1
|
Latham B, Reid A, Jackson-Camargo JC, Williams JA, Windmill JFC. Coupled membranes: a mechanism of frequency filtering and transmission in the field cricket ear evidenced by micro-computed tomography, laser Doppler vibrometry and finite element analysis. J R Soc Interface 2024; 21:20230779. [PMID: 38903010 DOI: 10.1098/rsif.2023.0779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 06/22/2024] Open
Abstract
Many animals employ a second frequency filter beyond the initial filtering of the eardrum (or tympanal membrane). In the field cricket ear, both the filtering mechanism and the transmission path from the posterior tympanal membrane (PTM) have remained unclear. A mismatch between PTM vibrations and sensilla tuning has prompted speculations of a second filter. PTM coupling to the tracheal branches is suggested to support a transmission pathway. Here, we present three independent lines of evidence converging on the same conclusion: the existence of a series of linked membranes with distinct resonant frequencies serving both filtering and transmission functions. Micro-computed tomography (µ-CT) highlighted the 'dividing membrane (DivM)', separating the tracheal branches and connected to the PTM via the dorsal membrane of the posterior tracheal branch (DM-PTB). Thickness analysis showed the DivM to share significant thinness similarity with the PTM. Laser Doppler vibrometry indicated the first of two PTM vibrational peaks, at 6 and 14 kHz, originates not from the PTM but from the coupled DM-PTB. This result was corroborated by µ-CT-based finite element analysis. These findings clarify further the biophysical source of neuroethological pathways in what is an important model of behavioural neuroscience. Tuned microscale coupled membranes may also hold biomimetic relevance.
Collapse
Affiliation(s)
- Brendan Latham
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde , Glasgow, UK
| | - Andrew Reid
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde , Glasgow, UK
| | - Joseph C Jackson-Camargo
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde , Glasgow, UK
| | - Jonathan A Williams
- Department of Biomedical Engineering, University of Strathclyde , Glasgow, UK
| | - James F C Windmill
- Bioacoustics Group, Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde , Glasgow, UK
| |
Collapse
|
2
|
Sun K, Ray S, Gupta N, Aldworth Z, Stopfer M. Olfactory system structure and function in newly hatched and adult locusts. Sci Rep 2024; 14:2608. [PMID: 38297144 PMCID: PMC10830560 DOI: 10.1038/s41598-024-52879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
An important question in neuroscience is how sensory systems change as animals grow and interact with the environment. Exploring sensory systems in animals as they develop can reveal how networks of neurons process information as the neurons themselves grow and the needs of the animal change. Here we compared the structure and function of peripheral parts of the olfactory pathway in newly hatched and adult locusts. We found that populations of olfactory sensory neurons (OSNs) in hatchlings and adults responded with similar tunings to a panel of odors. The morphologies of local neurons (LNs) and projection neurons (PNs) in the antennal lobes (ALs) were very similar in both age groups, though they were smaller in hatchlings, they were proportional to overall brain size. The odor evoked responses of LNs and PNs were also very similar in both age groups, characterized by complex patterns of activity including oscillatory synchronization. Notably, in hatchlings, spontaneous and odor-evoked firing rates of PNs were lower, and LFP oscillations were lower in frequency, than in the adult. Hatchlings have smaller antennae with fewer OSNs; removing antennal segments from adults also reduced LFP oscillation frequency. Thus, consistent with earlier computational models, the developmental increase in frequency is due to increasing intensity of input to the oscillation circuitry. Overall, our results show that locusts hatch with a fully formed olfactory system that structurally and functionally matches that of the adult, despite its small size and lack of prior experience with olfactory stimuli.
Collapse
Affiliation(s)
- Kui Sun
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Subhasis Ray
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Plaksha University, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Nitin Gupta
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Zane Aldworth
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mark Stopfer
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 2021; 590:438-444. [PMID: 33505029 PMCID: PMC7886653 DOI: 10.1038/s41586-020-03127-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.
Collapse
|
4
|
Koepcke L, Hildebrandt KJ, Kretzberg J. Online Detection of Multiple Stimulus Changes Based on Single Neuron Interspike Intervals. Front Comput Neurosci 2019; 13:69. [PMID: 31632259 PMCID: PMC6779812 DOI: 10.3389/fncom.2019.00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/11/2019] [Indexed: 11/25/2022] Open
Abstract
Nervous systems need to detect stimulus changes based on their neuronal responses without using any additional information on the number, times, and types of stimulus changes. Here, two relatively simple, biologically realistic change point detection methods are compared with two common analysis methods. The four methods are applied to intra- and extracellularly recorded responses of a single cricket interneuron (AN2) to acoustic simulation. Solely based on these recorded responses, the methods should detect an unknown number of different types of sound intensity in- and decreases shortly after their occurrences. For this task, the methods rely on calculating an adjusting interspike interval (ISI). Both simple methods try to separate responses to intensity in- or decreases from activity during constant stimulation. The Pure-ISI method performs this task based on the distribution of the ISI, while the ISI-Ratio method uses the ratio of actual and previous ISI. These methods are compared to the frequently used Moving-Average method, which calculates mean and standard deviation of the instantaneous spike rate in a moving interval. Additionally, a classification method provides the upper limit of the change point detection performance that can be expected for the cricket interneuron responses. The classification learns the statistical properties of the actual and previous ISI during stimulus changes and constant stimulation from a training data set. The main results are: (1) The Moving-Average method requires a stable activity in a long interval to estimate the previous activity, which was not always given in our data set. (2) The Pure-ISI method can reliably detect stimulus intensity increases when the neuron bursts, but it fails to identify intensity decreases. (3) The ISI-Ratio method detects stimulus in- and decreases well, if the spike train is not too noisy. (4) The classification method shows good performance for the detection of stimulus in- and decreases. But due to the statistical learning, this method tends to confuse responses to constant stimulation with responses triggered by a stimulus change. Our results suggest that stimulus change detection does not require computationally costly mechanisms. Simple nervous systems like the cricket's could effectively apply ISI-Ratios to solve this fundamental task.
Collapse
Affiliation(s)
- Lena Koepcke
- Computational Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - K Jannis Hildebrandt
- Cluster of Excellence "Hearing4All", University of Oldenburg, Oldenburg, Germany.,Auditory Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence "Hearing4All", University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Nishino H, Domae M, Takanashi T, Okajima T. Cricket tympanal organ revisited: morphology, development and possible functions of the adult-specific chitin core beneath the anterior tympanal membrane. Cell Tissue Res 2019; 377:193-214. [PMID: 30828748 DOI: 10.1007/s00441-019-03000-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/26/2019] [Indexed: 01/04/2023]
Abstract
Vertebrates and insects are phylogenetically separated by millions of years but have commonly developed tympanal membranes for efficiently converting airborne sound to mechanical oscillation in hearing. The tympanal organ of the field cricket Gryllus bimaculatus, spanning 200 μm, is one of the smallest auditory organs among animals. It indirectly links to two tympana in the prothoracic tibia via tracheal vesicles. The anterior tympanal membrane is smaller and thicker than the posterior tympanal membrane and it is thought to have minor function as a sound receiver. Using differential labeling of sensory neurons/surrounding structures and three-dimensional reconstructions, we revealed that a shell-shaped chitin mass and associated tissues are hidden behind the anterior tympanal membrane. The mass, termed the epithelial core, is progressively enlarged by discharge of cylindrical chitin from epithelial cells that start to aggregate immediately after the final molt and it reaches a plateau in size after 6 days. The core, bridging between the anterior tracheal vesicle and the fluid-filled chamber containing sensory neurons, is supported by a taut membrane, suggesting the possibility that anterior displacements of the anterior tracheal vesicle are converted into fluid motion via a lever action of the core. The epithelial core did not exist in tympanal organ homologs of meso- and metathoracic legs or of nymphal legs. Taken together, the findings suggest that the epithelial core, a potential functional homolog to mammalian ossicles, underlies fine sound frequency discrimination required for adult-specific sound communications.
Collapse
Affiliation(s)
- Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan.
| | - Mana Domae
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Takuma Takanashi
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Matsuno-sato 1, Tsukuba, Ibaraki, 305-8687, Japan
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| |
Collapse
|
6
|
Schneider ES, Römer H, Robillard T, Schmidt AKD. Hearing with exceptionally thin tympana: Ear morphology and tympanal membrane vibrations in eneopterine crickets. Sci Rep 2017; 7:15266. [PMID: 29127426 PMCID: PMC5681576 DOI: 10.1038/s41598-017-15282-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/24/2017] [Indexed: 11/12/2022] Open
Abstract
The receiver sensory system plays a crucial role in the evolution of new communication signals in insects. Among acoustic communicating crickets, the tribe Lebinthini (Eneopterinae) has evolved a unique communication system in that males produce exceptionally high-frequency calls and females respond with vibratory signals to guide males towards them. In this study, we describe nine species of Eneopterinae in which the sound receiving structures have undergone considerable morphological changes. We revealed that the anterior tympanal membrane (ATM) of the ear was extremely thin, as little as 0.35 µm thick, and to the best of our knowledge, this is the thinnest tympanal membrane found in crickets thus far. Measurements of tympanum vibrations obtained from Lebinthus bitaeniatus demonstrated a strong sensitivity towards higher frequencies. The finding also coincides with the neuronal tuning of ascending neurons and the behavioural response of the Lebinthini. The morphologically specialized ATM and its mechanical sensitivity for high frequencies, therefore, may have driven the sensory exploitation of an anti-predator behaviour that led to the evolution of a new communication system known for this group of crickets. The hypothetical phylogenetic origin of the investigated tympanal ears is discussed.
Collapse
Affiliation(s)
- Erik S Schneider
- Department of Zoology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria
| | - Heinrich Römer
- Department of Zoology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria
| | - Tony Robillard
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205, CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, CP 50 (Entomologie), 75231, Paris, Cedex 05, France
| | - Arne K D Schmidt
- Department of Zoology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria.
| |
Collapse
|
7
|
Strauß J. The scolopidial accessory organs and Nebenorgans in orthopteroid insects: Comparative neuroanatomy, mechanosensory function, and evolutionary origin. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:765-776. [PMID: 28864301 DOI: 10.1016/j.asd.2017.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Scolopidial sensilla in insects often form large sensory organs involved in proprioception or exteroception. Here the knowledge on Nebenorgans and accessory organs, two organs consisting of scolopidial sensory cells, is summarised. These organs are present in some insects which are model organisms for the physiology of mechanosensory systems (cockroaches and tettigoniids). Recent comparative studies documented the accessory organ in several taxa of Orthoptera (including tettigoniids, cave crickets, Jerusalem crickets) and the Nebenorgan in related insects (Mantophasmatodea). The accessory organ or Nebenorgan is usually a small organ of 8-15 sensilla located in the posterior leg tibia of all leg pairs. The physiological properties of the accessory organs and Nebenorgans are so far largely unknown. Taking together neuroanatomical and electrophysiological data from disparate taxa, there is considerable evidence that the accessory organ and Nebenorgan are vibrosensitive. They thus complement the larger vibrosensitive subgenual organ in the tibia. This review summarises the comparative studies of these sensory organs, in particular the arguments and criteria for the homology of the accessory organ and Nebenorgan among orthopteroid insects. Different scenarios of repeated evolutionary origins or losses of these sensory organs are discussed. Neuroanatomy allows to distinguish individual sensory organs for analysis of sensory physiology, and to infer scenarios of sensory evolution.
Collapse
Affiliation(s)
- Johannes Strauß
- Justus-Liebig-Universität Gießen, Institute for Animal Physiology, AG Integrative Sensory Physiology, Germany.
| |
Collapse
|
8
|
Strauß J, Lomas K, Field LH. The complex tibial organ of the New Zealand ground weta: sensory adaptations for vibrational signal detection. Sci Rep 2017; 7:2031. [PMID: 28515484 PMCID: PMC5435688 DOI: 10.1038/s41598-017-02132-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/07/2017] [Indexed: 11/29/2022] Open
Abstract
In orthopteran insects, a complex tibial organ has evolved to detect substrate vibrations and/or airborne sound. Species of New Zealand weta (Anostostomatidae) with tympanal ears on the foreleg tibia use this organ to communicate by sound, while in atympanate species (which communicate by substrate drumming) the organ is unstudied. We investigated the complex tibial organ of the atympanate ground weta, Hemiandrus pallitarsis, for vibration detection adaptations. This system contains four sensory components (subgenual organ, intermediate organ, crista acustica homolog, accessory organ) in all legs, together with up to 90 scolopidial sensilla. Microcomputed tomography shows that the subgenual organ spans the hemolymph channel, with attachments suggesting that hemolymph oscillations displace the organ in a hinged-plate fashion. Subgenual sensilla are likely excited by substrate oscillations transmitted within the leg. Instead of the usual suspension within the middle of the tibial cavity, we show that the intermediate organ and crista acustica homolog comprise a cellular mass broadly attached to the anterior tibial wall. They likely detect cuticular vibrations, and not airborne sound. This atympanate complex tibial organ shows elaborate structural changes suggesting detection of vibrational stimuli by parallel input pathways, thus correlating well with the burrowing lifestyle and communication by substrate-transmitted vibration.
Collapse
Affiliation(s)
- Johannes Strauß
- Justus-Liebig-Universität Gießen, Institute for Animal Physiology, AG Integrative Sensory Physiology, Gießen, Germany.
| | - Kathryn Lomas
- CSIRO Manufacturing Business Unit, Clayton, Victoria, 3168, Australia
| | - Laurence H Field
- University of Canterbury, School of Biological Sciences, Christchurch, New Zealand
| |
Collapse
|
9
|
Mhatre N. Active amplification in insect ears: mechanics, models and molecules. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:19-37. [PMID: 25502323 DOI: 10.1007/s00359-014-0969-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 12/29/2022]
Abstract
Active amplification in auditory systems is a unique and sophisticated mechanism that expends energy in amplifying the mechanical input to the auditory system, to increase its sensitivity and acuity. Although known for decades from vertebrates, active auditory amplification was only discovered in insects relatively recently. It was first discovered from two dipterans, mosquitoes and flies, who hear with their light and compliant antennae; only recently has it been observed in the stiffer and heavier tympanal ears of an orthopteran. The discovery of active amplification in two distinct insect lineages with independently evolved ears, suggests that the trait may be ancestral, and other insects may possess it as well. This opens up extensive research possibilities in the field of acoustic communication, not just in auditory biophysics, but also in behaviour and neurobiology. The scope of this review is to establish benchmarks for identifying the presence of active amplification in an auditory system and to review the evidence we currently have from different insect ears. I also review some of the models that have been posited to explain the mechanism, both from vertebrates and insects and then review the current mechanical, neurobiological and genetic evidence for each of these models.
Collapse
Affiliation(s)
- Natasha Mhatre
- School of Biological Sciences, University of Bristol, Woodland road, Bristol, BS8 1UG, UK,
| |
Collapse
|
10
|
Strauß J, Stritih N, Lakes-Harlan R. The subgenual organ complex in the cave cricket Troglophilus neglectus (Orthoptera: Rhaphidophoridae): comparative innervation and sensory evolution. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140240. [PMID: 26064547 PMCID: PMC4448885 DOI: 10.1098/rsos.140240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/05/2014] [Indexed: 05/30/2023]
Abstract
Comparative studies of the organization of nervous systems and sensory organs can reveal their evolution and specific adaptations. In the forelegs of some Ensifera (including crickets and tettigoniids), tympanal hearing organs are located in close proximity to the mechanosensitive subgenual organ (SGO). In the present study, the SGO complex in the non-hearing cave cricket Troglophilus neglectus (Rhaphidophoridae) is investigated for the neuronal innervation pattern and for organs homologous to the hearing organs in related taxa. We analyse the innervation pattern of the sensory organs (SGO and intermediate organ (IO)) and its variability between individuals. In T. neglectus, the IO consists of two major groups of closely associated sensilla with different positions. While the distal-most sensilla superficially resemble tettigoniid auditory sensilla in location and orientation, the sensory innervation does not show these two groups to be distinct organs. Though variability in the number of sensory nerve branches occurs, usually either organ is supplied by a single nerve branch. Hence, no sensory elements clearly homologous to the auditory organ are evident. In contrast to other non-hearing Ensifera, the cave cricket sensory structures are relatively simple, consistent with a plesiomorphic organization resembling sensory innervation in grasshoppers and stick insects.
Collapse
Affiliation(s)
- Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig- Universität Gießen, Gießen, Germany
| | - Nataša Stritih
- Department of Entomology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinhard Lakes-Harlan
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig- Universität Gießen, Gießen, Germany
| |
Collapse
|
11
|
Strauß J, Lakes-Harlan R. Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex. J Comp Neurol 2014; 521:3791-803. [PMID: 23749306 DOI: 10.1002/cne.23378] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/24/2013] [Accepted: 05/23/2013] [Indexed: 11/08/2022]
Abstract
The subgenual organ is a scolopidial sense organ located in the tibia of many insects. In this study the neuroanatomy of the subgenual organ complex of stick insects is clarified for two species, Carausius morosus and Siyploidea sipylus. Neuronal tracing shows a subgenual organ complex that consists of a subgenual organ and a distal organ. There are no differences in neuroanatomy between the three thoracic leg pairs, and the sensory structures are highly similar in both species. A comparison of the neuroanatomy with other orthopteroid insects highlights two features unique in Phasmatodea. The subgenual organ contains a set of densely arranged sensory neurons in the anterior-ventral part of the organ, and a distal organ with 16-17 scolopidial sensilla in C. morosus and 20-22 scolopidial sensilla in S. sipylus. The somata of sensory neurons in the distal organ are organized in a linear array extending distally into the tibia, with only a few exceptions of closely associated neurons. The stick insect sense organs show a case of an elaborate scolopidial sense organ that evolved in addition to the subgenual organ. The neuroanatomy of stick insects is compared to that studied in other orthopteroid taxa (cockroaches, locusts, crickets, tettigoniids). The comparison of sensory structures indicates that elaborate scolopidial organs have evolved repeatedly among orthopteroids. The distal organ in stick insects has the highest number of sensory neurons known for distal organs so far.
Collapse
Affiliation(s)
- Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Germany
| | | |
Collapse
|
12
|
Moiseff A, Pollack GS, Hoy RR. Steering responses of flying crickets to sound and ultrasound: Mate attraction and predator avoidance. Proc Natl Acad Sci U S A 2010; 75:4052-6. [PMID: 16592556 PMCID: PMC392929 DOI: 10.1073/pnas.75.8.4052] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the steering responses of tethered, flying adult female crickets (Teleogryllus oceanicus) to acoustic stimulation. Crickets responded directionally to directional sound stimulation by bending their abdomens and hind legs to one side. We interpret this response as an attempt to turn. When stimulated with a model of conspecific calling song with a carrier frequency of from 3 to 9 kHz, crickets turned toward the sound source. We believe that this indicates a positive phonotactic response of flying females to calling, conspecific males. When offered a choice between conspecific song and the song of another species, females turned exclusively toward conspecific song, demonstrating that the response is species specific. The direction of the response is dependent on the carrier frequency of the song, and it demonstrates frequency discrimination. Females turned toward calling song when it was played at carrier frequencies from 3 to 9 kHz, but they turned away from the same song pattern played at carrier frequencies from 30 to 70 kHz. This negative phonotaxis to ultrasonic stimuli suggests that crickets, like some other nocturnal flying insects, can evade bats by acoustic detection.
Collapse
Affiliation(s)
- A Moiseff
- Section of Neurobiology and Behavior, Langmuir Laboratory, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
13
|
Strauß J, Lakes-Harlan R. Neuroanatomy of the complex tibial organ ofStenopelmatus(Orthoptera: Ensifera: Stenopelmatidae). J Comp Neurol 2008; 511:81-91. [DOI: 10.1002/cne.21836] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Lakes-Harlan R, Jacobs K, Allen GR. Comparison of auditory sense organs in parasitoid Tachinidae (Diptera) hosted by Tettigoniidae (Orthoptera) and homologous structures in a non-hearing Phoridae (Diptera). ZOOMORPHOLOGY 2007. [DOI: 10.1007/s00435-007-0043-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Marinc C, Rose U. Origin and development of unusual insect muscle tension receptors. Cell Tissue Res 2007; 330:557-66. [PMID: 17899200 DOI: 10.1007/s00441-007-0498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/27/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
This work describes the origin and development of about 200 tension receptor cells located around the anterior attachment site of the locust ovipositor muscle and their migration to their final position on the muscle fibres. The locust ovipositor muscle is the only insect system in which more than 100 tension receptor cells are associated with a single muscle. Neuronal precursors of tension receptors are first detectable by horseradish peroxidase immunohistochemistry in fourth instar larvae. Precursors consist of cell clusters (doublets, triplets and quadruplets) located on the anterior attachment site of the muscle. In the early fifth larval stage, cell clusters are absent, although a few sensory neurons that lie embedded between the muscle fibres are apparent. These neurons send their dendrites towards the anterior end of the muscle fibres and their axons posteriorly. By the fourth day of the fifth larval stage, a large number of cell clusters appears on the anterior muscle attachment site. In addition to these assemblies, cells have been identified that extend long processes running exactly along the lateral margin of the attachment site. These cells are thought to provide navigating cues for migrating tension receptors, since they are absent in later stages. By the end of the fifth larval stage, most of the clusters gradually disappear and increasing numbers of differentiated neurons embedded between the muscle fibres become visible. We conclude that the majority of tension receptors develop during the last larval stage from precursors situated on the muscle apodeme. They then migrate from the apodeme to their final place on the muscle fibres where they assume an appropriate orientation.
Collapse
Affiliation(s)
- Christiane Marinc
- Institute of Neurobiology, University Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
16
|
Abstract
We describe the central projections of physiologically characterized auditory receptor neurons of crickets as revealed by confocal microscopy. Receptors tuned to ultrasonic frequencies (similar to those produced by echolocating, insectivorous bats), to a mid-range of frequencies, and a subset of those tuned to low, cricket-like frequencies have similar projections, terminating medially within the auditory neuropile. Quantitative analysis shows that despite the general similarity of these projections they are tonotopic, with receptors tuned to lower frequencies terminating more medially. Another subset of cricket-song-tuned receptors projects more laterally and posteriorly than the other types. Double-fills of receptors and identified interneurons show that the three medially projecting receptor types are anatomically well positioned to provide monosynaptic input to interneurons that relay auditory information to the brain and to interneurons that modify this ascending information. The more laterally and posteriorly branching receptor type may not interact directly with this ascending pathway, but is well positioned to provide direct input to an interneuron that carries auditory information to more posterior ganglia. These results suggest that information about cricket song is segregated into functionally different pathways as early as the level of receptor neurons. Ultrasound-tuned and mid-frequency tuned receptors have approximately twice as many varicosities, which are sites of transmitter release, per receptor as either anatomical type of cricket-song-tuned receptor. This may compensate in part for the numerical under-representation of these receptor types.
Collapse
Affiliation(s)
- Kazuo Imaizumi
- Department of Biology, McGill University, Montreal, Quebec H3A1B1, Canada
| | | |
Collapse
|
17
|
Fullard JH, Ratcliffe JM, Guignion C. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:605-18. [PMID: 15886992 DOI: 10.1007/s00359-005-0610-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 01/19/2005] [Accepted: 01/28/2005] [Indexed: 10/25/2022]
Abstract
We observed the responses of the AN2 interneuron in the Pacific field cricket, Teleogryllus oceanicus, a cell implicated in eliciting avoidance flight away from bats, to acoustic stimuli representing the echolocation calls of bats as well as field recordings of search and gleaning attack calls of six species of insectivorous sympatric bats (West Australia, Australia: Tadarida australis, Chalinolobus goudii, Nyctophilus geoffroyi; Queensland, Australia: Vespadelus pumilus, Myotis adversus; Kaua'i, Hawai'i: Lasiurus cinereus). The broad frequency sensitivity of the AN2 cell indicates that T. oceanicus has evolved to detect a wide range of echolocation call frequencies. The reduced sensitivity of this cell at frequencies higher than 70 kHz suggests that some bats (e.g., the gleaning species, N. geoffroyi) may circumvent this insect's auditory defences by using frequency-mismatched (allotonic) calls. The calls of the freetail bat, T. australis evoked the strongest response in the AN2 cell but, ironically, this may allow this bat to prey upon T. oceanicus as previous studies report that under certain conditions, flying crickets exhibit ambiguous directional responses towards frequencies similar to those emitted by this bat. Short duration calls (1--2 ms) are sufficient to evoke AN2 responses with instantaneous spike periods capable of causing defensive flight behaviours; most bats tested emit calls of durations greater than this. The short calls of N. geoffroyi produced during gleaning attacks may reduce this species' acoustic conspicuousness to this cricket.
Collapse
Affiliation(s)
- James H Fullard
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| | | | | |
Collapse
|
18
|
Lin Y, Rössler W, Kalmring K. Morphology of the tibial organs of acrididae: Comparison of subgenual and distal organs in fore-, mid-, and hindlegs ofSchistocerca gregaria(Acrididae, Catantopinae) andLocusta migratoria(Acrididae, Oedipodinae). J Morphol 2005; 226:351-360. [DOI: 10.1002/jmor.1052260310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Abstract
This review presents an overview of the physiology of primary receptors serving tympanal hearing in insects. Auditory receptor responses vary with frequency, intensity, and temporal characteristics of sound stimuli. Various insect species exploit each of these parameters to differing degrees in the neural coding of auditory information, depending on the nature of the relevant stimuli. Frequency analysis depends on selective tuning in individual auditory receptors. In those insect groups that have individually tuned receptors, differences in physiology are correlated with structural differences among receptors and with the anatomical arrangement of receptors within the ear. Intensity coding is through the rate-level characteristics of tonically active auditory receptors and through variation in the absolute sensitivities of individual receptors (range fractionation). Temporal features of acoustic stimuli may be copied directly in the timing of afferent responses. Salient signal characteristics may also be represented by variation in the timing of afferent responses on a finer temporal scale, or by the synchrony of responses across a population of receptors.
Collapse
Affiliation(s)
- Andrew C Mason
- Department of Life Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.
| | | |
Collapse
|
20
|
Abstract
Insects are capable of detecting a broad range of acoustic signals transmitted through air, water, or solids. Auditory sensory organs are morphologically diverse with respect to their body location, accessory structures, and number of sensilla, but remarkably uniform in that most are innervated by chordotonal organs. Chordotonal organs are structurally complex Type I mechanoreceptors that are distributed throughout the insect body and function to detect a wide range of mechanical stimuli, from gross motor movements to air-borne sounds. At present, little is known about how chordotonal organs in general function to convert mechanical stimuli to nerve impulses, and our limited understanding of this process represents one of the major challenges to the study of insect auditory systems today. This report reviews the literature on chordotonal organs innervating insect ears, with the broad intention of uncovering some common structural specializations of peripheral auditory systems, and identifying new avenues for research. A general overview of chordotonal organ ultrastructure is presented, followed by a summary of the current theories on mechanical coupling and transduction in monodynal, mononematic, Type 1 scolopidia, which characteristically innervate insect ears. Auditory organs of different insect taxa are reviewed, focusing primarily on tympanal organs, and with some consideration to Johnston's and subgenual organs. It is widely accepted that insect hearing organs evolved from pre-existing proprioceptive chordotonal organs. In addition to certain non-neural adaptations for hearing, such as tracheal expansion and cuticular thinning, the chordotonal organs themselves may have intrinsic specializations for sound reception and transduction, and these are discussed. In the future, an integrated approach, using traditional anatomical and physiological techniques in combination with new methodologies in immunohistochemistry, genetics, and biophysics, will assist in refining hypotheses on how chordotonal organs function, and, ultimately, lead to new insights into the peripheral mechanisms underlying hearing in insects.
Collapse
Affiliation(s)
- Jayne E Yack
- Department of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
21
|
Imaizumi K, Pollack GS. Neural representation of sound amplitude by functionally different auditory receptors in crickets. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2001; 109:1247-1260. [PMID: 11303938 DOI: 10.1121/1.1348004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The physiological characteristics of auditory receptor fibers (ARFs) of crickets, a model system for studying auditory behaviors and their neural mechanisms, are investigated. Unlike auditory receptor neurons of many animals, cricket ARFs fall into three distinct populations based on characteristic frequency (CF) [Imaizumi and Pollack, J. Neurosci. 19, 1508-1516 (1999)]. Two of these have CFs similar to the frequency component of communication signals or of ultrasound produced by predators, and a third population has intermediate CF. Here, sound-amplitude coding by ARFs is examined to gain insights to how behaviorally relevant sounds are encoded by populations of receptor neurons. ARFs involved in acoustic communication comprise two distinct anatomical types, which also differ in physiological parameters (threshold, response slope, dynamic range, minimum latency, and sharpness of tuning). Thus, based on CF and anatomy, ARFs comprise four populations. Physiological parameters are diverse, but within each population they are systematically related to threshold. The details of these relationships differ among the four populations. These findings open the possibility that different ARF populations differ in functional organization.
Collapse
Affiliation(s)
- K Imaizumi
- Department of Biology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
22
|
Bucher D, Pflüger H. Directional sensitivity of an identified wind-sensitive interneuron during the postembryonic development of the locust. JOURNAL OF INSECT PHYSIOLOGY 2000; 46:1545-1556. [PMID: 10980300 DOI: 10.1016/s0022-1910(00)00078-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Simultaneous extracellular recordings from both locust abdominal connectives show a differential activation of both bilateral homologues of an identified long projection interneuron (A4I1) in response to wind stimuli from different directions. Despite the previously shown extensive structural dynamics of sensory afferents and synaptic rearrangement of the direct afferent-to-interneuron connections during postembryonic development, a directional sensitivity is already present in first instar nymphs. Only quantitative changes in the strength of the directional response can be detected. Intracellular stainings of the A4I1 interneuron in first instar nymphs and adults show that general morphological features do not change during postembryonic development, in contrast to the presynaptic sensory afferents. This also holds for general morphological features of pleuroaxillary flight motoneurons. The output connections of A4I1 to these motoneurons and an unidentified intersegmental interneuron are already present in flightless nymphs.
Collapse
Affiliation(s)
- D Bucher
- Freie Universität Berlin, Fachbereich Biologie, Institut für Neurobiologie, Königin-Luise-Strasse 28-30, D-14195, Berlin, Germany
| | | |
Collapse
|
23
|
Abstract
This paper provides an overview of insect peripheral auditory systems focusing on tympanate ears (pressure detectors) and emphasizing research during the last 15 years. The theme throughout is the evolution of hearing in insects. Ears have appeared independently no fewer than 19 times in the class Insecta and are located on various thoracic and abdominal body segments, on legs, on wings, and on mouth parts. All have fundamentally similar structures-a tympanum backed by a tracheal sac and a tympanal chordotonal organ-though they vary widely in size, ancillary structures, and number of chordotonal sensilla. Novel ears have recently been discovered in praying mantids, two families of beetles, and two families of flies. The tachinid flies are especially notable because they use a previously unknown mechanism for sound localization. Developmental and comparative studies have identified the evolutionary precursors of the tympanal chordotonal organs in several insects; they are uniformly chordotonal proprioceptors. Tympanate species fall into clusters determined by which of the embryologically defined chordotonal organ groups in each body segment served as precursor for the tympanal organ. This suggests that the many appearances of hearing could arise from changes in a small number of developmental modules. The nature of those developmental changes that lead to a functional insect ear is not yet known.
Collapse
Affiliation(s)
- D D Yager
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
24
|
Abstract
Crickets provide a useful model to study neural processing of sound frequency. Sound frequency is one parameter that crickets use to discriminate between conspecific signals and sounds made by predators, yet little is known about how frequency is represented at the level of auditory receptors. In this paper, we study the physiological properties of auditory receptor fibers (ARFs) by making single-unit recordings in the cricket Teleogryllus oceanicus. Characteristic frequencies (CFs) of ARFs are distributed discontinuously throughout the range of frequencies that we investigated (2-40 kHz) and appear to be clustered around three frequency ranges (</=5.5, 10-12, and >/=18 kHz). A striking characteristic of cricket ARFs is the occurrence of additional sensitivity peaks at frequencies other than CFs. These additional sensitivity peaks allow crickets to detect sound over a wide frequency range, although the CFs of ARFs cover only the frequency bands mentioned above. To the best of our knowledge, this is the first example of the extension of an animal's hearing range through multiple sensitivity peaks of auditory receptors.
Collapse
|
25
|
Hardt M, Watson AH. Distribution of input and output synapses on the central branches of bushcricket and cricket auditory afferent neurones: immunocytochemical evidence for GABA and glutamate in different populations of presynaptic boutons. J Comp Neurol 1999; 403:281-94. [PMID: 9886031 DOI: 10.1002/(sici)1096-9861(19990118)403:3<281::aid-cne1>3.0.co;2-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to investigate the synapses on the terminals of primary auditory afferents in the bushcricket and cricket, these were impaled with microelectrodes and after physiological characterisation, injected intracellularly with horseradish peroxidase. The tissue was prepared for electron microscopy, and immunocytochemistry for gamma-aminobutyric acid (GABA) and glutamate was carried out on ultrathin sections by using a post-embedding immunogold technique. The afferent terminals received many input synapses. Between 60-65% of these were made by processes immunoreactive for GABA and approximately 25% from processes immunoreactive for glutamate. The relative distribution of the different classes of input were analysed from serial section reconstruction of terminal afferent branches. Inputs from GABA and glutamate-immunoreactive processes appeared to be scattered at random over the terminal arborisation of the afferents both with respect to each other and to the architecture of the terminals. They were, however, always found close to the output synapses. The possible roles of presynaptic inhibition in the auditory afferents is discussed in the context of the auditory responses of the animals.
Collapse
Affiliation(s)
- M Hardt
- Zoologisches Institut, Fachbereich Zoologie, J.W. Goethe Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
26
|
|
27
|
|
28
|
Lewis FP, Fullard JH. Neurometamorphosis of the ear in the gypsy moth, Lymantria dispar, and its homologue in the earless forest tent caterpillar moth, Malacosoma disstria. JOURNAL OF NEUROBIOLOGY 1996; 31:245-62. [PMID: 8885204 DOI: 10.1002/(sici)1097-4695(199610)31:2<245::aid-neu9>3.0.co;2-b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The adult gypsy moth, Lymantria dispar (Lymantriidae: Noctuoidea) has a pair of metathoracic tympanic ears that each contain a two-celled auditory chordotonal organ (CO). The earless forest tent caterpillar moth, Malacosoma disstria (Lasiocampidae: Bombycoidea), has a homologous pair of three-celled, nonauditory hindwing COs in their place. The purpose of our study was to determine whether the adult CO in both species arises from a preexisting larval organ or if it develops as a novel structure during metamorphosis. We describe the larval metathoracic nervous system of L. dispar and M. disstria, and identify a three-celled chordotonal organ in the anatomically homologous site as the adult CO. If the larval CO is severed from the homologue of the adult auditory nerve (IIIN1b1) in L. dispar prior to metamorphosis, the adult develops an ear lacking an auditory organ. Axonal backfills of the larval IIIN1b1 nerve in both species reveal three chordotonal sensory neurons and one nonchordotonal multipolar cell. The axons of these cells project into tracts of the central nervous system putatively homologous with those of the auditory pathway in adult L. dispar. Following metamorphosis, M. disstria moths retain all four cells (three CO and one multipolar) while L. dispar adults possess two cells that service the auditory CO and one nonauditory, multipolar cell. We conclude that the larval IIIN1b1 CO is the precursor of both the auditory organ in L. dispar and the putative proprioceptor CO in M. disstria and represents the premetamorphic condition of these insects. The implications of our results in understanding the evolution of the ear in the Lepidoptera and insects in general are discussed.
Collapse
Affiliation(s)
- F P Lewis
- Department of Zoology, Erindale College, University of Toronto, Mississauga, Ontario, Canada
| | | |
Collapse
|
29
|
Development of leg chordotonal sensory organs in normal and heat shocked embryos of the cricket Teleogryllus commodus (Walker). ACTA ACUST UNITED AC 1996; 205:344-355. [DOI: 10.1007/bf00377214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/1995] [Accepted: 12/28/1995] [Indexed: 11/30/2022]
|
30
|
Popov A, Michelsen A, Lewis B. Changes in the mechanics of the cricket ear during the early days of adult life. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1994. [DOI: 10.1007/bf00215112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Lin Y, Kalmring K, Jatho M, Sickmann T, Rössler W. Auditory receptor organs in the forelegs ofGampsocleis gratiosa (Tettigoniidae): Morphology and function of the organs in comparison to the frequency parameters of the conspecific song. ACTA ACUST UNITED AC 1993. [DOI: 10.1002/jez.1402670404] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Nebeling B, Rössler W, Jatho M. Comparison of the physiology of the auditory receptor organs in Gryllus bimaculatus and Ephippiger ephippiger: CSD recordings within the auditory neuropiles. JOURNAL OF NEUROBIOLOGY 1993; 24:447-55. [PMID: 8515250 DOI: 10.1002/neu.480240404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The syllables of the song of the tettigoniid Ephippiger ephippiger consist of a series of short sound impulses with a broad-banded frequency spectrum. Syllables of the song of the gryllid species Gryllus bimaculatus are nearly pure tones with sharply tuned frequency maxima. A comparison of the physiology of the auditory receptor organs of both species was carried out by using acoustical stimuli with different carrier frequencies and time-amplitude patterns. The neuronal ensemble activity of receptor cell groups of the tympanal organ was measured within the prothoracic ganglion using the CSD technique. In E. ephippiger, response maxima were found at carrier frequencies mirroring the broad frequency content of the conspecific song. The receptor cells of E. ephippiger are highly sensitive to transient sound impulses. In G. bimaculatus, the receptor cell population is more sharply tuned to the basic frequencies of the natural songs; pure tones represent more effective stimuli than transient sound signals. The causes for these species-specific differences are discussed with regard to probable adaptations of the receptor organs to the parameters of the conspecific songs.
Collapse
Affiliation(s)
- B Nebeling
- AG Neurobiologie, FB Biologie-Zoologie, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | |
Collapse
|
33
|
Nagayama T, Newland PL. A sensory map based on velocity threshold of sensory neurones from a chordotonal organ in the tailfan of the crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1993; 172:7-15. [PMID: 8445581 DOI: 10.1007/bf00214711] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The central projections of sensory neurones innervating a strand chordotonal organ (CO) in the tailfan of the crayfish, Procambarus clarkii (Girard) have been investigated. The CO monitors movement of the exopodite of the tailfan relative to the endopodite. Intracellular recording and staining were used to characterise the response of the sensory neurones to applied stretches of the chordotonal organ and to reveal their morphology. Two gross morphological types of afferents were found: those that terminated in the terminal (6th) abdominal ganglion on the side ipsilateral to the sensory receptor, and those that had branches in the terminal ganglion and an intersegmental axon that ascended rostrally. Afferents responded to position, velocity and direction of imposed CO displacement. Afferents with particular physiological properties had similar morphologies in different crayfish. Irrespective of their directional responses, afferents had central projection areas dependent upon their velocity thresholds. Many afferents responded only during movement of the CO, and those with the lowest velocity thresholds (2 degrees/s) had branches that projected most anteriorly, while those with progressively higher velocity thresholds (up to 200 degrees/s) projected progressively more posteriorly. Afferents that responded to low velocity ramp movements and spiked tonically projected to more posterior areas of the ganglion than those that responded only to movements.
Collapse
Affiliation(s)
- T Nagayama
- Zoological Institute, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
34
|
R�ssler W. Postembryonic development of the complex tibial organ in the foreleg of the bushcricket Ephippiger ephippiger (Orthoptera, Tettigoniidae). Cell Tissue Res 1992. [DOI: 10.1007/bf00353905] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Yack JE, Roots BI. The metathoracic wing-hinge chordotonal organ of an atympanate moth, Actias luna (Lepidoptera, Saturniidae): a light- and electron-microscopic study. Cell Tissue Res 1992; 267:455-71. [PMID: 1571960 DOI: 10.1007/bf00319368] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structure of a simple chordotonal organ, the presumed homologue of the noctuoid moth tympanal organ, is described in the atympanate moth, Actias luna. The organ consists of a proximal scolopidial region and a distal strand, which attaches peripherally to the membraneous cuticle ventral to the hindwing alula. The strand is composed of elongate, microtubule-rich cells encased in an extracellular connective tissue sheath. The scolopidial region houses three mononematic, monodynal scolopidia, each comprised of a sensory cell, scolopale cell, and attachment cell. The dendritic apex is octagonally shaped in transverse section, its inner membrane lined by a laminated structure reminiscent of the noctuoid tympanal organ 'collar'. A 9 + 0-type cilium emerges from the dendritic apex, passes through both the scolopale lumen and cap, and terminates in an extracellular space distal to the latter. Proximal extensions of the attachment cell and distal prolongations of the scolopale cell surrounding the cap are joined by an elaborate desmosome, with which is associated an extensive electron-dense fibrillar plaque. Within the scolopale cell, this plaque constitutes the scolopale 'rod' material. The data are discussed in terms of both the organ's potential function, and its significance as the evolutionary prototype of the noctuoid moth ear.
Collapse
Affiliation(s)
- J E Yack
- Department of Zoology, Erindale College, University of Toronto, Mississauga, Ontario, Canada
| | | |
Collapse
|
36
|
|
37
|
Oldfield BP, Kleindienst HU, Huber F. Physiology and tonotopic organization of auditory receptors in the cricket Gryllus bimaculatus DeGeer. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1986; 159:457-64. [PMID: 3783498 DOI: 10.1007/bf00604165] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Physiological recordings were obtained from identified receptors in the tympanal organ of Gryllus bimaculatus. By immersing the prothoracic leg in Ringer solution and removing the anterior tympanic membrane the auditory receptors were exposed without significantly altering the frequency response of the auditory organ (Fig. 1). Each receptor was tuned to a specific sound frequency. For sound frequencies below this characteristic frequency the roll-off in sensitivity decreased from 20-30 dB/octave to 10-15 dB/octave as the characteristic frequency of receptors increased from 3-11 kHz (Fig. 4A). For each individual receptor the slope, dynamic range and maximum spike response were similar for different sound frequencies (Fig. 9A). The receptors were tonotopically organized with the characteristic frequency of the receptors increasing from the proximal to the distal end of the array (Figs. 5, 6). Several receptors had characteristic frequencies of 5 kHz. These receptors were divided into two groups on the basis of their maximum spike response produced in response to pure tones of increasing intensity (Fig. 7). Independent of the tuning of the receptor no two-tone inhibition was observed in the periphery, thus confirming that such interactions are a property of central integration.
Collapse
|
38
|
Pallas SL, Hoy RR. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus. J Comp Neurol 1986; 248:348-59. [PMID: 3722462 DOI: 10.1002/cne.902480305] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the cricket, Teleogryllus oceanicus, the dendritic arborizations of an identified auditory interneuron (Int-1) are normally restricted to the ipsilateral auditory neuropile; unilateral deafferentation causes the medial portion of the dendritic field to sprout across the midline and make functional connections with the contralateral auditory neuropile (Hoy et al., '78: Soc. Neurosci. Abstr. 4:115, '85: Proc. Natl. Acad. Sci. USA 82:7772-7786; Hoy and Moiseff, '79: Soc. Neurosci. Abstr. 5:163). We have found that regeneration of the auditory afferents also results in an aberrant pattern of innervation of Int-1. Crickets were unilaterally deafferented during postembryonic development by crushing or cutting the auditory nerve. Regeneration of afferent-to-Int-1 connections was tested behaviorally. Of 86 nerve-crushed crickets tested as adults in the behavioral assay, 66% showed functional regeneration of the afferents. Similar results were obtained from the nerve-cut group. However, morphological investigations demonstrated that most of the regenerates still retained the aberrant contralateral dendritic projection. Electrophysiological recordings from these Int-1s showed that not only are some of them driven by their regenerated auditory afferents (the normal pathway) but that they retain their excitability via their contralateral dendrites (the aberrant pathway). This demonstrates that reinnervation of Int-1 by its normal afferent pool neither causes retraction nor prevents the formation of connections made with foreign, contralateral afferents. When the contralateral afferent pool was removed after Int-1 had sprouted, the sprouts remained present, but preliminary results suggest that if the contralateral afferents are removed before Int-1 is deafferented, sprouts are not formed. The results are discussed in relation to the roles of competition and conservation of membrane area in controlling synapse formation.
Collapse
|
39
|
Peripheral auditory directionality in the cricketGryllus campestris L.,Teleogryllus oceanicus Le Guillou). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1983. [DOI: 10.1007/bf00612606] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Oldfield BP. Central projections of primary auditory fibres in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1983. [DOI: 10.1007/bf00623914] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Tympanal membrane motion is necessary for hearing in crickets. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1983. [DOI: 10.1007/bf00605455] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Ball EE, Field LH. Structure of the auditory system of the weta Hemideina crassidens (blanchard, 1851) (Orthoptera, Ensifera, Gryllacridoidea, Stenopelmatidae). 1. Morphology and histology. Cell Tissue Res 1981; 217:321-43. [PMID: 7237530 DOI: 10.1007/bf00233584] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The morphology and histology of the tibial auditory system of the New Zealand weta, Hemideina crassidens, are described. The groups of acoustic sensilla conform closely to the subgenual organ, intermediate organ and crista acoustica of the Tettigoniidae. Each prothoracic tibia bears two thick (40-100 micrometers) tympana of approximately equal size divided into two distinct zones. The tracheae of the prothoracic legs are connected across the midline by a transverse commissure and by a chiasma between the ventral longitudinal trunks. No expanded vesicle ("vesicula acoustica") is associated with the spiracle. The anterior and posterior tracheae are divided into three distinct regions within the tibia: (1) a bulbous proximal posterior inflated chamber, (2) the tympanal vesicles to which the tympana attach, and (3) an elongate distal posterior inflated chamber. The pattern of innervation in the tympanal region is similar to that of gryllids as is the central projection of the tympanal nerve. The subgenual organ, which contains ca. 50 sensilla, forms an acute angle with the wall of the leg. The intermediate organ contains ca. 19 sensilla forming an arc against the anterior wall of the leg. The crista acoustica contains ca. 50 sensilla aligned in a gelatinous matrix along the dorsal surface of the anterior tympanal vesicle. Each dendrite projects distally, then is reflected proximally and dorsally to end in a scolopale embedded in an attachment cell. The attachment cells are stellate in the proximal portion of the crista, but distally they occur as parallel lamellae. The weta ear is compared with those of other Orthoptera.
Collapse
|
43
|
Analysis of the cricket auditory system by acoustic stimulation using a closed sound field. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1981. [DOI: 10.1007/bf00609930] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Hutchings M, Lewis B. Response properties of primary auditory fibers in the cricketTeleogryllus oceanieus (Le Guillou). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1981. [DOI: 10.1007/bf00606076] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Primary auditory neurons in crickets: Physiology and central projections. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1980. [DOI: 10.1007/bf00656914] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Development of the auditory tympana in the cricketTeleogryllus commodus (Walker): Experiments on regeneration and transplantation. ACTA ACUST UNITED AC 1979. [DOI: 10.1007/bf01964328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Boyan GS. Directional responses to sound in the central nervous system of the cricketTeleogryllus commodus (Orthoptera: Gryllidea). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1979. [DOI: 10.1007/bf00611049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Ball EE, Hill KG. Functional development of the auditory system of the cricket,Teleogryllus commodus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1978. [DOI: 10.1007/bf01352297] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Morphology of the sense organs in the proximal parts of the tibiae ofGryllus campestrisL. andGryllus bimaculatus deGeer (Insecta, Ensifera). ACTA ACUST UNITED AC 1978. [DOI: 10.1007/bf00993947] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
|