1
|
Kram W, Rebl H, de la Cruz JE, Haag A, Renner J, Epting T, Springer A, Soria F, Wienecke M, Hakenberg OW. Interactive Effects of Copper-Doped Urological Implants with Tissue in the Urinary Tract for the Inhibition of Cell Adhesion and Encrustation in the Animal Model Rat. Polymers (Basel) 2022; 14:polym14163324. [PMID: 36015581 PMCID: PMC9412396 DOI: 10.3390/polym14163324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
The insertion of a ureteral stent provides acute care by restoring urine flow and alleviating urinary retention or dysfunction. The problems of encrustation, bacterial colonization and biofilm formation become increasingly important when ureteral stents are left in place for a longer period of time. One way to reduce encrustation and bacterial adherence is to modify the stent surface with a diamond-like carbon coating, in combination with copper doping. The biocompatibilities of the Elastollan® base material and the a-C:H/Cu-mulitilayer coating were tested in synthetic urine. The copper content in bladder tissue was determined by atomic absorption spectroscopy and in blood and in urine by inductively coupled plasma mass spectrometry. Encrustations on the materials were analyzed by scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. A therapeutic window for copper ions of 0.5–1.0 mM was determined to kill bacteria without affecting human urothelial cells. In the rat animal model, it was found that copper release did not reach toxic concentrations in the affecting tissue of the urinary tract or in the blood. The encrustation behavior of the surfaces showed that the roughness of the amorphous carbon layer with the copper doping is probably the causal factor for the higher encrustation.
Collapse
Affiliation(s)
- Wolfgang Kram
- Department of Urology, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
- Correspondence:
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Julia E. de la Cruz
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, Km. 41.8, 10071 Cáceres, Spain
| | - Antonia Haag
- Department of Urology, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Jürgen Renner
- Institute for Polymer- and Production Technologies e. V., Alter Holzhafen 19, 23966 Wismar, Germany
| | - Thomas Epting
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany
| | - Armin Springer
- Electron Microscopy Center, Rostock University Medical Center, Strempelstraße 14, 18057 Rostock, Germany
| | - Federico Soria
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, Km. 41.8, 10071 Cáceres, Spain
| | | | - Oliver W. Hakenberg
- Department of Urology, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
2
|
Kohnken R, Himmel L, Logan M, Peterson R, Biswas S, Dunn C, LeRoy B. Symmetric Dimethylarginine Is a Sensitive Biomarker of Glomerular Injury in Rats. Toxicol Pathol 2021; 50:176-185. [PMID: 34634957 DOI: 10.1177/01926233211045341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glomerular filtration rate is the gold-standard method for assessment of renal function but is rarely performed in routine toxicity studies. Standard serum biomarkers of renal function are insensitive and become elevated only with significant loss of organ function. Symmetric dimethylarginine (SDMA) is a ubiquitous analyte that is freely filtered by the glomerulus and can be detected in serum. It has shown utility for the detection of renal injury in dogs and cats in clinical veterinary practice, but the potential utility of SDMA to detect renal injury in preclinical species or toxicity studies has not been thoroughly investigated. We utilized a well-characterized glomerular toxicant, puromycin aminonucleoside, to induce podocyte injury and subsequent proteinuria in young male Sprague-Dawley rats. At the end of 1 or 2 weeks, blood, urine, and kidney tissue were collected for analysis. One week following a single 50 mg/kg dose, urea nitrogen, creatinine, and albumin mean values were within historical control ranges, while SDMA was increased. Glomerular changes in these animals included periodic acid-Schiff positive globules within podocytes, podocyte hypertrophy by light microscopy, and podocyte degeneration with effacement of foot processes by electron microscopy (EM). Taken together, our data indicate that SDMA may be a useful biomarker for early detection of glomerular toxicities in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bruce LeRoy
- Preclinical Safety, AbbVie, North Chicago, IL, USA
| |
Collapse
|
3
|
Younes M, Aquilina G, Castle L, Engel KH, Fowler P, Frutos Fernandez MJ, Fürst P, Gürtler R, Husøy T, Mennes W, Moldeus P, Oskarsson A, Shah R, Waalkens-Berendsen I, Wölfle D, Aggett P, Cupisti A, Fortes C, Kuhnle G, Lillegaard IT, Scotter M, Giarola A, Rincon A, Tard A, Gundert-Remy U. Re-evaluation of phosphoric acid-phosphates - di-, tri- and polyphosphates (E 338-341, E 343, E 450-452) as food additives and the safety of proposed extension of use. EFSA J 2019; 17:e05674. [PMID: 32626329 PMCID: PMC7009158 DOI: 10.2903/j.efsa.2019.5674] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Panel on Food Additives and Flavourings added to Food (FAF) provided a scientific opinion re-evaluating the safety of phosphates (E 338-341, E 343, E 450-452) as food additives. The Panel considered that adequate exposure and toxicity data were available. Phosphates are authorised food additives in the EU in accordance with Annex II and III to Regulation (EC) No 1333/2008. Exposure to phosphates from the whole diet was estimated using mainly analytical data. The values ranged from 251 mg P/person per day in infants to 1,625 mg P/person per day for adults, and the high exposure (95th percentile) from 331 mg P/person per day in infants to 2,728 mg P/person per day for adults. Phosphate is essential for all living organisms, is absorbed at 80-90% as free orthophosphate excreted via the kidney. The Panel considered phosphates to be of low acute oral toxicity and there is no concern with respect to genotoxicity and carcinogenicity. No effects were reported in developmental toxicity studies. The Panel derived a group acceptable daily intake (ADI) for phosphates expressed as phosphorus of 40 mg/kg body weight (bw) per day and concluded that this ADI is protective for the human population. The Panel noted that in the estimated exposure scenario based on analytical data exposure estimates exceeded the proposed ADI for infants, toddlers and other children at the mean level, and for infants, toddlers, children and adolescents at the 95th percentile. The Panel also noted that phosphates exposure by food supplements exceeds the proposed ADI. The Panel concluded that the available data did not give rise to safety concerns in infants below 16 weeks of age consuming formula and food for medical purposes.
Collapse
|
4
|
Chapp AD, Schum S, Behnke JE, Hahka T, Huber MJ, Jiang E, Larson RA, Shan Z, Chen QH. Measurement of cations, anions, and acetate in serum, urine, cerebrospinal fluid, and tissue by ion chromatography. Physiol Rep 2019; 6:e13666. [PMID: 29654634 PMCID: PMC5899179 DOI: 10.14814/phy2.13666] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 01/17/2023] Open
Abstract
Accurate quantification of cations and anions remains a major diagnostic tool in understanding diseased states. The current technologies used for these analyses are either unable to quantify all ions due to sample size/volume, instrument setup/method, or are only able to measure ion concentrations from one physiological sample (liquid or solid). Herein, we adapted a common analytical chemistry technique, ion chromatography and applied it to measure the concentration of cations; sodium, potassium, calcium, and magnesium (Na+, K+, Ca2+, and Mg2+) and anions; chloride, and acetate (Cl−, −OAc) from physiological samples. Specifically, cations and anions were measured in liquid samples: serum, urine, and cerebrospinal fluid, as well as tissue samples: liver, cortex, hypothalamus, and amygdala. Serum concentrations of Na+, K+, Ca2+, Mg2+, Cl−, and −OAc (mmol/L): 138.8 ± 4.56, 4.05 ± 0.21, 4.07 ± 0.26, 0.98 ± 0.05, 97.7 ± 3.42, and 0.23 ± 0.04, respectively. Cerebrospinal fluid concentrations of Na+, K+, Ca2+, Mg2+, Cl−, and −OAc (mmol/L): 145.1 ± 2.81, 2.41 ± 0.26, 2.18 ± 0.38, 1.04 ± 0.11, 120.2 ± 3.75, 0.21 ± 0.05, respectively. Tissue Na+, K+, Ca2+, Mg2+, Cl−, and −OAc were also measured. Validation of the ion chromatography method was established by comparing chloride concentration between ion chromatography with a known method using an ion selective chloride electrode. These results indicate that ion chromatography is a suitable method for the measurement of cations and anions, including acetate from various physiological samples.
Collapse
Affiliation(s)
- Andrew D Chapp
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Simeon Schum
- Department of Chemistry, Michigan Technological University, Houghton, Michigan
| | - Jessica E Behnke
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Taija Hahka
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Robert A Larson
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
5
|
Montalbetti N, Rued AC, Taiclet SN, Birder LA, Kullmann FA, Carattino MD. Urothelial Tight Junction Barrier Dysfunction Sensitizes Bladder Afferents. eNeuro 2017; 4:ENEURO.0381-16.2017. [PMID: 28560313 PMCID: PMC5442440 DOI: 10.1523/eneuro.0381-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic voiding disorder that presents with pain in the urinary bladder and surrounding pelvic region. A growing body of evidence suggests that an increase in the permeability of the urothelium, the epithelial barrier that lines the interior of the bladder, contributes to the symptoms of IC/BPS. To examine the consequence of increased urothelial permeability on pelvic pain and afferent excitability, we overexpressed in the urothelium claudin 2 (Cldn2), a tight junction (TJ)-associated protein whose message is significantly upregulated in biopsies of IC/BPS patients. Consistent with the presence of bladder-derived pain, rats overexpressing Cldn2 showed hypersensitivity to von Frey filaments applied to the pelvic region. Overexpression of Cldn2 increased the expression of c-Fos and promoted the activation of ERK1/2 in spinal cord segments receiving bladder input, which we conceive is the result of noxious stimulation of afferent pathways. To determine whether the mechanical allodynia observed in rats with reduced urothelial barrier function results from altered afferent activity, we examined the firing of acutely isolated bladder sensory neurons. In patch-clamp recordings, about 30% of the bladder sensory neurons from rats transduced with Cldn2, but not controls transduced with GFP, displayed spontaneous activity. Furthermore, bladder sensory neurons with tetrodotoxin-sensitive (TTX-S) action potentials from rats transduced with Cldn2 showed hyperexcitability in response to suprathreshold electrical stimulation. These findings suggest that as a result of a leaky urothelium, the diffusion of urinary solutes through the urothelial barrier sensitizes bladders afferents, promoting voiding at low filling volumes and pain.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Anna C. Rued
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Stefanie N. Taiclet
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lori A. Birder
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - F. Aura Kullmann
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Marcelo D. Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
6
|
Montalbetti N, Rued AC, Clayton DR, Ruiz WG, Bastacky SI, Prakasam HS, Eaton AF, Kullmann FA, Apodaca G, Carattino MD. Increased urothelial paracellular transport promotes cystitis. Am J Physiol Renal Physiol 2015; 309:F1070-81. [PMID: 26423859 DOI: 10.1152/ajprenal.00200.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022] Open
Abstract
Changes in the urothelial barrier are observed in patients with cystitis, but whether this leads to inflammation or occurs in response to it is currently unknown. To determine whether urothelial barrier dysfunction is sufficient to promote cystitis, we employed in situ adenoviral transduction to selectively overexpress the pore-forming tight junction-associated protein claudin-2 (CLDN-2). As expected, the expression of CLDN-2 in the umbrella cells increased the permeability of the paracellular route toward ions, but not to large organic molecules. In vivo studies of bladder function revealed higher intravesical basal pressures, reduced compliance, and increased voiding frequency in rats transduced with CLDN-2 vs. controls transduced with green fluorescent protein. While the integrity of the urothelial barrier was preserved in the rats transduced with CLDN-2, we found that the expression of this protein in the umbrella cells initiated an inflammatory process in the urinary bladder characterized by edema and the presence of a lymphocytic infiltrate. Taken together, these results are consistent with the notion that urothelial barrier dysfunction may be sufficient to trigger bladder inflammation and to alter bladder function.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna C Rued
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dennis R Clayton
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wily G Ruiz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H Sandeep Prakasam
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amity F Eaton
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - F Aura Kullmann
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
7
|
Urinary excretion of oxidative damage markers in a rat model of vascularized composite allotransplantation. Plast Reconstr Surg 2013; 132:530e-541e. [PMID: 24076700 DOI: 10.1097/prs.0b013e3182a0141f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vascularized composite allotransplantation is an emerging field of transplantation that provides a potential treatment for complex tissue defects after traumatic loss or tumor resection and for the repair of congenital abnormalities. However, vascularized composite allotransplantation recipients have suffered from acute and chronic graft rejection that is associated with oxidative stress. This study investigated the oxidative damage in a rat vascularized composite allotransplantation model by measuring three urinary biomarkers, 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), and malondialdehyde. METHODS Rats received two different immunosuppressants, including cyclosporine A and mycophenolate mofetil after transplantation, with one group also receiving mesenchymal stem cells before transplantation. Urine was collected and analyzed for 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydro-2'-deoxyguanosine, and malondialdehyde by liquid chromatography coupled to tandem mass spectometry methods. RESULTS Rats undergoing vascularized composite allotransplantation had higher urinary levels of 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydro-2'-deoxyguanosine, and malondialdehyde compared with rats undergoing syngeneic transplantation. Cyclosporine A/mycophenolate mofetil following treatment prolonged the allograft survival in a dose-dependent manner. Compared with rats undergoing vascularized composite allotransplantation with cyclosporine A/mycophenolate mofetil treatment alone, rats undergoing mesenchymal stem cell combined treatment showed the longest allograft survival, and had approximately 50 percent lower urinary levels of malondialdehyde together with approximately 2.7-times higher levels of 8-oxo-7,8-dihydroguanine. CONCLUSIONS Mesenchymal stem cell combined treatment efficiently managed oxidative stress in rats undergoing vascularized composite allotransplantation, and urinary 8-oxo-7,8-dihydroguanine and malondialdehyde could be regarded as good responders to the mesenchymal stem cell therapy.
Collapse
|
8
|
Prakasam HS, Herrington H, Roppolo JR, Jackson EK, Apodaca G. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation. Am J Physiol Renal Physiol 2012; 303:F279-92. [PMID: 22552934 DOI: 10.1152/ajprenal.00566.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A(1), A(2A), A(2B), and A(3)), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A(1) receptors with 2-chloro-N(6)-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A(1) receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis.
Collapse
Affiliation(s)
- H Sandeep Prakasam
- Department of Medicine, Renal Electrolyte Division,University of Pittsburgh, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
9
|
Jin X, Lok E, Caldwell D, Mueller R, Kapal K, Liston V, Kubow S, Chan HM, Mehta R. Dietary fats altered nephrotoxicity profile of methylmercury in rats. J Appl Toxicol 2009; 29:126-40. [DOI: 10.1002/jat.1389] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Cornelius JG, Peck AB. Colonization of the neonatal rat intestinal tract from environmental exposure to the anaerobic bacterium Oxalobacter formigenes. J Med Microbiol 2004; 53:249-254. [PMID: 14970252 DOI: 10.1099/jmm.0.05418-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxalobacter formigenes, an anaerobic bacterium that inhabits the mammalian gastrointestinal tract, has an important symbiotic relationship with its vertebrate hosts by regulating oxalic acid homeostasis. Epidemiological studies of O. formigenes colonization in man have shown that colonization occurs in young children, that every child can become colonized naturally, that >20% lose colonization during adolescence or as adults and that stable colonization can be disrupted by antibiotic use or changes in diet, greatly affecting subsequent health. As O. formigenes is a fastidious anaerobe that seldom re-colonizes adults, the question arises as to how initial colonization occurs. To investigate this question, non-colonized female laboratory rats were placed on diets high in oxalate and were colonized by oesophageal gavage with O. formigenes either before or after being impregnated. Faecal specimens from their offspring were tested for the presence of O. formigenes. Although the bacterium was first detected in a few neonates as early as 7 days post-partum, colonization of all the offspring did not occur until after weaning. In each case, the offspring were colonized with the bacterial strain carried by their mothers. To determine whether O. formigenes colonization occurs vertically or horizontally, newborn rats were placed with foster mothers that were either non-colonized or colonized with an O. formigenes strain different from that of their natural mothers. Colonization occurred temporally in a manner similar to natural colonization but all offspring became colonized only with the O. formigenes strain of the foster mothers. These data indicate that intestinal colonization occurs horizontally, but does not answer the question of how O. formigenes survives the aerobic environment in order to be transmitted.
Collapse
Affiliation(s)
- Janet G Cornelius
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ammon B Peck
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
GOKHALE JAYASHREEA, GLENTON PATRICIAA, KHAN SAEEDR. CHARACTERIZATION OF TAMM-HORSFALL PROTEIN IN A RAT NEPHROLITHIASIS MODEL. J Urol 2001. [DOI: 10.1016/s0022-5347(05)65818-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - PATRICIA A. GLENTON
- From the Department of Pathology, University of Florida, Gainesville, Florida
| | - SAEED R. KHAN
- From the Department of Pathology, University of Florida, Gainesville, Florida
| |
Collapse
|
12
|
CHARACTERIZATION OF TAMM-HORSFALL PROTEIN IN A RAT NEPHROLITHIASIS MODEL. J Urol 2001. [DOI: 10.1097/00005392-200110000-00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Atmani F, Opalko FJ, Khan SR. Association of urinary macromolecules with calcium oxalate crystals induced in vitro in normal human and rat urine. UROLOGICAL RESEARCH 1996; 24:45-50. [PMID: 8966841 DOI: 10.1007/bf00296733] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study was undertaken to identify proteins which are found associated with calcium oxalate crystals induced in vitro in normal human and rat urine. Crystallization was initiated by adding sodium oxalate individually to each urine sample without centrifugation and filtration. Crystals were collected and analyzed by scanning electron microscopy and X-ray diffraction. Crystal matrix proteins (CMPs) were obtained by demineralization of the crystals with ethylenediaminetetra-acetic acid (EDTA) and analyzed by western blotting technique for immunological identification. Crystals produced in human urine were found to be a mixture of calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) while those produced in rat urine were exclusively COD. CMPs extracted from crystals in human urine comprised, in addition to prothrombin-related proteins, osteopontin and albumin. However, CMPs extracted from crystals in rat urine contained only osteopontin and albumin. Prothrombin-related proteins were found only in trace amounts. In a separate experiment, rat urine samples were supplemented with COM before inducing crystallization. Similar results were observed showing that CMP contained osteopontin, albumin and trace amounts of prothrombin-related proteins. We conclude that several urinary macromolecules including not only prothrombin-related proteins, but also osteopontin and albumin, become associated with CaOx crystals. The incorporation of these proteins in growing stones is not only due to the presence of gamma-carboxyglutamic acid as it was suggested for prothrombin-related proteins, but may be due to other factors such as urinary chemistry, presence of glutamic and aspartic acid residues, and calcium-binding sites.
Collapse
Affiliation(s)
- F Atmani
- University of Florida, College of Medicine, Department of Pathology and Laboratory Medicine, Gainesville 32610-0275, USA
| | | | | |
Collapse
|
14
|
|