicides including sulfonylureas, imidazolinones, and triazolopyrimidines. To identify the residues conferring herbicide tolerance in tobacco ALS, site-directed mutagenesis for three residues, Ala121, Pro187 and Ser652, was performed. Mutant A121T showed strong resistance to Londax (a sulfonylurea) and Cadre (an imidazolinone), while mutant S652T was resistant only to Cadre. The S652N mutation abolished the binding affinity of FAD, and inactivated the enzyme. Double mutation of Ala121 and Ser652 with Thr yielded a mutant highly tolerant to Londax, Cadre, and TP (a triazolopyrimidine sulfonamide), but has enzymatic properties similar to those of wild-type. Substitution of Pro187 with Ser resulted in the enzyme highly susceptible to oxidation and fragmentation. These results suggest that two residues Ala121 and Ser652 are potent residues conferring herbicide resistance in tobacco ALS, and that double mutation of Ala121 and Ser652 by Thr can confer stronger tolerance to Londax, Cadre, and TP.
Collapse
Affiliation(s)
- C K Chong
- School of Life Science, Cheongju, 361-763, Korea
| | | |
Collapse
|
29
|
Polowick PL, Quandt J, Mahon JD. The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 153:161-170. [PMID: 10717322 DOI: 10.1016/s0168-9452(99)00267-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transgenic pea plants can be produced by Agrobacterium-mediated transformation of thin slices from developing embryo axes. To determine if the method is effective for different pea genotypes, seven pea breeding lines adapted to western Canadian growing conditions were tested, using three different Agrobacterium tumefaciens transformation vectors. All vectors contained the gus (uidA) gene coding for the beta-glucuronidase (GUS) protein, but with different chemical selection genes. In total, 323 transgenic plants were recovered from 39 independent transformation events. Transgenic plants were recovered from each genotype and each selection system, but not from all combinations. GUS-positive explants were obtained from seeds harvested between 24 and 31 days after flowering. The mean time from Agrobacterium treatment to planting into soil averaged 186 days. Based on the initial number of seeds used, the transformation frequency was 0.6% (i.e. six independent transgenic events per 1000 axes sliced). The inserted genes were functional and inherited in a Mendelian fashion. Although more plants were recovered by selection on chlorsulfuron, GUS activity was generally greater in plants selected on kanamycin. GUS activity in the leaves of the original plants varied, but GUS activity in the second generation was correlated with that of the original transformants.
Collapse
Affiliation(s)
- PL Polowick
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, Sask., Canada
| | | | | |
Collapse
|
30
|
|
31
|
Chong CK, Shin HJ, Chang SI, Choi JD. Role of tryptophanyl residues in tobacco acetolactate synthase. Biochem Biophys Res Commun 1999; 259:136-40. [PMID: 10334929 DOI: 10.1006/bbrc.1999.0740] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target of three classes of herbicides, the sulfonylureas, the imidazolinones, and the triazolopyrimidines. Five mutants (W266F, W439F, W490F, W503F, and W573F) of the ALS gene from Nicotiana tabacum were constructed and expressed in Escherichia coli, and the enzymes were purified. The W490F mutation abolished the binding affinity for cofactor FAD and inactivated the enzyme. The replacement of Trp573 by Phe yielded a mutant ALS resistant to the three classes of herbicides. The other three mutations, W266F, W439F, and W503F, did not significantly affect the enzymatic properties and the sensitivity to the herbicides. These results indicate that the Trp490 residue is essential for the binding of FAD and that Trp573 is located at the herbicide binding site. The data also suggest that the three classes of herbicides bind ALS competitively.
Collapse
Affiliation(s)
- C K Chong
- Department of Biochemistry, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | |
Collapse
|
32
|
Watanabe, Che, Iwano, Takayama, Nakano, Yoshida, Isogai. Molecular characterization of photomixotrophic tobacco cells resistant to protoporphyrinogen oxidase-inhibiting herbicides. PLANT PHYSIOLOGY 1998; 118:751-8. [PMID: 9808719 PMCID: PMC34785 DOI: 10.1104/pp.118.3.751] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Accepted: 08/06/1998] [Indexed: 05/22/2023]
Abstract
Peroxidizing herbicides inhibit protoporphyrinogen oxidase (Protox), the last enzyme of the common branch of the chlorophyll- and heme-synthesis pathways. There are two isoenzymes of Protox, one of which is located in the plastid and the other in the mitochondria. Sequence analysis of the cloned Protox cDNAs showed that the deduced amino acid sequences of plastidial and mitochondrial Protox in wild-type cells and in herbicide-resistant YZI-1S cells are the same. The level of plastidial Protox mRNA was the same in both wild-type and YZI-1S cells, whereas the level of mitochondrial Protox mRNA YZI-1S cells was up to 10 times the level of wild-type cells. Wild-type cells were observed by fluorescence microscopy to emit strong autofluorescence from chlorophyll. Only a weak fluorescence signal was observed from chlorophyll in YZI-1S cells grown in the Protox inhibitor N-(4-chloro-2-fluoro-5-propagyloxy)-phenyl-3,4,5, 6-tetrahydrophthalimide. Staining with DiOC6 showed no visible difference in the number or strength of fluorescence between wild-type and YZI-1S mitochondria. Electron micrography of YZI-1S cells showed that, in contrast to wild-type cells, the chloroplasts of YZI-1S cells grown in the presence of N-(4-chloro-2-fluoro-5-propagyloxy)-phenyl-3,4,5, 6-tetrahydrophthalimide exhibited no grana stacking. These results suggest that the herbicide resistance of YZI-1S cells is due to the overproduction of mitochondrial Protox.
Collapse
Affiliation(s)
- Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama Ikoma, Nara 630-0101, Japan (N.W., F.-S.C., M.I., S.T., A.I.)
| | | | | | | | | | | | | |
Collapse
|
33
|
Hill CM, Duggleby RG. Mutagenesis of Escherichia coli acetohydroxyacid synthase isoenzyme II and characterization of three herbicide-insensitive forms. Biochem J 1998; 335 ( Pt 3):653-61. [PMID: 9794808 PMCID: PMC1219829 DOI: 10.1042/bj3350653] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sulphonylurea and imidazolinone herbicides act by inhibiting acetohydroxyacid synthase (AHAS; EC 4.1.3.18), the enzyme that catalyses the first step in the biosynthesis of branched-chain amino acids. AHAS requires as cofactors thiamin diphosphate, a bivalent metal ion and, usually, FAD. Escherichia coli contains three isoenzymes and this study concerns isoenzyme II, the most herbicide-sensitive of the E. coli forms. A plasmid containing the large and small subunit genes of AHAS II was mutagenized using hydroxylamine and clones resistant to the sulphonylurea chlorimuron ethyl were selected. Three mutants were isolated; A26V, V99M and A108V. A26V has been described previously whereas the equivalent mutation of A108V has been reported in a herbicide-insensitive variant of yeast AHAS. The V99M mutation has not been discovered previously in AHAS from any source. The mutants were each over-expressed in E. coli, and the enzymes were purified to homogeneity. Some differences from wild type in the kinetic properties (kcat, Km and cofactor affinities) were observed, most notably a 28-fold decrease in the affinity for thiamin diphosphate of V99M. None of the mutants shows marked changes from the wild type in sensitivity to three imidazolinones, with the largest increase in the apparent inhibition constant being a factor of approximately 5. The A26V mutant is weakly resistant (6- to 20-fold) to six sulphonylureas, whereas stronger resistance is seen in V99M (20- to 250-fold) and A108V (35- to 420-fold). Resistance as a result of these mutations is consistent with a molecular model of the herbicide-binding site, which predicts that mutation of G249 might also confer herbicide insensitivity. Three G249 mutants were constructed, expressed and purified but all are inactive, apparently because they cannot bind FAD.
Collapse
Affiliation(s)
- C M Hill
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry, University of Queensland, Brisbane, Qld 4072, Australia
| | | |
Collapse
|
34
|
Chang AK, Duggleby RG. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J 1998; 333 ( Pt 3):765-77. [PMID: 9677339 PMCID: PMC1219643 DOI: 10.1042/bj3330765] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetohydroxyacid synthase (AHAS) catalyses the first step in the synthesis of the branched-chain amino acids and is the target of several classes of herbicides. Four mutants (A122V, W574S, W574L and S653N) of the AHAS gene from Arabidopsis thaliana were constructed, expressed in Escherichia coli, and the enzymes were purified. Each mutant form and wild-type was characterized with respect to its catalytic properties and sensitivity to nine herbicides. Each enzyme had a pH optimum near 7.5. The specific activity varied from 13% (A122V) to 131% (W574L) of the wild-type and the Km for pyruvate of the mutants was similar to the wild-type, except for W574L where it was five-fold higher. The activation by cofactors (FAD, Mg2+ and thiamine diphosphate) was examined. A122V showed reduced affinity for all three cofactors, whereas S653N bound FAD more strongly than wild-type AHAS. Six sulphonylurea herbicides inhibited A122V to a similar degree as the wild-type but S653N showed a somewhat greater reduction in sensitivity to these compounds. In contrast, the W574 mutants were insensitive to these sulphonylureas, with increases in the Kiapp (apparent inhibition constant) of several hundred fold. All four mutants were resistant to three imidazolinone herbicides with decreases in sensitivity ranging from 100-fold to more than 1000-fold.
Collapse
Affiliation(s)
- A K Chang
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry, The University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
35
|
Chipman D, Barak Z, Schloss JV. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:401-19. [PMID: 9655946 DOI: 10.1016/s0167-4838(98)00083-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two groups of enzymes are classified as acetolactate synthase (EC 4. 1.3.18). This review deals chiefly with the FAD-dependent, biosynthetic enzymes which readily catalyze the formation of acetohydroxybutyrate from pyruvate and 2-oxobutyrate, as well as of acetolactate from two molecules of pyruvate (the ALS/AHAS group). These enzymes are generally susceptible to inhibition by one or more of the branched-chain amino acids which are ultimate products of the acetohydroxyacids, as well as by several classes of herbicides (sulfonylureas, imidazolinones and others). Some ALS/AHASs also catalyze the (non-physiological) oxidative decarboxylation of pyruvate, leading to peracetic acid; the possible relationship of this process to oxygen toxicity is considered. The bacterial ALS/AHAS which have been well characterized consist of catalytic subunits (around 60 kDa) and smaller regulatory subunits in an alpha2beta2 structure. In the case of Escherichia coli isozyme III, assembly and dissociation of the holoenzyme has been studied. The quaternary structure of the eukaryotic enzymes is less clear and in plants and yeast only catalytic polypeptides (homologous to those of bacteria) have been clearly identified. The presence of regulatory polypeptides in these organisms cannot be ruled out, however, and genes which encode putative ALS/AHAS regulatory subunits have been identified in some cases. A consensus sequence can be constructed from the 21 sequences which have been shown experimentally to represent ALS/AHAS catalytic polypeptides. Many other sequences fit this consensus, but some genes identified as putative 'acetolactate synthase genes' are almost certainly not ALS/AHAS. The solution of the crystal structures of several thiamin diphosphate (ThDP)-dependent enzymes which are homologous to ALS/AHAS, together with the availability of many amino acid sequences for the latter enzymes, has made it possible for two laboratories to propose similar, reasonable models for a dimer of catalytic subunits of an ALS/AHAS. A number of characteristics of these enzymes can now be better understood on the basis of such models: the nature of the herbicide binding site, the structural role of FAD and the binding of ThDP-Mg2+. The models are also guides for experimental testing of ideas concerning structure-function relationships in these enzymes, e.g. the nature of the substrate recognition site. Among the important remaining questions is how the enzyme suppresses alternative reactions of the intrinsically reactive hydroxyethylThDP enamine formed by the decarboxylation of the first substrate molecule and specifically promotes its condensation with 2-oxobutyrate or pyruvate.
Collapse
Affiliation(s)
- D Chipman
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | | | | |
Collapse
|