1
|
Pungor JR, Niell CM. The neural basis of visual processing and behavior in cephalopods. Curr Biol 2023; 33:R1106-R1118. [PMID: 37875093 PMCID: PMC10664291 DOI: 10.1016/j.cub.2023.08.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Coleoid cephalopods (octopuses, squids and cuttlefishes) are the only branch of the animal kingdom outside of vertebrates to have evolved both a large brain and camera-type eyes. They are highly dependent on vision, with the majority of their brain devoted to visual processing. Their excellent vision supports a range of advanced visually guided behaviors, from navigation and prey capture, to the ability to camouflage based on their surroundings. However, their brain organization is radically different from that of vertebrates, as well as other invertebrates, providing a unique opportunity to explore how a novel neural architecture for vision is organized and functions. Relatively few studies have examined the cephalopod visual system using current neuroscience approaches, to the extent that there has not even been a measurement of single-cell receptive fields in their central visual system. Therefore, there remains a tremendous amount that is unknown about the neural basis of vision in these extraordinary animals. Here, we review the existing knowledge of the organization and function of the cephalopod visual system to provide a framework for examining the neural circuits and computational mechanisms mediating their remarkable visual capabilities.
Collapse
Affiliation(s)
- Judit R Pungor
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
2
|
Venables SV, Drerup C, Powell SB, Marshall NJ, Herbert-Read JE, How MJ. Polarization vision mitigates visual noise from flickering light underwater. SCIENCE ADVANCES 2022; 8:eabq2770. [PMID: 36083913 PMCID: PMC9462692 DOI: 10.1126/sciadv.abq2770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
In shallow water, downwelling light is refracted from surface waves onto the substrate creating bands of light that fluctuate in both time and space, known as caustics. This dynamic illumination can be a visual hindrance for animals in shallow underwater environments. Animals in such habitats may have evolved to use polarization vision for discriminating objects while ignoring the variations in illumination caused by caustics. To explore this possibility, crabs (Carcinus maenas) and cuttlefish (Sepia officinalis), both of which have polarization vision, were presented with moving stimuli overlaid with caustics. Dynamic caustics inhibited the detection of an intensity-based stimulus but not when these stimuli were polarized. This study is the first to demonstrate that polarization vision reduces the negative impacts that dynamic illumination can have on visual perception.
Collapse
Affiliation(s)
| | | | | | | | - James E. Herbert-Read
- Department of Zoology, University of Cambridge, UK
- Aquatic Ecology Unit, Department of Biology, Lund University, Sweden
| | - Martin J. How
- School of Biological Sciences, University of Bristol, UK
| |
Collapse
|
3
|
Abstract
Cuttlefish are masters of camouflage and show a remarkable ability to hide in plain sight. A new study reveals how these animals translate visual information about their surroundings into effective camouflage patterns.
Collapse
|
4
|
Nahmad-Rohen L, Vorobyev M. Angular dependence of polarisation contrast sensitivity in octopus. Vision Res 2021; 192:107973. [PMID: 34906788 DOI: 10.1016/j.visres.2021.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/30/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cephalopod photoreceptors are polarisation-sensitive, giving them an ability to discriminate between lights of different angle and degree of polarisation. While colour vision is achieved by comparison of signals of photoreceptors tuned to different parts of light spectra, polarisation vision is achieved by comparison of signals of photoreceptors tuned to different orientations of e-vector. Therefore, from a theoretical point of view, polarisation vision is similar to colour vision. In particular, detection of polarised light against an unpolarised background is analogous to detection of chromatic light against grey. The dependence of polarisation contrast sensitivity on the angle of polarisation can be theoretically predicted using a receptor noise limited model in much the same way as it has been done for predicting the shape of the increment threshold spectral sensitivity in animals with colour vision. Here we report angular dependence of polarisation contrast sensitivity in octopus (O. tetricus, Gould 1852) and compare the theoretical predictions of polarisation contrast with the experimental results. Polarisation gratings were generated using LCD screens with removed polarisers and the orientation of polarisation was changed by rotating the screen. Reaction to the stimulus was recorded using a fixation reflex. We show that, in agreement with the theoretical predictions, the maximum contrast sensitivity is achieved at horizontal and vertical orientations of polarisation. Our results demonstrate that the dependence of polarisation contrast sensitivity on the angle of polarisation can be analysed in the same way as the dependence of colour thresholds on wavelength of monochromatic light added to a grey background.
Collapse
Affiliation(s)
- Luis Nahmad-Rohen
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, Auckland 0985, New Zealand
| | - Misha Vorobyev
- Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
5
|
Blake AJ, Couture S, Go MC, Gries G. Approach trajectory and solar position affect host plant attractiveness to the small white butterfly. Vision Res 2021; 186:140-149. [PMID: 34126548 DOI: 10.1016/j.visres.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
While it is well documented that insects exploit polarized sky light for navigation, their use of reflected polarized light for object detection has been less well studied. Recently, we have shown that the small white butterfly, Pieris rapae, distinguishes between host and non-host plants based on the degree of linear polarization (DoLP) of light reflected from their leaves. To determine how polarized light cues affect host plant foraging by female P. rapae across their entire visual range including the ultraviolet (300-650 nm), we applied photo polarimetry demonstrating large differences in the DoLP of leaf-reflected light among plant species generally and between host and non-host plants specifically. As polarized light cues are directionally dependent, we also tested, and modelled, the effect of approach trajectory on the polarization of plant-reflected light and the resulting attractiveness to P. rapae. Using photo polarimetry measurements of plants under a range of light source and observer positions, we reveal several distinct effects when polarized reflections are examined on a whole-plant basis rather than at the scale of pixels or plant canopies. Most notably from our modeling, certain approach trajectories are optimal for foraging butterflies, or insects generally, to discriminate between plant species on the basis of the DoLP of leaf-reflected light.
Collapse
Affiliation(s)
- Adam J Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Samuel Couture
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Matthew C Go
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; SNA International, Supporting the Department of Defense POW/MIA Accounting Agency, Central Identification Laboratory, Joint Base Pearl Harbor-Hickam, Hawaii, USA
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
6
|
Temple SE, How MJ, Powell SB, Gruev V, Marshall NJ, Roberts NW. Thresholds of polarization vision in octopuses. J Exp Biol 2021; 224:238090. [PMID: 33602676 PMCID: PMC8077535 DOI: 10.1242/jeb.240812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
Polarization vision is widespread in nature, mainly among invertebrates, and is used for a range of tasks including navigation, habitat localization and communication. In marine environments, some species such as those from the Crustacea and Cephalopoda that are principally monochromatic, have evolved to use this adaptation to discriminate objects across the whole visual field, an ability similar to our own use of colour vision. The performance of these polarization vision systems varies, and the few cephalopod species tested so far have notably acute thresholds of discrimination. However, most studies to date have used artificial sources of polarized light that produce levels of polarization much higher than found in nature. In this study, the ability of octopuses to detect polarization contrasts varying in angle of polarization (AoP) was investigated over a range of different degrees of linear polarization (DoLP) to better judge their visual ability in more ecologically relevant conditions. The ‘just-noticeable-differences’ (JND) of AoP contrasts varied consistently with DoLP. These JND thresholds could be largely explained by their ‘polarization distance’, a neurophysical model that effectively calculates the level of activity in opposing horizontally and vertically oriented polarization channels in the cephalopod visual system. Imaging polarimetry from the animals’ natural environment was then used to illustrate the functional advantage that these polarization thresholds may confer in behaviourally relevant contexts. Summary: Octopuses are highly sensitive to small changes in the angle of polarization (<1 deg contrast), even when the degree of polarization is low, which may confer a functional advantage in behaviourally relevant contexts.
Collapse
Affiliation(s)
- Shelby E Temple
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.,Azul Optics Ltd, Henleaze, Bristol BS9 4QG, UK
| | - Martin J How
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Samuel B Powell
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Viktor Gruev
- Biosensors Lab, Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas W Roberts
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
7
|
Chiou TH, Wang CW. Neural processing of linearly and circularly polarized light signal in a mantis shrimp Haptosquilla pulchella. J Exp Biol 2020; 223:jeb219832. [PMID: 33097570 DOI: 10.1242/jeb.219832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 10/16/2020] [Indexed: 11/20/2022]
Abstract
Stomatopods, or mantis shrimp, are the only animal group known to possess circular polarization vision along with linear polarization vision. By using the rhabdomere of a distally located photoreceptor as a wave retarder, the eyes of mantis shrimp are able to convert circularly polarized light into linearly polarized light. As a result, their circular polarization vision is based on the linearly polarized light-sensitive photoreceptors commonly found in many arthropods. To investigate how linearly and circularly polarized light signals might be processed, we presented a dynamic polarized light stimulus while recording from photoreceptors or lamina neurons in intact mantis shrimp Haptosquilla pulchella The results indicate that all the circularly polarized light-sensitive photoreceptors also showed differential responses to the changing e-vector angle of linearly polarized light. When stimulated with linearly polarized light of varying e-vector angle, most photoreceptors produced a concordant sinusoidal response. In contrast, some lamina neurons doubled the response frequency in reacting to linearly polarized light. These responses resembled a rectified sum of two-channel linear polarization-sensitive photoreceptors, indicating that polarization visual signals are processed at or before the first optic lobe. Noticeably, within the lamina, there was one type of neuron that showed a steady depolarization response to all stimuli except right-handed circularly polarized light. Together, our findings suggest that, between the photoreceptors and lamina neurons, linearly and circularly polarized light may be processed in parallel and differently from one another.
Collapse
Affiliation(s)
- Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Wen Wang
- Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
8
|
Pirih P, Meglič A, Stavenga D, Arikawa K, Belušič G. The red admiral butterfly's living light sensors and signals. Faraday Discuss 2020; 223:81-97. [PMID: 32760932 DOI: 10.1039/d0fd00075b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the wing colouration and the compound eyes of red admiral butterflies with optical methods. We measured reflectance spectra of the wing and scales of Vanessa atalanta and modelled the thin film reflectance of the wing membrane and blue scales. We utilized the eyeshine in the compound eye of Vanessa indica to determine the spectral and polarisation characteristics of its optical sensor units, the ommatidia. Pupil responses were measured with a large-aperture optophysiological setup as reduction in the eyeshine reflection caused by monochromatic stimuli. Processing of spectral and polarisation responses of individual ommatidia revealed a random array with three types of ommatidia: about 10% contain two blue-sensitive photoreceptors, 45% have two UV-sensitive photoreceptors, and 45% have a mixed UV-blue pair. All types contain six green receptors and a basal photoreceptor. Optical modelling of the rhabdom suggests that the basal photoreceptors have a red-shifted sensitivity, which might enhance the red admiral's ability to discriminate red colours on the wing. Under daylight conditions, the red shift of the basal photoreceptor is ∼30 nm, compared to the rhodopsin spectrum template peaking at 520 nm, while the shift of green photoreceptors is ∼15 nm.
Collapse
Affiliation(s)
- PrimoŽ Pirih
- Department of Biology, University of Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
9
|
López Galán A, Chung WS, Marshall NJ. Dynamic Courtship Signals and Mate Preferences in Sepia plangon. Front Physiol 2020; 11:845. [PMID: 32903768 PMCID: PMC7438932 DOI: 10.3389/fphys.2020.00845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/24/2020] [Indexed: 11/17/2022] Open
Abstract
Communication in cuttlefish includes rapid changes in skin coloration and texture, body posture and movements, and potentially polarized signals. The dynamic displays are fundamental for mate choice and agonistic behavior. We analyzed the reproductive behavior of the mourning cuttlefish Sepia plangon in the laboratory. Mate preference was analyzed via choice assays (n = 33) under three sex ratios, 1 male (M): 1 female (F), 2M:1F, and 1M:2F. We evaluated the effect of modifying polarized light from the arms stripes and ambient light with polarized and unpolarized barriers between the cuttlefish. Additionally, to assess whether a particular trait was a determinant for mating, we used 3D printed cuttlefish dummies. The dummies had different sets of visual signals: two sizes (60 or 90 mm mantle length), raised or dropped arms, high or low contrast body coloration, and polarized or unpolarized filters to simulate the arms stripes. Frequency and duration (s) of courtship displays, mating, and agonistic behaviors were analyzed with GLM and ANOVAs. The behaviors, body patterns, and their components were integrated into an ethogram to describe the reproductive behavior of S. plangon. We identified 18 body patterns, 57 body patterns components, and three reproductive behaviors (mating, courtship, and mate guarding). Only sex ratio had a significant effect on courtship frequency, and the male courtship success rate was 80%. Five small (ML < 80 mm) males showed the dual-lateral display to access mates while avoiding fights with large males; this behavior is characteristic of male "sneaker" cuttlefish. Winner males showed up to 17 body patterns and 33 components, whereas loser males only showed 12 patterns and 24 components. We identified 32 combinations of body patterns and components that tended to occur in a specific order and were relevant for mating success in males. Cuttlefish were visually aware of the 3D-printed dummies; however, they did not start mating or agonistic behavior toward the dummies. Our findings suggest that in S. plangon, the dynamic courtship displays with specific sequences of visual signals, and the sex ratio are critical for mate choice and mating success.
Collapse
Affiliation(s)
- Alejandra López Galán
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Wen-Sung Chung
- Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | | |
Collapse
|
10
|
Nahmad-Rohen L, Vorobyev M. Spatial Contrast Sensitivity to Polarization and Luminance in Octopus. Front Physiol 2020; 11:379. [PMID: 32425808 PMCID: PMC7212343 DOI: 10.3389/fphys.2020.00379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
While color vision is achieved by comparison of signals of photoreceptors tuned to different parts of light spectra, polarization vision is achieved by comparison of signals of photoreceptors tuned to different orientations of the electric field component of visible light. Therefore, it has been suggested that polarization vision is similar to color vision. In most animals that have color vision, the shape of luminance contrast sensitivity curve differs from the shape of chromatic contrast sensitivity curve. While luminance contrast sensitivity typically decreases at low spatial frequency due to lateral inhibition, chromatic contrast sensitivity generally remains high at low spatial frequency. To find out if the processing of polarization signals is similar to the processing of chromatic signals, we measured the polarization and luminance contrast sensitivity dependence in a color-blind animal with well-developed polarization vision, Octopus tetricus. We demonstrate that, in Octopus tetricus, both luminance and polarization contrast sensitivity decrease at low spatial frequency and peak at the same spatial frequency (0.3 cpd). These results suggest that, in octopus, polarization and luminance signals are processed via similar pathways.
Collapse
Affiliation(s)
- Luis Nahmad-Rohen
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Misha Vorobyev
- Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Sensorial Hierarchy in Octopus vulgaris's Food Choice: Chemical vs. Visual. Animals (Basel) 2020; 10:ani10030457. [PMID: 32164232 PMCID: PMC7143185 DOI: 10.3390/ani10030457] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Coleoids are cephalopods endowed with a highly sophisticated nervous system with keen sense organs and an exceptionally large brain that includes more than 30 differentiated lobes. Within this group, Octopus vulgaris, well known as an intelligent soft-bodied animal, has a significant number of lobes in the nervous system dedicated to decoding and integrating visual, tactile, and chemosensory perceptions. In this study, we aimed to understand the key role of chemical and visual cues during food selection in O. vulgaris. We first defined the preferred food, and subsequently, we set up five different problem-solving tasks, in which the animal’s choice is guided by visual and chemosensory signals, either alone or together, to evaluate whether individual O. vulgaris uses a sensorial hierarchy. Our behavioural experiments show that this species does integrate different sensory information from chemical and visual cues during food selection; however, our results indicate that chemical perception provides accurate and faster information leading to food choice. This research opens new perspectives on O. vulgaris’ predation strategies. Abstract Octopus vulgaris possesses highly sophisticated sense organs, processed by the nervous system to generate appropriate behaviours such as finding food, avoiding predators, identifying conspecifics, and locating suitable habitat. Octopus uses multiple sensory modalities during the searching and selection of food, in particular, the chemosensory and visual cues. Here, we examined food choice in O. vulgaris in two ways: (1) We tested octopus’s food preference among three different kinds of food, and established anchovy as the preferred choice (66.67%, Friedman test p < 0.05); (2) We exposed octopus to a set of five behavioural experiments in order to establish the sensorial hierarchy in food choice, and to evaluate the performance based on the visual and chemical cues, alone or together. Our data show that O. vulgaris integrates sensory information from chemical and visual cues during food choice. Nevertheless, food choice resulted in being more dependent on chemical cues than visual ones (88.9%, Friedman test p < 0.05), with a consistent decrease of the time spent identifying the preferred food. These results define the role played by the senses with a sensorial hierarchy in food choice, opening new perspectives on the O. vulgaris’ predation strategies in the wild, which until today were considered to rely mainly on visual cues.
Collapse
|
12
|
Nagloo N, Kinoshita M, Arikawa K. Spectral organization of the compound eye of a migrating nymphalid, the chestnut tiger butterfly Parantica sita. J Exp Biol 2020; 223:jeb217703. [PMID: 31900350 DOI: 10.1242/jeb.217703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 11/20/2022]
Abstract
Several butterflies of family Nymphalidae perform long-distance migration. Extensive studies of migration in the iconic monarch butterfly Danaus plexippus have revealed that vision plays a crucial role in migratory orientation. Differences in the migratory patterns of butterflies suggest that not all species are exposed to the same visual conditions and yet, little is known about how the visual system varies across migratory species. Here, we used intracellular electrophysiology, dye injection and electron microscopy to assess the spectral and polarization properties of the photoreceptors of a migrating nymphalid, Parantica sita Our findings reveal three spectral classes of photoreceptors including ultraviolet, blue and green receptors. The green receptor class contains three subclasses, which are broad, narrow and double-peaking green receptors. Ultraviolet and blue receptors are sensitive to polarized light parallel to the dorso-ventral axis of the animal, while the variety of green receptors are sensitive to light polarized at 45 deg, 90 deg and 135 deg away from the dorso-ventral axis. The polarization sensitivity ratio is constant across spectral receptor classes at around 1.8. Although P. sita has a typical nymphalid eye with three classes of spectral receptors, subtle differences exist among the eyes of migratory nymphalids, which may be genus specific.
Collapse
Affiliation(s)
- Nicolas Nagloo
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| | - Kentaro Arikawa
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| |
Collapse
|
13
|
Hanke FD, Kelber A. The Eye of the Common Octopus ( Octopus vulgaris). Front Physiol 2020; 10:1637. [PMID: 32009987 PMCID: PMC6971404 DOI: 10.3389/fphys.2019.01637] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/30/2019] [Indexed: 11/13/2022] Open
Abstract
Octopus vulgaris, well-known from temperate waters of the Mediterranean Sea and a well-cited model species among the cephalopods, has large eyes with which it scans its environment actively and which allow the organism to discriminate objects easily. On cursory examination, the single-chambered eyes of octopus with their spherical lenses resemble vertebrate eyes. However there are also apparent differences. For example, the retina of the octopus is everted instead of inverted, and it is equipped with primary rhabdomeric photoreceptors rather than secondary ciliary variety found in the retina of the vertebrate eye. The eyes of octopus are well adapted to the habitat and lifestyle of the species; the pupil closes quickly as a response to sudden light stimuli mimicking a situation in which the octopus leaves its den in shallow water during daytime. Although the many general anatomical and physiological features of octopus vision have been described elsewhere, our review reveals that a lot of information is still missing. Investigations that remain to be undertaken include a detailed examination of the dioptric apparatus or the visual functions such as brightness discrimination as well as a conclusive test for a faculty analogous to, or in lieu of, color vision. For a better understanding of the octopus eye and the functions mediated by it, we suggest that future studies focus on knowledge gaps that we outline in the present review.
Collapse
Affiliation(s)
- Frederike D Hanke
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Meglič A, Ilić M, Pirih P, Škorjanc A, Wehling MF, Kreft M, Belušič G. Horsefly object-directed polarotaxis is mediated by a stochastically distributed ommatidial subtype in the ventral retina. Proc Natl Acad Sci U S A 2019; 116:21843-21853. [PMID: 31591223 PMCID: PMC6815168 DOI: 10.1073/pnas.1910807116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ventral compound eye of many insects contains polarization-sensitive photoreceptors, but little is known about how they are integrated into visual functions. In female horseflies, polarized reflections from animal fur are a key stimulus for host detection. To understand how polarization vision is mediated by the ventral compound eye, we investigated the band-eyed brown horsefly Tabanus bromius using anatomical, physiological, and behavioral approaches. Serial electron microscopic sectioning of the retina and single-cell recordings were used to determine the spectral and polarization sensitivity (PS) of photoreceptors. We found 2 stochastically distributed subtypes of ommatidia, analogous to pale and yellow of other flies. Importantly, the pale analog contains an orthogonal analyzer receptor pair with high PS, formed by an ultraviolet (UV)-sensitive R7 and a UV- and blue-sensitive R8, while the UV-sensitive R7 and green-sensitive R8 in the yellow analog always have low PS. We tested horsefly polarotaxis in the field, using lures with controlled spectral and polarization composition. Polarized reflections without UV and blue components rendered the lures unattractive, while reflections without the green component increased their attractiveness. This is consistent with polarotaxis being guided by a differential signal from polarization analyzers in the pale analogs, and with an inhibitory role of the yellow analogs. Our results reveal how stochastically distributed sensory units with modality-specific division of labor serve as separate and opposing input channels for visual guidance.
Collapse
Affiliation(s)
- Andrej Meglič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marko Ilić
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| | - Primož Pirih
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleš Škorjanc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin F Wehling
- Nature-inspired Team, Sensor and Imaging Sciences Branch, Air Force Research Laboratory, Eglin Air Force Base, FL 32542
| | - Marko Kreft
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Celica Biomedical, 1000 Ljubljana, Slovenia
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
15
|
Morse P, Huffard CL. Tactical Tentacles: New Insights on the Processes of Sexual Selection Among the Cephalopoda. Front Physiol 2019; 10:1035. [PMID: 31496951 PMCID: PMC6712556 DOI: 10.3389/fphys.2019.01035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/29/2019] [Indexed: 01/31/2023] Open
Abstract
The cephalopods (Mollusca: Cephalopoda) are an exceptional class among the invertebrates, characterised by the advanced development of their conditional learning abilities, long-term memories, capacity for rapid colour change and extremely adaptable hydrostatic skeletons. These traits enable cephalopods to occupy diverse marine ecological niches, become successful predators, employ sophisticated predator avoidance behaviours and have complex intraspecific interactions. Where studied, observations of cephalopod mating systems have revealed detailed insights to the life histories and behavioural ecologies of these animals. The reproductive biology of cephalopods is typified by high levels of both male and female promiscuity, alternative mating tactics, long-term sperm storage prior to spawning, and the capacity for intricate visual displays and/or use of a distinct sensory ecology. This review summarises the current understanding of cephalopod reproductive biology, and where investigated, how both pre-copulatory behaviours and post-copulatory fertilisation patterns can influence the processes of sexual selection. Overall, it is concluded that sperm competition and possibly cryptic female choice are likely to be critical determinants of which individuals' alleles get transferred to subsequent generations in cephalopod mating systems. Additionally, it is emphasised that the optimisation of offspring quality and/or fertilisation bias to genetically compatible males are necessary drivers for the proliferation of polyandry observed among cephalopods, and potential methods for testing these hypotheses are proposed within the conclusion of this review. Further gaps within the current knowledge of how sexual selection operates in this group are also highlighted, in the hopes of prompting new directions for research of the distinctive mating systems in this unique lineage.
Collapse
Affiliation(s)
- Peter Morse
- Australian Institute of Marine Science, Crawley, WA, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Christine L Huffard
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States.,California Academy of Sciences, San Francisco, CA, United States
| |
Collapse
|
16
|
Smithers SP, Roberts NW, How MJ. Parallel processing of polarization and intensity information in fiddler crab vision. SCIENCE ADVANCES 2019; 5:eaax3572. [PMID: 31457103 PMCID: PMC6703871 DOI: 10.1126/sciadv.aax3572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Many crustaceans are sensitive to the polarization of light and use this information for object-based visually guided behaviors. For these tasks, it is unknown whether polarization and intensity information are integrated into a single-contrast channel, whereby polarization directly contributes to perceived intensity, or whether they are processed separately and in parallel. Using a novel type of visual display that allowed polarization and intensity properties of visual stimuli to be adjusted independently and simultaneously, we conducted behavioral experiments with fiddler crabs to test which of these two models of visual processing occurs. We found that, for a loom detection task, fiddler crabs process polarization and intensity information independently and in parallel. The crab's response depended on whichever contrast was the most salient. By contributing independent measures of visual contrast, polarization and intensity provide a greater range of detectable contrast information for the receiver, increasing the chance of detecting a potential threat.
Collapse
|
17
|
Marshall NJ, Powell SB, Cronin TW, Caldwell RL, Johnsen S, Gruev V, Chiou THS, Roberts NW, How MJ. Polarisation signals: a new currency for communication. ACTA ACUST UNITED AC 2019; 222:222/3/jeb134213. [PMID: 30733259 DOI: 10.1242/jeb.134213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Most polarisation vision studies reveal elegant examples of how animals, mainly the invertebrates, use polarised light cues for navigation, course-control or habitat selection. Within the past two decades it has been recognised that polarised light, reflected, blocked or transmitted by some animal and plant tissues, may also provide signals that are received or sent between or within species. Much as animals use colour and colour signalling in behaviour and survival, other species additionally make use of polarisation signalling, or indeed may rely on polarisation-based signals instead. It is possible that the degree (or percentage) of polarisation provides a more reliable currency of information than the angle or orientation of the polarised light electric vector (e-vector). Alternatively, signals with specific e-vector angles may be important for some behaviours. Mixed messages, making use of polarisation and colour signals, also exist. While our knowledge of the physics of polarised reflections and sensory systems has increased, the observational and behavioural biology side of the story needs more (and more careful) attention. This Review aims to critically examine recent ideas and findings, and suggests ways forward to reveal the use of light that we cannot see.
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Samuel B Powell
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, MD 21250, USA
| | - Roy L Caldwell
- University of California Berkeley, Department of Integrative Biology, Berkeley, CA 94720-3140, USA
| | - Sonke Johnsen
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Viktor Gruev
- Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - T-H Short Chiou
- Department of Life Sciences, National Cheng-Kung University, Tainan City 701, Taiwan
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
18
|
Hanke FD, Osorio DC. Editorial: Vision in Cephalopods. Front Physiol 2018; 9:18. [PMID: 29403394 PMCID: PMC5786529 DOI: 10.3389/fphys.2018.00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/08/2018] [Indexed: 11/21/2022] Open
Affiliation(s)
- Frederike D Hanke
- Institute for Biosciences, Sensory and Cognitive Ecology, University of Rostock, Rostock, Germany
| | - Daniel C Osorio
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
19
|
Di Cosmo A, Maselli V, Polese G. Octopus vulgaris: An Alternative in Evolution. Results Probl Cell Differ 2018; 65:585-598. [DOI: 10.1007/978-3-319-92486-1_26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
20
|
Heras FJH, Laughlin SB. Optimizing the use of a sensor resource for opponent polarization coding. PeerJ 2017; 5:e2772. [PMID: 28316880 PMCID: PMC5355978 DOI: 10.7717/peerj.2772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/08/2016] [Indexed: 11/20/2022] Open
Abstract
Flies use specialized photoreceptors R7 and R8 in the dorsal rim area (DRA) to detect skylight polarization. R7 and R8 form a tiered waveguide (central rhabdomere pair, CRP) with R7 on top, filtering light delivered to R8. We examine how the division of a given resource, CRP length, between R7 and R8 affects their ability to code polarization angle. We model optical absorption to show how the length fractions allotted to R7 and R8 determine the rates at which they transduce photons, and correct these rates for transduction unit saturation. The rates give polarization signal and photon noise in R7, and in R8. Their signals are combined in an opponent unit, intrinsic noise added, and the unit's output analysed to extract two measures of coding ability, number of discriminable polarization angles and mutual information. A very long R7 maximizes opponent signal amplitude, but codes inefficiently due to photon noise in the very short R8. Discriminability and mutual information are optimized by maximizing signal to noise ratio, SNR. At lower light levels approximately equal lengths of R7 and R8 are optimal because photon noise dominates. At higher light levels intrinsic noise comes to dominate and a shorter R8 is optimum. The optimum R8 length fractions falls to one third. This intensity dependent range of optimal length fractions corresponds to the range observed in different fly species and is not affected by transduction unit saturation. We conclude that a limited resource, rhabdom length, can be divided between two polarization sensors, R7 and R8, to optimize opponent coding. We also find that coding ability increases sub-linearly with total rhabdom length, according to the law of diminishing returns. Consequently, the specialized shorter central rhabdom in the DRA codes polarization twice as efficiently with respect to rhabdom length than the longer rhabdom used in the rest of the eye.
Collapse
Affiliation(s)
- Francisco J H Heras
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; Current affiliation: Champalimaud Neuroscience Programme (CNP), Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Simon B Laughlin
- Department of Zoology, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
21
|
Ogawa Y, Ribi W, Zeil J, Hemmi JM. Regional differences in the preferred e-vector orientation of honeybee ocellar photoreceptors. ACTA ACUST UNITED AC 2017; 220:1701-1708. [PMID: 28213397 DOI: 10.1242/jeb.156109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 11/20/2022]
Abstract
In addition to compound eyes, honeybees (Apis mellifera) possess three single-lens eyes called ocelli located on the top of the head. Ocelli are involved in head-attitude control and in some insects have been shown to provide celestial compass information. Anatomical and early electrophysiological studies have suggested that UV and blue-green photoreceptors in ocelli are polarization sensitive. However, their retinal distribution and receptor characteristics have not been documented. Here, we used intracellular electrophysiology to determine the relationship between the spectral and polarization sensitivity of the photoreceptors and their position within the visual field of the ocelli. We first determined a photoreceptor's spectral response through a series of monochromatic flashes (340-600 nm). We found UV and green receptors, with peak sensitivities at 360 and 500 nm, respectively. We subsequently measured polarization sensitivity at the photoreceptor's peak sensitivity wavelength by rotating a polarizer with monochromatic flashes. Polarization sensitivity (PS) values were significantly higher in UV receptors (3.8±1.5, N=61) than in green receptors (2.1±0.6, N=60). Interestingly, most receptors with receptive fields below 35 deg elevation were sensitive to vertically polarized light while the receptors with visual fields above 35 deg were sensitive to a wide range of polarization angles. These results agree well with anatomical measurements showing differences in rhabdom orientations between dorsal and ventral retinae. We discuss the functional significance of the distribution of polarization sensitivities across the visual field of ocelli by highlighting the information the ocelli are able to extract from the bee's visual environment.
Collapse
Affiliation(s)
- Yuri Ogawa
- School of Biological Sciences and UWA Oceans Institute (M092), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia .,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Willi Ribi
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Jochen Zeil
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Jan M Hemmi
- School of Biological Sciences and UWA Oceans Institute (M092), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
22
|
Dröscher A. Pioneering Studies on Cephalopod's Eye and Vision at the Stazione Zoologica Anton Dohrn (1883-1977). Front Physiol 2016; 7:618. [PMID: 28066256 PMCID: PMC5179557 DOI: 10.3389/fphys.2016.00618] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/25/2016] [Indexed: 11/29/2022] Open
Abstract
From the late nineteenth century onwards, the phenomena of vision and the anatomy and physiology of the eye of marine animals induced many zoologists, ethologists, physiologists, anatomists, biochemists, and ophthalmologists to travel to the Zoological Station in Naples. Initially, their preferred research objects were fish, but it soon became evident that cephalopods have features which make them particularly suited to research. After the first studies, which outlined the anatomical structure of cephalopods' eyes and optic nerves, the research rapidly shifted to the electrophysiology and biochemistry of vision. In the twentieth century these results were integrated with behavioral tests and training techniques. Between 1909 and 1913 also the well-known debate on color vision between ophthalmologist Carl von Hess and zoologist Karl von Frisch took place in Naples. Largely unknown is that the debate also concerned cephalopods. A comparative historical analysis of these studies shows how different experimental devices, theoretical frameworks, and personal factors gave rise to two diametrically opposing views.
Collapse
Affiliation(s)
- Ariane Dröscher
- Department of Letters and Philosophy, University of Trento Trento, Italy
| |
Collapse
|
23
|
Abstract
The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs.
Collapse
Affiliation(s)
- Thomas Labhart
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zürich CH 8057, Switzerland
| |
Collapse
|
24
|
How MJ, Christy J, Roberts NW, Marshall NJ. Null point of discrimination in crustacean polarisation vision. J Exp Biol 2014; 217:2462-7. [DOI: 10.1242/jeb.103457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The polarisation of light is used by many species of cephalopods and crustaceans to discriminate objects or to communicate. Most visual systems with this ability, such as that of the fiddler crab, include receptors with photopigments that are oriented horizontally and vertically relative to the outside world. Photoreceptors in such an orthogonal array are maximally sensitive to polarised light with the same fixed e-vector orientation. Using opponent neural connections, this two-channel system may produce a single value of polarisation contrast and, consequently, it may suffer from null points of discrimination. Stomatopod crustaceans use a different system for polarisation vision, comprising at least four types of polarisation-sensitive photoreceptor arranged at 0°, 45°, 90° and 135° relative to each other, in conjunction with extensive rotational eye movements. This anatomical arrangement should not suffer from equivalent null points of discrimination. To test whether these two systems were vulnerable to null points, we presented the fiddler crab Uca heteropleura and the stomatopod Haptosquilla trispinosa with polarised looming stimuli on a modified LCD monitor. The fiddler crab was less sensitive to differences in the degree of polarised light when the e-vector was at -45°, than when the e-vector was horizontal. In comparison, stomatopods showed no difference in sensitivity between the two stimulus types. The results suggest that fiddler crabs suffer from a null point of sensitivity, while stomatopods do not.
Collapse
Affiliation(s)
| | - John Christy
- Smithsonian Tropical Research Institute, Republic of Panama
| | | | | |
Collapse
|
25
|
|
26
|
Cartron L, Dickel L, Shashar N, Darmaillacq AS. Maturation of polarization and luminance contrast sensitivities in cuttlefish (Sepia officinalis). ACTA ACUST UNITED AC 2013; 216:2039-45. [PMID: 23430993 DOI: 10.1242/jeb.080390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polarization sensitivity is a characteristic of the visual system of cephalopods. It has been well documented in adult cuttlefish, which use polarization sensitivity in a large range of tasks such as communication, orientation and predation. Because cuttlefish do not benefit from parental care, their visual system (including the ability to detect motion) must be efficient from hatching to enable them to detect prey or predators. We studied the maturation and functionality of polarization sensitivity in newly hatched cuttlefish. In a first experiment, we examined the response of juvenile cuttlefish from hatching to the age of 1 month towards a moving, vertically oriented grating (contrasting and polarized stripes) using an optomotor response apparatus. Cuttlefish showed differences in maturation of polarization versus luminance contrast motion detection. In a second experiment, we examined the involvement of polarization information in prey preference and detection in cuttlefish of the same age. Cuttlefish preferentially chose not to attack transparent prey whose polarization contrast had been removed with a depolarizing filter. Performances of prey detection based on luminance contrast improved with age. Polarization contrast can help cuttlefish detect transparent prey. Our results suggest that polarization is not a simple modulation of luminance information, but rather that it is processed as a distinct channel of visual information. Both luminance and polarization sensitivity are functional, though not fully matured, in newly hatched cuttlefish and seem to help in prey detection.
Collapse
Affiliation(s)
- Lelia Cartron
- Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité Comportementale (EA 4259), F-14032 Caen, France
| | | | | | | |
Collapse
|
27
|
Are harbour seals (Phoca vitulina) able to perceive and use polarised light? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 199:509-19. [DOI: 10.1007/s00359-012-0762-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
|
28
|
Talbot C, Jordan TM, Roberts NW, Collin SP, Marshall NJ, Temple SE. Corneal microprojections in coleoid cephalopods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:849-56. [PMID: 22983438 DOI: 10.1007/s00359-012-0755-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
The cornea is the first optical element in the path of light entering the eye, playing a role in image formation and protection. Corneas of vertebrate simple camera-type eyes possess microprojections on the outer surface in the form of microridges, microvilli, and microplicae. Corneas of invertebrates, which have simple or compound eyes, or both, may be featureless or may possess microprojections in the form of nipples. It was previously unknown whether cephalopods (invertebrates with camera-type eyes like vertebrates) possess corneal microprojections and, if so, of what form. Using scanning electron microscopy, we examined corneas of a range of cephalopods and discovered nipple-like microprojections in all species. In some species, nipples were like those described on arthropod compound eyes, with a regular hexagonal arrangement and sizes ranging from 75 to 103 nm in diameter. In others, nipples were nodule shaped and irregularly distributed. Although terrestrial invertebrate nipples create an antireflective surface that may play a role in camouflage, no such optical function can be assigned to cephalopod nipples due to refractive index similarities of corneas and water. Their function may be to increase surface-area-to-volume ratio of corneal epithelial cells to increase nutrient, gas, and metabolite exchange, and/or stabilize the corneal mucous layer, as proposed for corneal microprojections of vertebrates.
Collapse
Affiliation(s)
- Christopher Talbot
- Sensory Neurobiology Group, Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Eyes have evolved many times, and arthropods and vertebrates share transcription factors for early development. Moreover, the photochemistry of vision in all eyes employs an opsin and the isomerization of a retinoid from the 11-cis to the all-trans configuration. The opsins, however, have associated with several different G proteins, initiating hyperpolarizing and depolarizing conductance changes at the photoreceptor membrane. Beyond these obvious instances of homology, much of the evolutionary story is one of tinkering, producing a great variety of morphological forms and variation within functional themes. This outcome poses a central issue in the convergence of evolutionary and developmental biology: what are the heritable features in the later stages of development that give natural selection traction in altering phenotypic outcomes? This paper discusses some results of evolutionary tinkering where this question arises and, in some cases, where the reasons for particular outcomes and the role of adaptation may not be understood. Phenotypic features include: the exploitation of microvilli in rhabdomeric photoreceptors for detecting the plane of polarized light; different instances of retinoid in the visual pigment; examples of the many uses of accessory pigments in tuning the spectral sensitivity of photoreceptors; selection of opsins in tuning sensitivity in aquatic environments; employing either reflection or refraction in the optics of compound eyes; the multiple ways of constructing images in compound eyes; and the various ways of regenerating 11-cis retinals to maintain visual sensitivity. Evolution is an irreversible process, but tinkering may recover some lost functions, albeit by new mutational routes. There is both elegance and intellectual coherence to the natural processes that produce such variety and functional complexity. But marginalizing the teaching of evolution in public education is a continuing social and political problem that contributes to the reckless capacity of humans to alter the planet without trying to understand how nature works.
Collapse
|
30
|
Talbot CM, Marshall JN. The retinal topography of three species of coleoid cephalopod: significance for perception of polarized light. Philos Trans R Soc Lond B Biol Sci 2011; 366:724-33. [PMID: 21282176 DOI: 10.1098/rstb.2010.0254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retinal topography of three species of coleoid cephalopod (one cuttlefish, one squid and one octopus) was investigated to examine and compare the structure, density and organization of the photoreceptors. The aim was to determine if there were areas of increased cell density and/or cell specialization that might be related to lifestyle or phylogeny. The orientation of photoreceptors around the curved surface of the retina was also mapped to reveal how the overall arrangement of cell microvilli might enable the perception of polarized light stimuli. It was found that all species possessed an increase in photoreceptor density in a horizontal streak approximately placed at the position of a potential horizon in the habitat. The overall arrangement of photoreceptor microvillar arrangements followed lines of latitude and longitude in a global projection that has been rotated by 90°. This arrangement seems to map polarization sensitivities on the outside world in a vertical and horizontal grid. The potential significance of this and other retinal specializations is discussed in the context of phylogenetic and habitat differences between species.
Collapse
Affiliation(s)
- Christopher M Talbot
- Sensory Neurobiology Group, School of Biomedical Science and Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | | |
Collapse
|
31
|
Kinoshita M, Yamazato K, Arikawa K. Polarization-based brightness discrimination in the foraging butterfly, Papilio xuthus. Philos Trans R Soc Lond B Biol Sci 2011; 366:688-96. [PMID: 21282172 DOI: 10.1098/rstb.2010.0200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human eye is insensitive to the angular direction of the light e-vector, but several animal species have the ability to discriminate differently polarized lights. How the polarization is detected is often unclear, however. Egg-laying Papilio butterflies have been shown to see false colours when presented with differently polarized lights. Here we asked whether this also holds in foraging butterflies. After training individuals to feed on nectar in front of an unpolarized spectral light, we carried out three dual-choice tests, where the discrimination of (i) the spectral content, (ii) the light intensity, and (iii) the e-vector orientation were investigated. In the first test, the butterflies selected the trained spectrum irrespective of its intensity, and in the second test they chose the light with the higher intensity. The result of the e-vector discrimination test was very similar to that of the second test, suggesting that foraging butterflies discriminate differently polarized lights as differing in brightness rather than as differing in colour. Papilio butterflies are clearly able to use at least two modes of polarization vision depending on the behavioural context.
Collapse
Affiliation(s)
- Michiyo Kinoshita
- Laboratory of Neuroethology, Sokendai-Hayama (Graduate University for Advanced Studies), Hayama, Japan.
| | | | | |
Collapse
|
32
|
Srinivasan MV. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol Rev 2011; 91:413-60. [PMID: 21527730 DOI: 10.1152/physrev.00005.2010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.
Collapse
Affiliation(s)
- Mandyam V Srinivasan
- Queensland Brain Institute and School of Information Technology and Electrical Engineering, University of Queensland, and ARC Center of Excellence in Vision Science, St. Lucia, Australia.
| |
Collapse
|
33
|
Roberts NW, Porter ML, Cronin TW. The molecular basis of mechanisms underlying polarization vision. Philos Trans R Soc Lond B Biol Sci 2011; 366:627-37. [PMID: 21282166 PMCID: PMC3049014 DOI: 10.1098/rstb.2010.0206] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The underlying mechanisms of polarization sensitivity (PS) have long remained elusive. For rhabdomeric photoreceptors, questions remain over the high levels of PS measured experimentally. In ciliary photoreceptors, and specifically cones, little direct evidence supports any type of mechanism. In order to promote a greater interest in these fundamental aspects of polarization vision, we examined a varied collection of studies linking membrane biochemistry, protein-protein interactions, molecular ordering and membrane phase behaviour. While initially these studies may seem unrelated to polarization vision, a common narrative emerges. A surprising amount of evidence exists demonstrating the importance of protein-protein interactions in both rhabdomeric and ciliary photoreceptors, indicating the possible long-range ordering of the opsin protein for increased PS. Moreover, we extend this direction by considering how such protein paracrystalline organization arises in all cell types from controlled membrane phase behaviour and propose a universal pathway for PS to occur in both rhabdomeric and cone photoreceptors.
Collapse
Affiliation(s)
- Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
34
|
Pignatelli V, Temple SE, Chiou TH, Roberts NW, Collin SP, Marshall NJ. Behavioural relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes. Philos Trans R Soc Lond B Biol Sci 2011; 366:734-41. [PMID: 21282177 PMCID: PMC3049012 DOI: 10.1098/rstb.2010.0204] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aquatic habitats are rich in polarized patterns that could provide valuable information about the environment to an animal with a visual system sensitive to polarization of light. Both cephalopods and fishes have been shown to behaviourally respond to polarized light cues, suggesting that polarization sensitivity (PS) may play a role in improving target detection and/or navigation/orientation. However, while there is general agreement concerning the presence of PS in cephalopods and some fish species, its functional significance remains uncertain. Testing the role of PS in predator or prey detection seems an excellent paradigm with which to study the contribution of PS to the sensory assets of both groups, because such behaviours are critical to survival. We developed a novel experimental set-up to deliver computer-generated, controllable, polarized stimuli to free-swimming cephalopods and fishes with which we tested the behavioural relevance of PS using stimuli that evoke innate responses (such as an escape response from a looming stimulus and a pursuing behaviour of a small prey-like stimulus). We report consistent responses of cephalopods to looming stimuli presented in polarization and luminance contrast; however, none of the fishes tested responded to either the looming or the prey-like stimuli when presented in polarization contrast.
Collapse
Affiliation(s)
- Vincenzo Pignatelli
- Queensland Brain Institute, The University of Queensland, Saint Lucia, Queensland 4104, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
Talbot CM, Marshall J. Polarization sensitivity in two species of cuttlefish - Sepia plangon (Gray 1849) and Sepia mestus (Gray 1849) - demonstrated with polarized optomotor stimuli. ACTA ACUST UNITED AC 2011; 213:3364-70. [PMID: 20833930 DOI: 10.1242/jeb.042937] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The existence of polarization sensitivity (PS), most likely resulting from the orthogonal arrangement of microvilli in photoreceptors, has been proposed in cephalopods for some time, although it has rarely been examined behaviourally. Here, we tested the mourning cuttlefish, Sepia plangon, and the reaper cuttlefish, Sepia mestus, for polarization sensitivity using a large-field optomotor stimulus containing polarization contrast. Polaroid filter drums with stripes producing alternating e-vectors were rotated around free-moving animals. Polarized optomotor responses were displayed, and these responses were similar to those performed in response to a black-and-white, vertically-striped drum, whereas no responses were displayed to a plain polarizing control drum producing just a vertical e-vector. This indicates that the animals are able to see the contrast between adjacent stripes in the polarizing drum. To our knowledge, this is the first demonstration of functional polarization sensitivity in cuttlefish.
Collapse
Affiliation(s)
- Christopher M Talbot
- The Sensory Neurobiology Group, Queensland Brain Institute and the School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
36
|
Talbot CM, Marshall J. Polarization sensitivity and retinal topography of the striped pyjama squid (Sepioloidea lineolata - Quoy/Gaimard 1832). ACTA ACUST UNITED AC 2010; 213:3371-7. [PMID: 20833931 DOI: 10.1242/jeb.048165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coleoid cephalopods (octopus, cuttlefish and squid) potentially possess polarization sensitivity (PS) based on photoreceptor structure, but this idea has rarely been tested behaviourally. Here, we use a polarized, striped optokinetic stimulus to demonstrate PS in the striped pyjama squid, Sepioloidea lineolata. This species displayed strong, consistent optokinetic nystagmic eye movements in response to a drum with stripes producing e-vectors set to 0 deg, 45 deg, 90 deg and 135 deg that would only be visible to an animal with PS. This is the first behavioural demonstration of a polarized optokinetic response in any species of cephalopod. This species, which typically sits beneath the substrate surface looking upwards for potential predators and prey, possesses a dorsally shifted horizontal pupil slit. Accordingly, it was found to possess a horizontal strip of high-density photoreceptors shifted ventrally in the retina, suggesting modifications such as a change in sensitivity or resolution to the dorsal visual field.
Collapse
Affiliation(s)
- Christopher M Talbot
- The Sensory Neurobiology Group, Queensland Brain Institute, and the School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
37
|
|
38
|
Adal MN, Morton B. The fine structure of the pallial eyes of
Laternula truncata
(Bivalvia: Anomalodesmata: Pandoracea). J Zool (1987) 2009. [DOI: 10.1111/j.1469-7998.1973.tb05068.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. N. Adal
- Department of Zoology, The University of Hong Kong
| | - Brian Morton
- Department of Zoology, The University of Hong Kong
| |
Collapse
|
39
|
Mäthger LM, Shashar N, Hanlon RT. Do cephalopods communicate using polarized light reflections from their skin? J Exp Biol 2009; 212:2133-40. [DOI: 10.1242/jeb.020800] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Cephalopods (squid, cuttlefish and octopus) are probably best known for their ability to change color and pattern for camouflage and communication. This is made possible by their complex skin, which contains pigmented chromatophore organs and structural light reflectors (iridophores and leucophores). Iridophores create colorful and linearly polarized reflective patterns. Equally interesting, the photoreceptors of cephalopod eyes are arranged in a way to give these animals the ability to detect the linear polarization of incoming light. The capacity to detect polarized light may have a variety of functions, such as prey detection, navigation, orientation and contrast enhancement. Because the skin of cephalopods can produce polarized reflective patterns, it has been postulated that cephalopods could communicate intraspecifically through this visual system. The term `hidden' or`private' communication channel has been given to this concept because many cephalopod predators may not be able to see their polarized reflective patterns. We review the evidence for polarization vision as well as polarization signaling in some cephalopod species and provide examples that tend to support the notion – currently unproven – that some cephalopods communicate using polarized light signals.
Collapse
Affiliation(s)
- Lydia M. Mäthger
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543,USA
| | - Nadav Shashar
- Department of Life Sciences, Eilat Campus, Ben Gurion University, Beer Sheva,84105, Israel
| | - Roger T. Hanlon
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543,USA
| |
Collapse
|
40
|
|
41
|
Momeni M, Titus AH. An Analog VLSI Chip Emulating Polarization Vision of Octopus Retina. ACTA ACUST UNITED AC 2006; 17:222-32. [PMID: 16526489 DOI: 10.1109/tnn.2005.860865] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biological systems provide a wealth of information which form the basis for human-made artificial systems. In this work, the visual system of Octopus is investigated and its polarization sensitivity mimicked. While in actual Octopus retina, polarization vision is mainly based on the orthogonal arrangement of its photoreceptors, our implementation uses a birefringent micropolarizer made of YVO4 and mounted on a CMOS chip with neuromorphic circuitry to process linearly polarized light. Arranged in an 8 x 5 array with two photodiodes per pixel, each consuming typically 10 microW, this circuitry mimics both the functionality of individual Octopus retina cells by computing the state of polarization and the interconnection of these cells through a bias-controllable resistive network.
Collapse
Affiliation(s)
- Massoud Momeni
- Department of Electrical Engineering and Information Technology, Institute of Microelectronic Systems, Darmstadt University of Technology, D-64283 Darmstadt, Germany
| | | |
Collapse
|
42
|
Hess M, Melzer RR, Eser R, Smola U. The structure of anchovy outer retinae (Engraulididae, Clupeiformes) — A comparative light- and electron-microscopic study using museum-stored material. J Morphol 2006; 267:1356-80. [PMID: 17051549 DOI: 10.1002/jmor.10482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The outer retinal architecture of Engraulididae is uncommon among vertebrates. In some anchovies, e.g., Anchoa, two cone types are arranged alternating in long photoreceptor chains, i.e., polycones. The cones have radially oriented outer segment lamellae in close contact with a complex guanine tapetum, most probably subserving polarization contrast vision. To clarify the distribution of the aberrant polycone architecture within the Engraulididae and to provide indications about polycone evolution, the outer retina morphology of 16 clupeoid species was investigated by light and electron microscopy, predominantly using museum-stored material. The outgroup representatives of four clupeid subfamilies (Clupeonella cultriventris, Dorosoma cepedianum, Ethmalosa fimbriata, Pellonula leonensis) show a row pattern of double cones, partially with single cones at defined positions and a pigment epithelium with lobopodial protrusions containing melanin. The pristigasterid Ilisha africana has double rows of single cones lying between linear curtains of pigment epithelium processes filled with minute crystallites and melanin concentrated near their vitreal tips. Within the Engraulididae, two main architectures are found: Coilia nasus and Thryssa setirostris have linear multiple cones or polycones separated by long pigment epithelium barriers containing tapetal crystallites and melanin in the tips (also found in Setipinna taty), whereas Anchoviella alleni, Encrasicholina heteroloba, Engraulis encrasicolus, Engraulis mordax, Lycengraulis batesii, and Stolephorus indicus exhibit the typical polycone architecture. Cetengraulis mysticetus and Lycothrissa crocodilus show cone patterns and pigment epithelium morphology differing from the other anchovy species. The sets of characters are compared, corroborated with the previous knowledge on clupeoid retinae and discussed in terms of functional morphology and visual ecology. A scenario on polycone evolution is developed that may serve as an aid for the reconstruction of engraulidid phylogeny. Furthermore, this study demonstrates the suitability of museum material for morphological studies, even at the electron microscopic level.
Collapse
Affiliation(s)
- Martin Hess
- Biozentrum der Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| | | | | | | |
Collapse
|
43
|
Flamarique IN, Browman HI. Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light. J Exp Biol 2001; 204:2415-22. [PMID: 11511656 DOI: 10.1242/jeb.204.14.2415] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Several fish species appear to be polarization sensitive, i.e. to be able to discriminate a light source’s maximum plane of polarization from any other plane. However, the functional significance of this ability remains unclear. We tested the hypothesis that polarized light improves the prey location ability of free-swimming rainbow trout (Oncorhynchus mykiss) in laboratory aquaria. We found that prey location distances increased while the vertical component of prey location angle decreased under polarized compared with unpolarized (diffuse) illumination. The average frequency distribution of the horizontal component of prey location angle was more bimodal under polarized than unpolarized illumination. These results indicate that polarization sensitivity enhances prey location by juvenile rainbow trout.
Collapse
Affiliation(s)
- I N Flamarique
- Institut Maurice Lamontagne, Fisheries and Oceans Canada, CP 1000, 850 route de la Mer, Mont-Joli, Quebec, Canada
| | | |
Collapse
|
44
|
Abstract
SUMMARYIn this concept paper, three scenarios are described in which animals make use of polarized light: the underwater world, the water surface and the terrestrial habitat vaulted by the pattern of polarized light in the sky. Within these various visual environments, polarized light is used in a number of ways that make quite different demands on the neural circuitries mediating these different types of behaviour. Apart from some common receptor and pre-processing mechanisms, the underlying neural mechanisms may differ accordingly. Often, information about χ (the angle of polarization), d (the degree of polarization) and λ (the spectral content) might not – and need not – be disentangled. Hence, the hypothesis entertained in this account is that polarization vision comes in various guises, and that the answer to the question posed in the title is most probably no.
Collapse
Affiliation(s)
- R Wehner
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
45
|
Shashar N, Hagan R, Boal JG, Hanlon RT. Cuttlefish use polarization sensitivity in predation on silvery fish. Vision Res 2000; 40:71-5. [PMID: 10768043 DOI: 10.1016/s0042-6989(99)00158-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cephalopods are sensitive to the linear polarization characteristics of light. To examine if this polarization sensitivity plays a role in the predatory behavior of cuttlefish, we examined the preference of Sepia officinalis when presented with fish whose polarization reflection was greatly reduced versus fish whose polarization reflection was not affected. Cuttlefish preyed preferably on fish with normal polarization reflection over fish that did not reflect linearly polarized light (n = 24, chi 2 = 17.3, P < 0.0001), implying that polarization sensitivity is used during predation. We suggest that polarization vision is used to break the countershading camouflage of light-reflecting silvery fish.
Collapse
Affiliation(s)
- N Shashar
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | | |
Collapse
|
46
|
Labhart T, Meyer EP. Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 1999. [DOI: 10.1002/(sici)1097-0029(19991215)47:6%3c368::aid-jemt2>3.0.co;2-q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Labhart T, Meyer EP. Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 1999; 47:368-79. [PMID: 10607378 DOI: 10.1002/(sici)1097-0029(19991215)47:6<368::aid-jemt2>3.0.co;2-q] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apart from the sun, the polarization pattern of the sky offers insects a reference for visual compass orientation. Using behavioral experiments, it has been shown in a few insect species (field crickets, honey bees, desert ants, and house flies) that the detection of the oscillation plane of polarized skylight is mediated exclusively by a group of specialized ommatidia situated at the dorsal rim of the compound eye (dorsal rim area). The dorsal rim ommatidia of these species share a number physiological properties that make them especially suitable for polarization vision: each ommatidium contains two sets of homochromatic, strongly polarization-sensitive photoreceptors with orthogonally-arranged analyzer orientations. The physiological specialization of the dorsal rim area goes along with characteristic changes in ommatidial structure, providing actual anatomical hallmarks of polarized skylight detection, that are readily detectable in histological sections of compound eyes. The presence of anatomically specialized dorsal rim ommatidia in many other insect species belonging to a wide range of different orders indicates that polarized skylight detection is a common visual function in insects. However, fine-structural disparities in the design of dorsal rim ommatidia of different insect groups indicate that polarization vision arose polyphyletically in the insects.
Collapse
Affiliation(s)
- T Labhart
- Zoologisches Institut der Universität, CH 8057 Zürich, Switzerland.
| | | |
Collapse
|
48
|
Marshall J, Cronin TW, Shashar N, Land M. Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Curr Biol 1999; 9:755-8. [PMID: 10421580 DOI: 10.1016/s0960-9822(99)80336-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polarisation sensitivity (PS) - the ability to detect the orientation of polarised light - occurs in a wide variety of invertebrates [1] [2] and vertebrates [3] [4] [5], many of which are marine species [1]. Of these, the crustacea are particularly well documented in terms of their structural [6] and neural [7] [8] adaptations for PS. The few behavioural studies conducted on crustaceans demonstrate orientation to, or local navigation with, polarised sky patterns [9]. Aside from this, the function of PS in crustaceans, and indeed in most animals, remains obscure. Where PS can be shown to allow perception of polarised light as a 'special sensory quality' [1], separate from intensity or colour, it has been termed polarisation vision (PV). Here, within the remarkable visual system of the stomatopod crustaceans (mantis shrimps) [10], we provide the first demonstration of PV in the crustacea and the first convincing evidence for learning the orientation of polarised light in any animal. Using new polarimetric [11] and photographic methods to examine stomatopods, we found striking patterns of polarisation on their antennae and telson, suggesting that one function of PV in stomatopods may be communication [12]. PV may also be used for tasks such as navigation [5] [9] [13], location of reflective water surfaces [14] and contrast enhancement [1] [15] [16] [17] [18]. It is possible that the stomatopod PV system also contributes to some of these functions.
Collapse
Affiliation(s)
- J Marshall
- VTHRC, The University of Queensland, Brisbane, 4072, Australia.
| | | | | | | |
Collapse
|
49
|
|
50
|
|