1
|
Everman ER, Morgan TJ. Antagonistic pleiotropy and mutation accumulation contribute to age-related decline in stress response. Evolution 2018; 72:303-317. [PMID: 29214647 DOI: 10.1111/evo.13408] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023]
Abstract
As organisms age, the effectiveness of natural selection weakens, leading to age-related decline in fitness-related traits. The evolution of age-related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age-related decline in fitness components is driven by age-specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance. AP predicts that age-related decline in a trait is driven by alleles with positive effects on fitness in young individuals and negative effects in old individuals, and is expected to lead to negative genetic correlations within traits across age. We build on these predictions using an association mapping approach to investigate the change in additive effects of SNPs across age and among traits for multiple stress-response fitness-related traits, including cold stress with and without acclimation and starvation resistance. We found support for both MA and AP theories of aging in the age-related decline in stress tolerance. Our study demonstrates that the evolution of age-related decline in stress tolerance is driven by a combination of alleles that have age-specific additive effects, consistent with MA, as well as nonindependent and antagonistic genetic architectures characteristic of AP.
Collapse
Affiliation(s)
- Elizabeth R Everman
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Theodore J Morgan
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
2
|
Roff DA. THE EVOLUTION OF GENETIC CORRELATIONS: AN ANALYSIS OF PATTERNS. Evolution 2017; 50:1392-1403. [DOI: 10.1111/j.1558-5646.1996.tb03913.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/1995] [Accepted: 08/07/1995] [Indexed: 11/27/2022]
Affiliation(s)
- Derek A. Roff
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal Quebec H3A 1B1 Canada
| |
Collapse
|
3
|
Miller PB, Obrik-Uloho OT, Phan MH, Medrano CL, Renier JS, Thayer JL, Wiessner G, Bloch Qazi MC. The song of the old mother: reproductive senescence in female drosophila. Fly (Austin) 2015; 8:127-39. [PMID: 25523082 DOI: 10.4161/19336934.2014.969144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Among animals with multiple reproductive episodes, changes in adult condition over time can have profound effects on lifetime reproductive fitness and offspring performance. The changes in condition associated with senescence can be particularly acute for females who support reproductive processes from oogenesis through fertilization. The pomace fly Drosophila melanogaster is a well-established model system for exploring the physiology of reproduction and senescence. In this review, we describe how increasing maternal age in Drosophila affects reproductive fitness and offspring performance as well as the genetic foundation of these effects. Describing the processes underlying female reproductive senescence helps us understand diverse phenomena including population demographics, condition-dependent selection, sexual conflict, and transgenerational effects of maternal condition on offspring fitness. Understanding the genetic basis of reproductive senescence clarifies the nature of life-history trade-offs as well as potential ways to augment and/or limit female fertility in a variety of organisms.
Collapse
Affiliation(s)
- Paige B Miller
- a Department of Biology ; Gustavus Adolphus College ; St Peter , MN USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Yazdi MH, Näsholm A, Johansson K, Jorjani H, Liljedahl LE. Population parameters for birth and ewe fleece weight at different parities in Baluchi sheep. J Anim Breed Genet 2011; 114:323-32. [DOI: 10.1111/j.1439-0388.1997.tb00518.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Borash DJ, Rose MR, Mueller LD. Mutation accumulation affects male virility in Drosophila selected for later reproduction. Physiol Biochem Zool 2007; 80:461-72. [PMID: 17717809 DOI: 10.1086/520127] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2007] [Indexed: 11/03/2022]
Abstract
An intensive study of longevity, female fecundity, and male reproductive behavior in Drosophila melanogaster was undertaken in order to establish whether late-life fitness characters in short-lived populations might be affected by the increase in deleterious alleles due to random genetic drift. We also sought to determine whether selection for late-life fertility could eliminate alleles that produce a decline in later fitness components in short-lived populations, as predicted by the mutation accumulation hypothesis for the evolution of aging. These experiments employed long-lived (O) populations, short-lived (B) populations, and hybrids made from crosses of independent lines from within the O and B populations. No detectable longevity differences were seen between hybrid B males and females and purebred B males and females. Reproduction in aged B purebred females was significantly less than in hybrid females at 3 wk of age only. A full diallel cross of the five replicate B lines showed a steady increase in hybrid male reproductive performance after the first week of adult life, relative to the parental lines. A full diallel cross of the five replicate O lines revealed no significant increase in hybrid O age-specific male reproductive success compared with the purebred O lines when assayed over the first 5 wk of adult life. The results on male reproductive behavior are consistent with the idea that relaxed age-specific selection in the B populations has been accompanied by an increase in deleterious, recessive traits that exhibit age-specific expression. Consequently, we conclude that a mutation accumulation process has been at least partly responsible for the age-specific decline in male B virility relative to that of the O populations.
Collapse
Affiliation(s)
- Daniel J Borash
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | |
Collapse
|
6
|
Leips J, Gilligan P, Mackay TFC. Quantitative trait loci with age-specific effects on fecundity in Drosophila melanogaster. Genetics 2005; 172:1595-605. [PMID: 16272414 PMCID: PMC1456283 DOI: 10.1534/genetics.105.048520] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Life-history theory and evolutionary theories of aging assume the existence of alleles with age-specific effects on fitness. While various studies have documented age-related changes in the genetic contribution to variation in fitness components, we know very little about the underlying genetic architecture of such changes. We used a set of recombinant inbred lines to map and characterize the effects of quantitative trait loci (QTL) affecting fecundity of Drosophila melanogaster females at 1 and 4 weeks of age. We identified one QTL on the second chromosome and one or two QTL affecting fecundity on the third chromosome, but these QTL affected fecundity only at 1 week of age. There was more genetic variation for fecundity at 4 weeks of age than at 1 week of age and there was no genetic correlation between early and late-age fecundity. These results suggest that different loci contribute to the variation in fecundity as the organism ages. Our data provide support for the mutation accumulation theory of aging as applied to reproductive senescence. Comparing the results from this study with our previous work on life-span QTL, we also find evidence that antagonistic pleiotropy may contribute to the genetic basis of senescence in these lines as well.
Collapse
Affiliation(s)
- Jeff Leips
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21250, USA.
| | | | | |
Collapse
|
7
|
Vieira C, Pasyukova EG, Zeng ZB, Hackett JB, Lyman RF, Mackay TF. Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics 2000; 154:213-27. [PMID: 10628982 PMCID: PMC1460900 DOI: 10.1093/genetics/154.1.213] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nature of genetic variation for Drosophila longevity in a population of recombinant inbred lines was investigated by estimating quantitative genetic parameters and mapping quantitative trait loci (QTL) for adult life span in five environments: standard culture conditions, high and low temperature, and heat-shock and starvation stress. There was highly significant genetic variation for life span within each sex and environment. In the analysis of variance of life span pooled over sexes and environments, however, the significant genetic variation appeared in the genotype x sex and genotype x environment interaction terms. The genetic correlation of longevity across the sexes and environments was not significantly different from zero in these lines. We estimated map positions and effects of QTL affecting life span by linkage to highly polymorphic roo transposable element markers, using a multiple-trait composite interval mapping procedure. A minimum of 17 QTL were detected; all were sex and/or environment-specific. Ten of the QTL had sexually antagonistic or antagonistic pleiotropic effects in different environments. These data provide support for the pleiotropy theory of senescence and the hypothesis that variation for longevity might be maintained by opposing selection pressures in males and females and variable environments. Further work is necessary to assess the generality of these results, using different strains, to determine heterozygous effects and to map the life span QTL to the level of genetic loci.
Collapse
Affiliation(s)
- C Vieira
- Department of Genetics, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The extension of classical quantitative genetics to deal with function-valued characters (also called infinite-dimensional characters) such as growth curves, mortality curves, and reaction norms, was begun by Kirkpatrick and co-workers. In this theory, the analogs of variance components for single traits are covariance functions for function-valued traits. In the approach presented here, we employ a variety of parametric models for covariance functions that have a number of desirable properties: the functions (1) are positive definite, (2) can be estimated using procedures like those currently used for single traits, (3) have a small number of parameters, and (4) allow simple hypotheses to be easily tested. The methods are illustrated using data from a large experiment that examined the effects of spontaneous mutations on age-specific mortality rates in Drosophila melanogaster. Our methods are shown to work better than a standard multivariate analysis, which assumes the character value at each age is a distinct character. Advantages over existing methods that model covariance functions as a series of orthogonal polynomials are discussed.
Collapse
Affiliation(s)
- S D Pletcher
- Department of Ecology, Evolution and Behavior, University of Minnesota, Sait Paul, Minnesota 11508, USA.
| | | |
Collapse
|
9
|
Shaw FH, Promislow DE, Tatar M, Hughes KA, Geyer CJ. Toward reconciling inferences concerning genetic variation in senescence in Drosophila melanogaster. Genetics 1999; 152:553-66. [PMID: 10353899 PMCID: PMC1460621 DOI: 10.1093/genetics/152.2.553] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Standard models for senescence predict an increase in the additive genetic variance for log mortality rate late in the life cycle. Variance component analysis of age-specific mortality rates of related cohorts is problematic. The actual mortality rates are not observable and can be estimated only crudely at early ages when few individuals are dying and at late ages when most are dead. Therefore, standard quantitative genetic analysis techniques cannot be applied with confidence. We present a novel and rigorous analysis that treats the mortality rates as missing data following two different parametric senescence models. Two recent studies of Drosophila melanogaster, the original analyses of which reached different conclusions, are reanalyzed here. The two-parameter Gompertz model assumes that mortality rates increase exponentially with age. A related but more complex three-parameter logistic model allows for subsequent leveling off in mortality rates at late ages. We find that while additive variance for mortality rates increases for late ages under the Gompertz model, it declines under the logistic model. The results from the two studies are similar, with differences attributable to differences between the experiments.
Collapse
Affiliation(s)
- F H Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota 55108, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Evolutionary theories of ageing are based on the observation that the efficacy of natural selection decreases with age. This is because, even without ageing, individuals will die of environmental causes, such as predation, disease and accidents. Ageing is thought to have evolved as the result of optimising fitness early in life. A second process, namely the progressive accumulation of mutations with effects late in life, will reinforce this result. Longevity of a species is therefore determined by the amount of environmental mortality caused by the ecology of a species. The experimental data concerning the relative roles of both processes are reviewed here. Recent discoveries of the levelling of mortality curves, and of age specific mutations in mutation accumulation lines of Drosophila melanogaster, require adjustments to the original models of the evolution of ageing and species longevity. These adjustments do not invalidate the underlying rationale of evolutionary theories of ageing. With current developments in QTL mapping and genetic association studies, the unravelling of the ageing process has the potential to progress rapidly.
Collapse
Affiliation(s)
- B J Zwaan
- Institute for Evolutionary and Ecological Sciences, Leiden University, Kaiserstraat 63, 2311 GP Leiden, The Netherlands.
| |
Collapse
|
11
|
Pletcher SD, Houle D, Curtsinger JW. Age-specific properties of spontaneous mutations affecting mortality in Drosophila melanogaster. Genetics 1998; 148:287-303. [PMID: 9475740 PMCID: PMC1459779 DOI: 10.1093/genetics/148.1.287] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An analysis of the effects of spontaneous mutations affecting age-specific mortality was conducted using 29 lines of Drosophila melanogaster that had accumulated spontaneous mutations for 19 generations. Divergence among the lines was used to estimate the mutational variance for weekly mortality rates and the covariance between weekly mortality rates at different ages. Significant mutational variance was observed in both males and females early in life (up to approximately 30 days of age). Mutational variance was not significantly different from zero for mortality rates at older ages. Mutational correlations between ages separated by 1 or 2 wk were generally positive, but they declined monotonically with increasing separation such that mutational effects on early-age mortality were uncorrelated with effects at later ages. Analyses of individual lines revealed several instances of mutation-induced changes in mortality over a limited range of ages. Significant age-specific effects of mutations were identified in early and middle ages, but surprisingly, mortality rates at older ages were essentially unaffected by the accumulation procedure. Our results provide strong evidence for the existence of a class of polygenic mutations that affect mortality rates on an age-specific basis. The patterns of mutational effects measured here relate directly to recently published estimates of standing genetic variance for mortality in Drosophila, and they support mutation accumulation as a viable mechanism for the evolution of senescence.
Collapse
Affiliation(s)
- S D Pletcher
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul 55108, USA.
| | | | | |
Collapse
|
12
|
Nuzhdin SV, Pasyukova EG, Dilda CL, Zeng ZB, Mackay TF. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci U S A 1997; 94:9734-9. [PMID: 9275193 PMCID: PMC23259 DOI: 10.1073/pnas.94.18.9734] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1997] [Accepted: 07/16/1997] [Indexed: 02/05/2023] Open
Abstract
Senescence, the decline in survivorship and fertility with increasing age, is a near-universal property of organisms. Senescence and limited lifespan are thought to arise because weak natural selection late in life allows the accumulation of mutations with deleterious late-age effects that are either neutral (the mutation accumulation hypothesis) or beneficial (the antagonistic pleiotropy hypothesis) early in life. Analyses of Drosophila spontaneous mutations, patterns of segregating variation and covariation, and lines selected for late-age fertility have implicated both classes of mutation in the evolution of aging, but neither their relative contributions nor the properties of individual loci that cause aging in nature are known. To begin to dissect the multiple genetic causes of quantitative variation in lifespan, we have conducted a genome-wide screen for quantitative trait loci (QTLs) affecting lifespan that segregate among a panel of recombinant inbred lines using a dense molecular marker map. Five autosomal QTLs were mapped by composite interval mapping and by sequential multiple marker analysis. The QTLs had large sex-specific effects on lifespan and age-specific effects on survivorship and mortality and mapped to the same regions as candidate genes with fertility, cellular aging, stress resistance and male-specific effects. Late age-of-onset QTL effects are consistent with the mutation accumulation hypothesis for the evolution of senescence, and sex-specific QTL effects suggest a novel mechanism for maintaining genetic variation for lifespan.
Collapse
Affiliation(s)
- S V Nuzhdin
- Department of Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695-7614, USA
| | | | | | | | | |
Collapse
|
13
|
Genetic trade-off between early fecundity and longevity in Bactrocera Cucurbitae (Diptera: Tephritidae). Heredity (Edinb) 1997. [DOI: 10.1038/hdy.1997.11] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
14
|
Draye X, Lints FA. Geographic variations of life history strategies in Drosophila melanogaster. III. New data. Exp Gerontol 1996; 31:717-33. [PMID: 9415100 DOI: 10.1016/s0531-5565(96)00073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A crucial assumption of evolutionary theories of aging is that age-specific differences of life history traits may have genetic causes. The present study focuses on the existence of such differences between eight freshly caught populations of Drosophila melanogaster. A highly significant differentiation of the populations is observed, yet it accounts for a relatively small part of the variance. It is also shown that large discrepancies may be found between the estimations of fitness based, on the one hand, on data for egg production and, on the other hand, on fertility data. This stresses the need for accurate measurements of fitness for the assessment of evolutionary theories. Finally, the results suggest that neither of the current evolutionary theories of aging is generally valid. Indeed, the age-specific differences that are found between the populations match either the antagonistic pleiotropy mechanism, or the concordant pleiotropy mechanism, or none of them.
Collapse
Affiliation(s)
- X Draye
- Université catholique de Louvain, Unité de Génétique, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
15
|
Engström G, Liljedahl LE, Björklund T. Expression of genetic and environmental variation during ageing : 2. Selection for increased lifespan in Drosophila melanogaster. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 85:26-32. [PMID: 24197225 DOI: 10.1007/bf00223841] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/1991] [Accepted: 03/24/1992] [Indexed: 06/02/2023]
Abstract
A selection experiment with Drosophila melanogaster was carried out to test some theories of ageing by calculating genetic parameters for a reproductive fitness trait at different ages. Successful selection for increased lifespan showed that longevity is a trait under genetic control. Positive genetic correlations between early and late fitness were found. These results do not support the pleiotropy theory of ageing which predicts a negative genetic correlation. Both environmental and additive genetic variation clearly increased with age. Increased environmental variation probably reflects the individuals' difficulties in coping with environmental stress. The increase in additive genetic variation supports the mutation accumulation theory of ageing, as well as other theories that postulate increased additive genetic variation with age.
Collapse
Affiliation(s)
- G Engström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, S-750 07, Uppsala, Sweden
| | | | | |
Collapse
|
16
|
Tucié N, Cvetković D, Stojiković V, Bejaković D. The effects of selection for early and late reproduction on fecundity and longevity in bean weevil (Acanthoscelides obtectus). Genetica 1990. [DOI: 10.1007/bf00137329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|