1
|
Miyano Y, Mikami M, Katsuragi H, Shinkai K. Effects of Sr 2+, BO 33-, and SiO 32- on Differentiation of Human Dental Pulp Stem Cells into Odontoblast-Like Cells. Biol Trace Elem Res 2023; 201:5585-5600. [PMID: 36917393 DOI: 10.1007/s12011-023-03625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
This study aimed to clarify the effects of strontium (Sr2+), borate (BO33-), and silicate (SiO32-) on cell proliferative capacity, the induction of differentiation into odontoblast-like cells (OLCs), and substrate formation of human dental pulp stem cells (hDPSCs). Sr2+, BO33-, and SiO32- solutions were added to the hDPSC culture medium at three different concentrations, totaling nine experimental groups. The effects of these ions on hDPSC proliferation, calcification, and collagen formation after 14, 21, and 28 days of culture were evaluated using a cell proliferation assay, a quantitative alkaline phosphatase (ALP) activity assay, and Alizarin Red S and Sirius Red staining, respectively. Furthermore, the effects of these ions on hDPSC differentiation into OLCs were assessed via quantitative polymerase chain reaction and immunocytochemistry. Sr2+ and SiO32- increased the expression of odontoblast markers; i.e., nestin, dentin matrix protein-1, dentin sialophosphoprotein, and ALP genes, compared with the control group. BO33- increased the ALP gene expression and activity. The results of this study suggested that Sr2+, BO33-, and SiO32- may induce hDPSC differentiation into OLCs.
Collapse
Affiliation(s)
- Yuko Miyano
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, Nigata, Japan
| | - Masato Mikami
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Hiroaki Katsuragi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Koichi Shinkai
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Nigata, 951-8580, Japan.
| |
Collapse
|
2
|
George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 2008; 108:4670-93. [PMID: 18831570 PMCID: PMC2748976 DOI: 10.1021/cr0782729] [Citation(s) in RCA: 502] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anne George
- Department of Oral Biology, Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
3
|
Affiliation(s)
- Adele L. Boskey
- a Hospital for Special Surgery and Cornell University Medical College New York , NY 10021, USA
| |
Collapse
|
4
|
Catón J, Bringas P, Zeichner-David M. Establishment and characterization of an immortomouse-derived odontoblast-like cell line to evaluate the effect of insulin-like growth factors on odontoblast differentiation. J Cell Biochem 2007; 100:450-63. [PMID: 16927272 DOI: 10.1002/jcb.21053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insulin-like growth factors (IGF-I and IGF-II) play important roles in regulating growth and differentiation of many different organs including teeth. The presence of these factors in the developing tooth has been demonstrated. In vitro studies using tooth explants grown in the presence of IGFs suggest that they promote differentiation of ameloblast and odontoblasts cells. This is achieved by inducing or repressing gene expression associated with these cells. Since some of the genes involved in tooth differentiation are expressed by both cells, to determine the effect of IGF on odontoblast cell differentiation we first need a cell line in which a controlled environment can be created. In this study, we report the establishment and characterization of an Immortomouse-derived odontoblast-like cell line. This conditional cell line can grow indefinitely under permissive conditions in the presence of INF-gamma at 33 degrees C, differentiate into odontoblast-like cells and produce a mineralized extracellular matrix when the INF-gamma is removed and cell maintained at 39 degrees C. Addition of exogenous IGFs to the media results in an accelerated production of a mineralized matrix. This is the result of increased transcription of genes associated with bone mineralization while down regulating genes associated with dentin formation like DSPP. This data suggest that IGFs induce dental papillae mesenchyme cells to produce a bone-like mineralized extracellular matrix.
Collapse
Affiliation(s)
- Javier Catón
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
5
|
Tonomura A, Sumita Y, Ando Y, Iejima D, Kagami H, Honda MJ, Ueda M. Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts. Connect Tissue Res 2007; 48:229-38. [PMID: 17882698 DOI: 10.1080/03008200701507909] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A robust method for generating odontoblasts from cultured dental pulp cells has not been established. In this study, efficient methods for deriving odontoblasts from cultured human and porcine dental pulp-derived cells were investigated with special attention to species differences. Cultured human cells showed relatively low alkaline phosphatase (ALP) activity in the presence of dexamethasone (Dex) and beta-glycerophosphate (beta-Gly). In contrast, the addition of 1,25-dihydroxyvitaminD(3) (VitD3) significantly increased the ALP activity. In porcine cells, beta-Gly alone or a combination of Dex and beta-Gly significantly increased ALP activity; however, addition of VitD3 reduced this activity. RT-PCR and Western blotting analysis revealed that the combination of three induction reagents on human cells significantly upregulates the expression of osteocalcin mRNA, and dentin sialoprotein. We propose that the combination of Dex, beta-Gly, and VitD3 is critical for differentiation of human dental pulp-derived cells into odontoblasts. In addition, the inducibility of dental pulp-derived cells presented remarkable species differences.
Collapse
Affiliation(s)
- Akiko Tonomura
- Research & Development Center, Hitachi Medical Corporation, Kashiwa, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Isolation of sufficient quantities of pure populations of odontoblasts from healthy and diseased teeth will facilitate our understanding of dentinogenesis during development and repair. Here we describe a novel Piezo-power microdissection (PPMD) technique for the isolation of pure populations of odontoblasts and pulpal tissue from formalin-fixed, paraffin-embedded, mature, healthy and carious human teeth. Odontoblasts and pulpal tissue gene expression were subsequently studied in ribonucleic acid isolated from PPMD preparations using a semi-quantitative reverse transcription polymerase chain reaction approach. Data confirmed that the genes for dentine sialophosphoprotein and Nestin are preferentially expressed in odontoblasts, whilst the genes for both collagen-1alpha and collagen-3alpha were expressed preferentially in pulpal tissue, particularly in carious samples. PPMD provides a novel and powerful approach to isolate pure populations of dental tissues and cells from fixed specimens for subsequent downstream molecular analyses.
Collapse
Affiliation(s)
- Julia L McLachlan
- Oral Biology, School of Dentistry, University of Birmingham, St. Chads Queensway, Birmingham B4 6NN, UK
| | | | | |
Collapse
|
7
|
Milan AM, Waddington RJ, Smith PM, Embery G. Odontoblast transport of sulphate--the in vitro influence of fluoride. Arch Oral Biol 2003; 48:377-87. [PMID: 12711382 DOI: 10.1016/s0003-9969(03)00016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study reports the development of a culture system for the analysis of 35S-sulphate release from odontoblasts in vitro. Pulpless longitudinally split rat incisors were cultured in supplemented minimum essential medium (alphaMEM) with 20 microCi 35S-sulphate per ml, 20 microCi 3H-mannitol per ml for 1h. Teeth were then transferred to fresh unlabelled media and aliquots of media were removed and the level of 35S-sulphate 3H-mannitol determined. Results indicated a two phase release of 35S-sulphate into the media, and comparison with pulp tissue indicated a specific release pattern. Transport of sulphate is essential for correct synthesis and glycosylation of macromolecules such as proteoglycans (PG). Previous studies have shown that post-translational modifications of these proteins can be influenced by excess fluoride, resulting in decreased sulphation and elongation of glycosaminoglycan (GAG) chains. Therefore the influence of fluoride on sulphate transport, using the optimised culture system was also investigated. Inclusion of 6mM fluoride during pulse labelling caused a significant decrease of 35S-sulphate (P<0.0001) during the initial release phase. Inclusion of 3 and 6mM fluoride only in the post-labelling incubation media resulted in a significant decrease in the release of 35S-sulphate (P<0.0001), during the total time course. The influence of fluoride was not dose dependent. Inclusion of a specific chloride channel blocker SITS, into the culture system indicated that 35S-sulphate transport may in part be via this route. Fluoride would therefore appear to influence the transport of 35S-sulphate across the odontoblast membrane, potentially via a chloride channel.
Collapse
Affiliation(s)
- A M Milan
- Department of Clinical Dental Sciences, The University of Liverpool, Edwards Building, Daulby Street, Liverpool L69 3GN, UK.
| | | | | | | |
Collapse
|
8
|
Camps J, About I, Thonneman B, Mitsiadis TA, Schmaltz G, Franquin JC. Two- versus three-dimensional in vitro differentiation of human pulp cells into odontoblastic cells. Connect Tissue Res 2003; 43:396-400. [PMID: 12489188 DOI: 10.1080/03008200290001069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The spatial organization of the pulp cells may modify the cytodifferentiation process. The purpose of this study was to compare the two- versus three-dimensional cell culture systems for differentiation of human odontoblastic cells in vitro. Pulpal cores from freshly extracted human third molars were cultured in vitro in a perfusion device on two types of membranes: polyester membrane (two-dimensional [2D] cell culture) and nylon mesh (three-dimensional [3D] cell culture). The cells were incubated with minimum essential medium containing (a) substitute serum, (b) 10% fetal calf serum (FCS), (c) 10% fetal calf serum + 2 mM beta-glycerophosphate (beta GP), and (d) 10% fetal calf serum + transforming growth factor (TGF) beta 1. Immunohistochemistry was used to evaluate the expression of collagen I, osteonectin, and nestin. Small differences were observed between 2D and 3D cell culture systems. This was particularly evident in the 10% FCS group. beta-Glycerophosphate in the 3D system seems to stimulate the osteogenic cell phenotype, as a considerable induction of osteonectin is observed.
Collapse
Affiliation(s)
- J Camps
- Laboratoire IMEB, Faculté d'Odontologie, Marseille, France
| | | | | | | | | | | |
Collapse
|
9
|
McLachlan JL, Smith AJ, Sloan AJ, Cooper PR. Gene expression analysis in cells of the dentine-pulp complex in healthy and carious teeth. Arch Oral Biol 2003; 48:273-83. [PMID: 12663072 DOI: 10.1016/s0003-9969(03)00003-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Knowledge of the molecular events that occur in carious disease has so far been constrained due to difficulties in obtaining sufficient quantities of the dental tissues and cells involved. Our histological findings indicate that a pulp-odontoblast cellular complex can be obtained from carious and healthy human teeth when exposed to low-temperatures prior to pulpal extirpation and from rodent teeth processed at room-temperature. In contrast, pulpal tissue extracted from room-temperature processed human teeth and low-temperature processed rodent teeth resulted in the odontoblast layer remaining attached to the pulp chamber. Semi-quantitative RT-PCR (sq-RT-PCR) analysis confirmed that markers previously shown to be preferentially expressed in odontoblasts, namely dentin sialophosphoprotein (DSPP) and Nestin, amplified more readily from the extracted pulp-odontoblast complex, as compared to pulpal tissue alone, in both human and rodent samples. Subsequent gene expression analysis of collagen-1alpha and collagen-3alpha indicated levels were significantly higher in carious pulpal tissue. In addition, analysis characterising the expression of members of the transforming growth factor and bone morphogenic protein families and their receptors indicated in general, that these genes were expressed by healthy odontoblasts and up-regulated in both pulpal cells and odontoblasts in response to carious injury. Use of this temperature-sensitive dental tissue preparation procedure allows detection of differential gene expression in odontoblasts and other pulpal cells in healthy and carious tissue.
Collapse
Affiliation(s)
- Julia L McLachlan
- Oral Biology, School Of Dentistry, University of Birmingham, St. Chads Queensway, Birmingham B4 6NN, UK
| | | | | | | |
Collapse
|
10
|
Milan AM, Waddington RJ, Embery G. Fluoride alters casein kinase II and alkaline phosphatase activity in vitro with potential implications for dentine mineralization. Arch Oral Biol 2001; 46:343-51. [PMID: 11269868 DOI: 10.1016/s0003-9969(00)00125-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dentine phosphoprotein (DPP), a major non-collagenous acidic protein of dentine, undergoes altered phosphorylation in vivo in the presence of high fluoride concentrations. This has major implications for the altered mineralization patterns found during fluorosis. In dentine, casein kinase II is involved in phosphorylating DPP, and alkaline phosphatase (ALP) is ascribed roles in the dephosphorylation of DPP, increasing the inorganic phosphate at the mineralization front and the removal of pyrophosphate. Here the influence of fluoride in vitro on the activity of purified casein kinase II and ALP and its relation to altered patterns of mineralization were examined. Kinetic analysis showed that casein kinase II activity was completely inhibited at 0.04 M NaF. Vmax when compared to the control assay was significantly decreased (P < 0.0001) between concentrations 4 x 10(-4)-4 x 10(-8) M NaF. Significant changes to the Km (P < 0.0001) were also observed. ALP activity was inhibited by NaF (0.09-9 x 10(-8) M), with Vmax significantly decreased (P < 0.0001) at 0.09 M NaF. Alterations in the activity of these enzymes in the presence of fluoride may in part explain the decreased phosphorylation observed in DPP isolated from fluorotic dentine and may aid understanding of the altered matrix mediated mineralization patterns found during fluorosis.
Collapse
Affiliation(s)
- A M Milan
- Department of Basic Dental Science, Dental School, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK.
| | | | | |
Collapse
|
11
|
About I, Bottero MJ, de Denato P, Camps J, Franquin JC, Mitsiadis TA. Human dentin production in vitro. Exp Cell Res 2000; 258:33-41. [PMID: 10912785 DOI: 10.1006/excr.2000.4909] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main hard tissues of teeth are composed of dentin and enamel, synthesized by the mesenchyme-derived odontoblasts and the epithelial-derived ameloblasts, respectively. Odontoblasts are highly differentiated post-mitotic cells secreting the organic matrix of dentin throughout the life of the animal. Pathological conditions such as carious lesions and dental injuries are often lethal to the odontoblasts, which are then replaced by other pulp cells. These cells are able to differentiate into odontoblast-like cells and produce a reparative dentin. In this study we reproduced this physiological event in an in vitro culture system using pulps of human third molars. Pulp cells cultured in presence of beta-glycerophosphate formed mineralization nodules, which grew all over the culture period. The immunohistochemical study revealed that, as odontoblasts, pulp cells contributing to the nodule formation express type I collagen, osteonectin, and nestin. By the exception of nestin, these proteins are also detected in the nodules. The composition of the nodules was also analyzed by Fourier transform infrared microspectroscopy. The spectra obtained showed that both the organic and the mineral composition of the nodules have the characteristics of the human dentin and differ from those of enamel and bone. Taken together, these results show that both the molecular and the mineral characteristics of the human dentin matrix are respected in the in vitro culture conditions.
Collapse
Affiliation(s)
- I About
- Laboratoire IMEB, Faculté d'Odontologie, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | |
Collapse
|
12
|
Suzuki Y, Yamaguchi A, Ikeda T, Kawase T, Saito S, Mikuni-Takagaki Y. In situ phosphorylation of bone and dentin proteins by the casein kinase II-like enzyme. J Dent Res 1998; 77:1799-806. [PMID: 9786636 DOI: 10.1177/00220345980770100701] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Our previous studies suggested the possibility of extracellular phosphorylation of matrix phosphoproteins into more phosphorylated forms by mature odontoblasts and osteocytes (Mikuni-Takagi et al., 1995; Satoyoshi et al., 1995). To elucidate such phosphorylation of bone and dentin proteins, we developed a histochemical method using frozen sections to determine the sites of enzymatic processing by the casein kinase II-like enzyme. It was observed that proteins in bone, dentin, and predentin are phosphorylated by the endogenous enzyme when the tissue slices were incubated with [gamma-32P] GTP, suggesting that there are both substrates and the enzyme in these matrices. In vivo, phosphate donors, ATP and GTP, may be supplied through dentinal canals and osteocyte canaliculi. Immunohistochemical analysis of frozen sections showed that the extremely intense staining of phosphoserine residues by anti-phosphoserine antibodies appeared in dentin only after demineralization of the tissue samples. It implies that these phosphoserine residues become bound to mineral as soon as the phosphorylation is completed, thereby being inaccessible to the antibodies without demineralization. The data support our notion that the extracellular phosphorylation of dentin/bone proteins, regulated by the developmental stages of bone and dentin cells, occurs prior to matrix mineralization.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Oral Biochemistry, Kanagawa Dental College, Yokosuka, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Tjäderhane L, Salo T, Larjava H, Larmas M, Overall CM. A novel organ culture method to study the function of human odontoblasts in vitro: gelatinase expression by odontoblasts is differentially regulated by TGF-beta1. J Dent Res 1998; 77:1486-96. [PMID: 9663433 DOI: 10.1177/00220345980770070301] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Odontoblasts cannot be cultured by traditional cell culture methods, thus restricting in vitro studies. Here we present an organ culture method for human odonto-blasts that utilizes the pulp chamber as a culture crucible. Crowns of human third molars were dissected, pulp was gently removed, and the odontoblasts attached to and in the walls of the pulp chambers were cultured in serum-free OPTI-MEM medium, or DMEM/Ham's F12 medium containing 10% serum. Pulp tissues were cultured separately. Cell content and morphology were analyzed by SEM, and the removed pulps were examined by light microscopy. Proteins secreted into the medium with or without TGF-beta1 supplementation were metabolically labeled with [35S]methionine, and the total protein content was assessed by TCA precipitation and SDS-PAGE/fluorography. To assess the role of gelatinolytic enzymes on dentin matrix remodeling, we used enzymography to analyze the effect of TGF-beta1 on gelatinase A and B expression. SEM revealed odontoblasts in pulp chambers after 5 days of culture, with only few or no fibroblasts, and no alterations in the odontoblast cell morphology or differences between the cells cultured in serum-free and serum-containing media. Rarely were any odontoblasts present in pulp tissue. Radiolabeling revealed protein synthesis and secretion until day 6 in both the odontoblast and pulp cultures, with no marked differences between TGF-beta1-treated and control cultures. The level of gelatinase A remained constant up to 7 days, while gelatinase B expression was always low and decreased with time in culture. However, gelatinase B levels were markedly increased upon TGF-beta1 treatment of cells and remained high to day 7. The results suggest that this method provides a novel technique for the study of human odontoblasts in vitro and that odontoblasts can be cultured even in serum-free conditions.
Collapse
Affiliation(s)
- L Tjäderhane
- Institute of Dentistry, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
14
|
Boskey AL. Biomineralization: Conflicts, challenges, and opportunities. J Cell Biochem 1998; 72 Suppl 30-31:83-91. [DOI: 10.1002/(sici)1097-4644(1998)72:30/31+<83::aid-jcb12>3.0.co;2-f] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1998] [Accepted: 09/02/1998] [Indexed: 02/06/2023]
|
15
|
Veis A, Sfeir C, Wu CB. Phosphorylation of the proteins of the extracellular matrix of mineralized tissues by casein kinase-like activity. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1997; 8:360-79. [PMID: 9391750 DOI: 10.1177/10454411970080040101] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The extracellular matrix of the connective tissue contains non-collagenous proteins (NCP) which are acidic in character. The NCP of mineralizing systems (bone, dentin) differ from those of the non-mineralizing systems (skin, tendon) in that the mineralized tissue NCP are frequently phosphorylated. The phosphorylated proteins have been implicated in various aspects of the mineralization process. Thus, it is of interest to consider the mechanism and regulation of phosphorylation of the major matrix NCP. The majority of the phosphorylation takes place at Ser or Thr residues embedded within acidic sequences, and therefore are targets for casein kinase I (CK1) or casein kinase II (CK2)-like kinases. CK1 and CK2 are distantly related members of the protein kinase family. They are ubiquitous, constitutively active, second-messenger-independent kinases. CK1 is found in a variety of isoforms, all homologous to the alpha-subunit of the protein kinase family. It acts as a monomer. The active form of CK2 is a tetrameric holoenzyme, with 2 alpha catalytic subunits and 2 beta regulatory subunits. The CK2 alpha has activity alone, but the holoenzyme is four- to five-fold that activity. CK2 can use either ATP or GTP as the phosphate donor, but CK1 can use only ATP. The CK2 activity which phosphorylates the mineralized tissue NCP appears to be localized to membrane-associated cell fractions, and is present in the endoplasmic reticulum and Golgi compartments in osteoblasts, where phosphorylation of the secreted proteins appears to take place as co- and post-translational processes. Data indicate that both alpha and beta subunits of the membrane-associated CK2 are isoforms of the cytosolic CK2 in the same cells. The CK1 has not been specifically localized. Studies of dephosphorylated NCP such as phosphophoryn (PP) have shown that CK1 will not phosphorylate dephosphorylated dPP unless prior phosphorylation with CK2 has been carried out. In turn, CK2 activity may be initiated only after an initial phosphorylation of one of the messenger-dependent kinases. Thus, the phosphorylation reactions in mineralized tissues may be a tightly regulated hierarchical or sequential cascade of intracellular phosphorylation events.
Collapse
Affiliation(s)
- A Veis
- Department of Basic and Behavioral Sciences, Northwestern University Dental School, Chicago, Ilinois 60611, USA
| | | | | |
Collapse
|
16
|
Salih E, Ashkar S, Gerstenfeld LC, Glimcher MJ. Protein kinases of cultured osteoblasts: selectivity for the extracellular matrix proteins of bone and their catalytic competence for osteopontin. J Bone Miner Res 1996; 11:1461-73. [PMID: 8889846 DOI: 10.1002/jbmr.5650111013] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The enzyme activities of the major kinases found within the cytosolic and microsomal fractions of embryonic avian calvaria osteoblasts were assayed for their specificity for various noncollagenous extracellular matrix (ECM) proteins of bone. At least 6 proteins with M(r)'s of 66, 58, 50, 36, 30, and 22 kD out of more than 30 of the noncollagenous proteins of the bone ECM were phosphorylated by the kinase(s) found in both osteoblast cellular fractions. The purification and N-terminal sequence analysis of three of the above proteins, M(r)'s 66 and 58 kD (+50 kD), identified them as chicken bone sialoprotein (BSP) and osteopontin (OPN), respectively. Heparin, a specific inhibitor of factor-independent protein kinase (FIPK) activity, blocked the phosphorylation of all six ECM proteins by the microsomal kinase(s) but only inhibited the phosphorylation of the 66, 50, and 36 kD by the cytosolic enzyme(s). Casein kinase II (a known FIPK) showed a similar phosphorylation pattern of the same bone ECM proteins as the FIPK(s) found in osteoblast cell extracts, while purified cyclic adenosine monophosphate (cAMP)-dependent protein kinase did not phosphorylate any of the ECM proteins. Use of dephosphorylated casein showed that in comparison with casein kinase II, casein was a poor substrate for the FIPK found in the osteoblast cellular extracts. Further studies, using FIPK(s) of osteoblasts and purified chicken OPN or bacterially produced recombinant murine OPN as a substrate, showed that both species of OPN were excellent substrates for the FIPK(s) found in osteoblasts. The phosphorylation of the purified chicken and recombinant mouse OPNs were evaluated by quantitative analysis using commercially available protein kinases. cAMP-dependent kinase showed no phosphorylation of either protein, and cyclic guanodine monophosphate (cGMP)-dependent kinase and protein kinase C incorporated 1.2 and 0.5 mol phosphate/mol OPN, respectively. However, both chicken and mouse OPNs were significantly phosphorylated by casein kinase II (9.3 and 9.0 mol of phosphate/mol of OPN, respectively). These results demonstrate that the noncollagenous proteins of the bone ECM, and in particular OPN, are predominantly phosphorylated by FIPK(s), and this class of kinase is the major enzyme found within the microsomal fraction of osteoblasts.
Collapse
Affiliation(s)
- E Salih
- Harvard Medical School, Department of Orthopaedic Surgery, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
17
|
Suzuki Y, Kubota T, Koizumi T, Satoyoshi M, Teranaka T, Kawase T, Ikeda T, Yamaguchi A, Saito S, Mikuni-Takagaki Y. Extracellular processing of bone and dentin proteins in matrix mineralization. Connect Tissue Res 1996; 35:223-9. [PMID: 9084661 DOI: 10.3109/03008209609029195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There are two steps in the process of matrix-mediated bone and dentin mineralization. First, as in other soft tissues, osteoblasts/odontoblasts synthesize collagenous matrices and second, mineral deposits in these matrices at a location distant from the cells that synthesized the matrices. We suggest a sequence of events that lead the matrix to mineralization: the phosphoproteins of bone and dentin are posttranslationally processed by limited proteolysis, then they are extracellularly processed into a more phosphorylated species that, we believe, facilitates mineralization. Our in situ phosphorylation experiments done with [gamma-32P] GTP suggest the existence of extracellular phosphorylation by a casein kinase II (CKII)-like enzyme, the enzyme known to phosphorylate most of the phosphate residues in dentin phosphophoryn and bone sialoproteins (osteopontin and BSP II).
Collapse
Affiliation(s)
- Y Suzuki
- Department of Oral Biochemistry, Kanagawa Dental College, Yokosuka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|