1
|
Lu X, Wontakal SN, Emelyanov AV, Morcillo P, Konev AY, Fyodorov DV, Skoultchi AI. Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure. Genes Dev 2009; 23:452-65. [PMID: 19196654 PMCID: PMC2648648 DOI: 10.1101/gad.1749309] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/05/2009] [Indexed: 01/22/2023]
Abstract
We generated mutant alleles of Drosophila melanogaster in which expression of the linker histone H1 can be down-regulated over a wide range by RNAi. When the H1 protein level is reduced to approximately 20% of the level in wild-type larvae, lethality occurs in the late larval - pupal stages of development. Here we show that H1 has an important function in gene regulation within or near heterochromatin. It is a strong dominant suppressor of position effect variegation (PEV). Similar to other suppressors of PEV, H1 is simultaneously involved in both the repression of euchromatic genes brought to the vicinity of pericentric heterochromatin and the activation of heterochromatic genes that depend on their pericentric localization for maximal transcriptional activity. Studies of H1-depleted salivary gland polytene chromosomes show that H1 participates in several fundamental aspects of chromosome structure and function. First, H1 is required for heterochromatin structural integrity and the deposition or maintenance of major pericentric heterochromatin-associated histone marks, including H3K9Me(2) and H4K20Me(2). Second, H1 also plays an unexpected role in the alignment of endoreplicated sister chromatids. Finally, H1 is essential for organization of pericentric regions of all polytene chromosomes into a single chromocenter. Thus, linker histone H1 is essential in Drosophila and plays a fundamental role in the architecture and activity of chromosomes in vivo.
Collapse
Affiliation(s)
- Xingwu Lu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Sandeep N. Wontakal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Alexander V. Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Patrick Morcillo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Alexander Y. Konev
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Dmitry V. Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Arthur I. Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
2
|
Deng H, Bao X, Cai W, Blacketer MJ, Belmont AS, Girton J, Johansen J, Johansen KM. Ectopic histone H3S10 phosphorylation causes chromatin structure remodeling in Drosophila. Development 2008; 135:699-705. [PMID: 18199578 DOI: 10.1242/dev.015362] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histones are subject to numerous post-translational modifications that correlate with the state of higher-order chromatin structure and gene expression. However, it is not clear whether changes in these epigenetic marks are causative regulatory factors in chromatin structure changes or whether they play a mainly reinforcing or maintenance role. In Drosophila phosphorylation of histone H3S10 in euchromatic chromatin regions by the JIL-1 tandem kinase has been implicated in counteracting heterochromatization and gene silencing. Here we show, using a LacI-tethering system, that JIL-1 mediated ectopic histone H3S10 phosphorylation is sufficient to induce a change in higher-order chromatin structure from a condensed heterochromatin-like state to a more open euchromatic state. This effect was absent when a ;kinase dead' LacI-JIL-1 construct without histone H3S10 phosphorylation activity was expressed. Instead, the 'kinase dead' construct had a dominant-negative effect, leading to a disruption of chromatin structure that was associated with a global repression of histone H3S10 phosphorylation levels. These findings provide direct evidence that the epigenetic histone tail modification of H3S10 phosphorylation at interphase can function as a causative regulator of higher-order chromatin structure in Drosophila in vivo.
Collapse
Affiliation(s)
- Huai Deng
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Rath U, Ding Y, Deng H, Qi H, Bao X, Zhang W, Girton J, Johansen J, Johansen KM. The chromodomain protein, Chromator, interacts with JIL-1 kinase and regulates the structure ofDrosophilapolytene chromosomes. J Cell Sci 2006; 119:2332-41. [PMID: 16723739 DOI: 10.1242/jcs.02960] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we have generated two new hypomorphic Chro alleles and analyzed the consequences of reduced Chromator protein function on polytene chromosome structure. We show that in Chro71/Chro612 mutants the polytene chromosome arms were coiled and compacted with a disruption and misalignment of band and interband regions and with numerous ectopic contacts connecting non-homologous regions. Furthermore, we demonstrate that Chromator co-localizes with the JIL-1 kinase at polytene interband regions and that the two proteins interact within the same protein complex. That both proteins are necessary and may function together is supported by the finding that a concomitant reduction in JIL-1 and Chromator function synergistically reduces viability during development. Overlay assays and deletion construct analysis suggested that the interaction between JIL-1 and Chromator is direct and that it is mediated by sequences in the C-terminal domain of Chromator and by the acidic region within the C-terminal domain of JIL-1. Taken together these findings indicate that Chromator and JIL-1 interact in an interband-specific complex that functions to establish or maintain polytene chromosome structure in Drosophila.
Collapse
Affiliation(s)
- Uttama Rath
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Deng H, Zhang W, Bao X, Martin JN, Girton J, Johansen J, Johansen KM. The JIL-1 kinase regulates the structure of Drosophila polytene chromosomes. Chromosoma 2005; 114:173-82. [PMID: 15986206 DOI: 10.1007/s00412-005-0006-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/04/2005] [Accepted: 05/04/2005] [Indexed: 11/29/2022]
Abstract
The JIL-1 kinase localizes to interband regions of Drosophila polytene chromosomes and phosphorylates histone H3 Ser10. Analysis of JIL-1 hypomorphic alleles demonstrated that reduced levels of JIL-1 protein lead to global changes in polytene chromatin structure. Here we have performed a detailed ultrastructural and cytological analysis of the defects in JIL-1 mutant chromosomes. We show that all autosomes and the female X chromosome are similarly affected, whereas the defects in the male X chromosome are qualitatively different. In polytene autosomes, loss of JIL-1 leads to misalignment of interband chromatin fibrils and to increased ectopic contacts between nonhomologous regions. Furthermore, there is an abnormal coiling of the chromosomes with an intermixing of euchromatic regions and the compacted chromatin characteristic of banded regions. In contrast, coiling of the male X polytene chromosome was not observed. Instead, the shortening of the male X chromosome appeared to be caused by increased dispersal of the chromatin into a diffuse network without any discernable banded regions. To account for the observed phenotypes we propose a model in which JIL-1 functions to establish or maintain the parallel alignment of interband chromosome fibrils as well as to repress the formation of contacts and intermingling of nonhomologous chromatid regions.
Collapse
Affiliation(s)
- Huai Deng
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 3154 Molecular Biology Building, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhimulev IF, Belyaeva ES, Semeshin VF, Koryakov DE, Demakov SA, Demakova OV, Pokholkova GV, Andreyeva EN. Polytene Chromosomes: 70 Years of Genetic Research. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:203-75. [PMID: 15548421 DOI: 10.1016/s0074-7696(04)41004-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polytene chromosomes were described in 1881 and since 1934 they have served as an outstanding model for a variety of genetic experiments. Using the polytene chromosomes, numerous biological phenomena were discovered. First the polytene chromosomes served as a model of the interphase chromosomes in general. In polytene chromosomes, condensed (bands), decondensed (interbands), genetically active (puffs), and silent (pericentric and intercalary heterochromatin as well as regions subject to position effect variegation) regions were found and their features were described in detail. Analysis of the general organization of replication and transcription at the cytological level has become possible using polytene chromosomes. In studies of sequential puff formation it was found for the first time that the steroid hormone (ecdysone) exerts its action through gene activation, and that the process of gene activation upon ecdysone proceeds as a cascade. Namely on the polytene chromosomes a new phenomenon of cellular stress response (heat shock) was discovered. Subsequently chromatin boundaries (insulators) were discovered to flank the heat shock puffs. Major progress in solving the problems of dosage compensation and position effect variegation phenomena was mainly related to studies on polytene chromosomes. This review summarizes the current status of studies of polytene chromosomes and of various phenomena described using this successful model.
Collapse
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- B H Judd
- 411 Clayton Road, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
7
|
de Grauw CJ, Avogadro A, van den Heuvel DJ, vd Werf KO, Otto C, Kraan Y, van Hulst NF, Greve J. Chromatin structure in bands and interbands of polytene chromosomes imaged by atomic force microscopy. J Struct Biol 1998; 121:2-8. [PMID: 9573615 DOI: 10.1006/jsbi.1997.3929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polytene chromosomes from Drosophila melanogaster, observed from squash preparations, and chromosomes from Chironomus thummi thummi, investigated under physiological conditions, are imaged using an Atomic Force Microscope. Various chromatin fiber structures can be observed with high detail in fixed chromosomes and correspond to structures which are also observed in chromosomes of diploid cells. Unfixed chromosomes can be imaged in buffer and show less fiber-like details because of the inherent soft nature of the chromatin material.
Collapse
Affiliation(s)
- C J de Grauw
- Department of Applied Physics, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
|
10
|
Abstract
This article deals with the structural and functional organization of polytene chromosomes in mammals. Based on cytophotometric, autoradiographic, and electron microscopic data, the authors put forward a concept of nonclassic polytene chromosomes, with special reference to polytene chromosomes in the mammalian placenta. In cells with nonclassic polytene chromosomes, two phases of the polytene nucleus cycle are described, such as the endointerphase (S phase) and endoprophase (G phase). The authors generalize that the main feature of nonclassic polytene chromosomes is that forces binding the sister chromatids are much weaker than in the Diptera classic polytene chromosomes. This concept is confirmed by comparative studies of human, mink, and fox polytene chromosomes. The final step of the trophoblast giant cell differentiation is characterized by a transition from polyteny to polyploidy, with subsequent fragmentation of the highly polyploid nucleus into fragments of low ploidy. Similarities and dissimilarities of pathways of formation and rearrangement of nonclassic polytene chromosomes in mammals, insects, plants, and protozoans are compared. The authors discuss the significance of polyteny as one of the intrinsic conditions for performance of the fixed genetic program of trophoblast giant cell development, a program that provides for the possibility of a long coexistence between maternal and fetal allogenic organisms during pregnancy.
Collapse
Affiliation(s)
- E V Zybina
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg
| | | |
Collapse
|
11
|
Affiliation(s)
- S Gunawardena
- Department of Anatomy, College of Medicine, University of Arizona, Tucson 85724
| | | |
Collapse
|
12
|
Friedman TB, Owens KN, Burnett JB, Saura AO, Wallrath LL. The faint band/interband region 28C2 to 28C4-5(-) of the Drosophila melanogaster salivary gland polytene chromosomes is rich in transcripts. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:81-7. [PMID: 1903504 DOI: 10.1007/bf00273590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urate oxidase mRNA and five other transcripts map along 38 kb of DNA in the region 28C on the Drosophila melanogaster second chromosome. Three biotinylated restriction fragments from this 38 kb of DNA, one from each end and one from the middle, were individually hybridized in situ to slightly stretched salivary gland polytene chromosomes. The data from these in situ hybridizations in combination with the transcription map of the 38 kb of DNA indicate that: (i) there are six discrete RNA species encoded along the 38 kb of DNA and (ii) these six transcripts map to the faint band/interband region which includes the proximal edge of 28C1, the three faint bands, 28C2, 28C3 and 28C4-5(-), and the adjacent interband chromatin. Our data are consistent with the few published studies directly demonstrating that faint band/interband regions of the Drosophila melanogaster salivary gland polytene chromosomes code for a high density of transcripts.
Collapse
Affiliation(s)
- T B Friedman
- Graduate Program in Genetics, Michigan State University, East Lansing 48824
| | | | | | | | | |
Collapse
|
13
|
Hager EJ, Miller OL. Ultrastructural analysis of polytene chromatin of Drosophila melanogaster reveals clusters of tightly linked co-expressed genes. Chromosoma 1991; 100:173-86. [PMID: 1904022 DOI: 10.1007/bf00337246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Patterns of gene activity on individual chromatids of polytene chromosomes of Drosophila melanogaster white prepupae were ultrastructurally characterized by electron microscopy. The band-interband structure of salivary gland polytene chromosomes is lost when they are dispersed in a low ionic strength detergent solution. Morphologically similar, active genes in close proximity to one another were seen in dispersed white prepupal chromatin. The arrays of genes almost certainly represent sister copies of the same locus. Although lateral register between gene copies on multiple strands was not maintained, analysis of sister transcriptional units of unknown identity was achieved at the periphery of the chromatin arrays. Juxtaposed genes with divergent transcriptional polarity were prevalent. The morphology, size and transcriptional polarity of multiple copies of short, tandemly organized, RNA polymerase dense, co-expressed gene clusters is reported. One highly transcriptionally active region, designated the white prepupal locus (WPP locus), composed of a co-expressed tandem cluster of ten genes within an approximately 50 kb region was analyzed on six separate chromatids. The transcriptional map suggests that the pattern of gene activity for at least one gene within the cluster may not be identical on all homologous strands. The survey of active polytene genes provides ultrastructural correlation with previous molecular data that demonstrate tight linkage of certain developmentally co-regulated Drosophila genes. Our findings are discussed in relation to Drosophila gene organization, clustering, and regulation of gene expression.
Collapse
Affiliation(s)
- E J Hager
- Department of Biology, University of Virginia, Charlottesville 22901
| | | |
Collapse
|
14
|
Hill RJ, Watt F, Wilson CM, Fifis T, Underwood PA, Tribbick G, Geysen HM, Thomas JO. Bands, interbands and puffs in native Drosophila polytene chromosomes are recognized by a monoclonal antibody to an epitope in the carboxy-terminal tail of histone H1. Chromosoma 1989; 98:411-21. [PMID: 2483366 DOI: 10.1007/bf00292786] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A monoclonal antibody was raised against Drosophila melanogaster histone H1. Immunoscreening of proteolytic cleavage fragments of H1 and of a set of all possible overlapping synthetic octapeptides corresponding to the amino acid sequence of H1, revealed that the antibody recognizes an epitope within the sequence 207VTAAKPKA214 near the centre of the carboxy-terminal tail. This antibody gives positive immunofluorescence over the entire length of native D. melanogaster polytene chromosomes isolated from salivary glands by microdissection at physiological pH and ionic strength. Bands, interbands and puffs are all seen to contain H1. The immunofluorescence over puffs, albeit lower than that over bands and interbands, indicates that chromatin decondensation can occur without complete loss of H1 in these structures. The reaction of the antibody with bands suggests that the segment of the C-terminal tail containing the epitope may be exposed in the condensed 30 nm chromatin filament.
Collapse
Affiliation(s)
- R J Hill
- CSIRO Division of Biotechnology, Laboratory for Molecular Biology, North Ryde, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In this review emphasis is placed on the contribution of transmission electron microscopy to the analysis of spread chromosomes and nucleoids. Support is advanced for the DNA loop and rosette organization of meiotic and metaphase chromosomes and nucleoids. Extensive discussion is given to the biochemical treatments used for producing nucleoids and the effect of divalent cations and chelating agents on chromatin compactization (supercoiling). Detailed studies on nucleoids from hepatocytes are presented, with emphasis on the significance of DNA attachment to the internal nuclear matrix and to the nuclear lamina. It is firmly predicted that from the increasing knowledge of the structural organization of eukaryotic chromatin and the genome, a greater understanding of the functional roles of the various intranuclear structures will ultimately follow.
Collapse
Affiliation(s)
- M V Glazkov
- N. I. Vavilov Institute of General Genetics, Academy of Sciences of the USSR, Moscow
| |
Collapse
|
16
|
Rykowski MC, Parmelee SJ, Agard DA, Sedat JW. Precise determination of the molecular limits of a polytene chromosome band: regulatory sequences for the Notch gene are in the interband. Cell 1988; 54:461-72. [PMID: 3135939 DOI: 10.1016/0092-8674(88)90067-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have aligned the molecular map of the Notch locus to the cytological features of the salivary gland polytene chromosomes of D. melanogaster in order to determine the interphase chromatin structure of this gene. Using high-resolution in situ hybridization and computer-aided optical microscope data collection and image analysis, we have determined that the coding portions and introns of the Notch gene, which is not expressed in this tissue, are all contained within the polytene chromosome band 3C7. The portion of the Notch gene that resides 5' to the start of transcription lies in an open chromatin conformation, the interband between bands 3C6 and 3C7. Our data are most consistent with condensation of the chromosomal DNA into 30 nm fibers in this polytene band.
Collapse
Affiliation(s)
- M C Rykowski
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554
| | | | | | | |
Collapse
|
17
|
|
18
|
Kalisch WE, Schwitalla G, Whitmore T. Electron microscopic band-interband pattern of the X chromosome in Drosophila hydei. Chromosoma 1986. [DOI: 10.1007/bf00285818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|