1
|
Borkowska M, Białas W, Celińska E. A new set of reference genes for comparative gene expression analyses in Yarrowia lipolytica. FEMS Yeast Res 2020; 20:5986618. [PMID: 33201983 DOI: 10.1093/femsyr/foaa059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 01/13/2023] Open
Abstract
Accurate quantitation of gene expression levels require sensitive, precise and reproducible measurements of specific transcripts. Normalization to a reference gene is the most common practice to minimize the impact of the uncontrolled variation. The fundamental prerequisite for an accurate reference gene is to be stably expressed amongst all the samples included in the analysis. In the present study we aimed to assess the expression level and stability of a panel of 21 genes in Yarrowia lipolytica throughout varying conditions, covering composition of the culturing medium, growth phase and strain-wild type and recombinant burdened with heterologous protein overexpression. The panel of the selected candidate genes covered those essential for growth and maintenance of metabolism and homologs of commonly used internal references in RT-qPCR. The candidate genes expression level and stability were assessed and the data were processed using dedicated computational tools (geNorm and NormFinder). The results obtained here indicated genes unaffected by the burden of overexpression (TEF1, TPI1, UBC2, SRPN2, ALG9-like, RYL1) or by the culture medium used (ACT1, TPI1, UBC2, SEC61, ODC, CLA4, FKS1, TPS1), as well as those the least (SSDH, ODC, GPD) and the most (SEC62, TPI1, IPP1) suitable for normalization of RT-qPCR data in Y. lipolytica.
Collapse
Affiliation(s)
- Monika Borkowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-637 Poznań, Poland
| |
Collapse
|
2
|
Campos-Góngora E, Andaluz E, Bellido A, Ruiz-Herrera J, Larriba G. The RAD52 ortholog of Yarrowia lipolytica is essential for nuclear integrity and DNA repair. FEMS Yeast Res 2013; 13:441-52. [PMID: 23566019 DOI: 10.1111/1567-1364.12047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 11/27/2022] Open
Abstract
Yarrowia lipolytica (Yl) is a dimorphic fungus that has become a well-established model for a number of biological processes, including secretion of heterologous and chimerical proteins. However, little is known on the recombination machinery responsible for the integration in the genome of the exogenous DNA encoding for those proteins. We have carried out a phenotypic analysis of rad52 deletants of Y. lipolytica. YlRad52 exhibited 20-30% identity with Rad52 homologues of other eukaryotes, including Saccharomyces cerevisiae and Candida albicans. Ylrad52-Δ strains formed colonies on YPD-agar plates which were spinier and smaller than those from wild type, whereas in YPD liquid cultures they exhibited a decreased grow rate and contained cells with aberrant morphology and fragmented chromatin, supporting a role for homologous recombination (HR) in genome stability under nondamaging conditions. In addition, Ylrad52 mutants showed moderate to high sensitivity to UV light, oxidizing agents and compounds that cause single- (SSB) and double-strand breaks (DSB), indicating an important role for Rad52 in DNA repair. These findings extend to Yl previous observations indicating that RAD52 is a crucial gene for DNA repair in other fungi, including S. cerevisiae, C. albicans and Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Eduardo Campos-Góngora
- Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | | | | | | | | |
Collapse
|
3
|
Kramara J, Willcox S, Gunisova S, Kinsky S, Nosek J, Griffith JD, Tomaska L. Tay1 protein, a novel telomere binding factor from Yarrowia lipolytica. J Biol Chem 2010; 285:38078-92. [PMID: 20923774 DOI: 10.1074/jbc.m110.127605] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.
Collapse
Affiliation(s)
- Juraj Kramara
- Department of Genetics, Comenius University, Faculty of Natural Sciences, Mlynska dolina, 842 15 Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
4
|
Kinsky S, Mihalikova A, Kramara J, Nosek J, Tomaska L. Lack of the catalytic subunit of telomerase leads to growth defects accompanied by structural changes at the chromosomal ends in Yarrowia lipolytica. Curr Genet 2010; 56:413-25. [PMID: 20549213 DOI: 10.1007/s00294-010-0310-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 12/01/2022]
Abstract
Comparative analysis of the telomeres of distantly related species has proven to be helpful for identifying novel components involved in telomere maintenance. We therefore initiated such a study in the nonconventional yeast Yarrowia lipolytica. Its genome encodes only a small fraction of the proteins that are typically associated with telomeres in other yeast models, indicating that its telomeres may employ noncanonical means for their stabilization and maintenance. In this report, we have measured the size of the telomeric fragments in wild-type strains, and characterized the catalytic subunit of telomerase (YlEst2p). In silico analysis of the YlEst2 amino acid sequence revealed the presence of domains typical for telomerase reverse transcriptases. Disruption of YlEST2 is not lethal, but results in retarded growth accompanied by a rapid loss of the telomeric sequences. This phenotype is associated with structural changes at the chromosomal ends in the ΔYlest2 mutants, likely the circularization of all six chromosomes. An apparent absence of several typical telomere-associated factors, as well as the presence of an efficient means of telomerase-independent telomere maintenance, qualify Y. lipolytica as an attractive model for the study of telomere maintenance mechanisms and a promising source of novel players in telomere dynamics.
Collapse
Affiliation(s)
- Slavomir Kinsky
- Department of Genetics, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
5
|
Nussbaum M, Collins RN. Use of search algorithms to define specificity in Rab GTPase domain function. Methods Enzymol 2006; 403:10-9. [PMID: 16473573 DOI: 10.1016/s0076-6879(05)03002-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The continuing explosion of sequencing data has inspired a corresponding effort in the annotation and classification of protein families. Within a particular protein family, however, individual members may have distinct functions, although they share a common fold and broadly defined physiological role. Rab GTPases are the largest subfamily of the Ras superfamily, yet from early in their discovery, it was apparent that each Rab protein has a unique subcellular localization and regulates a particular stage(s) membrane traffic. To gain insight into the contribution of individual residues to unique protein functions a general strategy is outlined. This method should allow the cell and molecular biologist with no specialist expertise to implement an algorithm that makes use of a combination of experimental and phylogenetic data. The algorithm is applicable to the analysis of any protein domain and here is illustrated with the analysis of residues contributing to the individual functions of a pair of Rab GTPases.
Collapse
|
6
|
Dumas B, Borel C, Herbert C, Maury J, Jacquet C, Balsse R, Esquerré-Tugayé MT. Molecular characterization of CLPT1, a SEC4-like Rab/GTPase of the phytopathogenic fungus Colletotrichum lindemuthianum which is regulated by the carbon source. Gene 2001; 272:219-25. [PMID: 11470528 DOI: 10.1016/s0378-1119(01)00536-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The gene CLPT1 (Colletotrichum lindemuthianum Protein Transport 1) encoding a Rab/GTPase was isolated from the filamentous fungus Colletotrichum lindemuthianum, the causal agent of bean anthracnose. At the amino acid level, CLPT1 shows between 54 and 80% identity to SEC4-like proteins, a class of molecules required for intracellular vesicular transport in yeasts. In particular, typical SEC4 domains involved in nucleotide binding and membrane attachment are present in the CLPT1 sequence. Functional identity of CLPT1 with SEC4 was confirmed by complementation of the Saccharomyces cerevisiae sec4-8 mutation. This is the first report of a gene involved in the control of intracellular vesicular trafficking in a phytopathogenic fungus. RNA blot analyses of CLPT1 expression were performed during in vitro growth of the fungus on synthetic media containing glucose or pectin, as single carbon source. The accumulation of CLPT1 mRNA was strongly increased on pectin, a plant cell wall polysaccharide that induces the production of extracellular pectinases, whereas the level of CLPT1 mRNA was below the detection threshold on glucose. These results suggest that CLPT1 is mainly involved in protein secretion and that the production of extracellular enzymes potentially involved in pathogenesis in filamentous fungi is sustained by induction of the genes involved in the secretory machinery.
Collapse
Affiliation(s)
- B Dumas
- UMR 5546 CNRS-Université Paul Sabatier, Pôle de Biotechnologie Végétale, 24 Chemin de Borde Rouge, BP17 Auzeville, 31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | |
Collapse
|
7
|
Punt PJ, Seiboth B, Weenink XO, van Zeijl C, Lenders M, Konetschny C, Ram AF, Montijn R, Kubicek CP, van den Hondel CA. Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth. Mol Microbiol 2001; 41:513-25. [PMID: 11489135 DOI: 10.1046/j.1365-2958.2001.02541.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA fragments containing genetic information for five secretion-related small GTPases of Aspergillus niger (srgA-E) were isolated and identified as members of different Rab/Ypt subfamilies. This isolation and the search for similar sequences in fungal genomic and EST databases showed that, in contrast to Saccharomyces cerevisiae, filamentous fungi also possess homologues of mammalian Rab2 GTPases. Multiple transcripts with unusually long 5' and 3' untranslated regions were found for all srg genes. Their level of expression was independent of the type of carbon source used for growth. Although the transcripts of srgA and srgB were abundant to the same extent throughout the cultivation, that of the other genes peaked during the early growth phase and then declined. Two genes, srgA and srgB, were characterized further. The protein encoded by srgA exhibited relatively low identity (58%) to its closest S. cerevisiae homologue SEC4, whereas the protein encoded by srgB showed 73% identity with S. cerevisiae YPT1. In contrast to other SEC4 homologues, srgA was unable to complement an S. cerevisiae sec4 mutant, and its disruption was not lethal in A. niger. SrgA mutants displayed a twofold increase in their hyphal diameter, unusual apical branching and strongly reduced protein secretion during growth on glucose.
Collapse
Affiliation(s)
- P J Punt
- Department of Applied Microbiology and Gene Technology, TNO Voeding, PO Box 360, 3700 AJ Zeist, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hurtado CA, Beckerich JM, Gaillardin C, Rachubinski RA. A rac homolog is required for induction of hyphal growth in the dimorphic yeast Yarrowia lipolytica. J Bacteriol 2000; 182:2376-86. [PMID: 10762235 PMCID: PMC111297 DOI: 10.1128/jb.182.9.2376-2386.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2000] [Accepted: 01/31/2000] [Indexed: 01/08/2023] Open
Abstract
Dimorphism in fungi is believed to constitute a mechanism of response to adverse conditions and represents an important attribute for the development of virulence by a number of pathogenic fungal species. We have isolated YlRAC1, a gene encoding a 192-amino-acid protein that is essential for hyphal growth in the dimorphic yeast Yarrowia lipolytica and which represents the first Rac homolog described for fungi. YlRAC1 is not an essential gene, and its deletion does not affect the ability to mate or impair actin polarization in Y. lipolytica. However, strains lacking functional YlRAC1 show alterations in cell morphology, suggesting that the function of YlRAC1 may be related to some aspect of the polarization of cell growth. Northern blot analysis showed that transcription of YlRAC1 increases steadily during the yeast-to-hypha transition, while Southern blot analysis of genomic DNA suggested the presence of several RAC family members in Y. lipolytica. Interestingly, strains lacking functional YlRAC1 are still able to grow as the pseudohyphal form and to invade agar, thus pointing to a function for YlRAC1 downstream of MHY1, a previously isolated gene encoding a C(2)H(2)-type zinc finger protein with the ability to bind putative stress response elements and whose activity is essential for both hyphal and pseudohyphal growth in Y. lipolytica.
Collapse
Affiliation(s)
- C A Hurtado
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
9
|
Szabo R. Dimorphism in Yarrowia lipolytica: filament formation is suppressed by nitrogen starvation and inhibition of respiration. Folia Microbiol (Praha) 1999; 44:19-24. [PMID: 10489692 DOI: 10.1007/bf02816215] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In contrast to Saccharomyces cerevisiae, nitrogen starvation inhibited formation of hyphae in liquid cultures of Y. lipolytica, while carbon source did not seem to be important for filament formation. Inhibitors of mitochondrial respiration strongly suppressed the development of hyphae, indicating that energy conversion processes, and thus carbon metabolism, may be involved. pH of the medium also strongly affected the morphology, but only in the presence of a complex nitrogen source, implying that the cells respond to altered nutrition in media with different pH rather than to pH itself. The results suggest that the XPR2 gene encoding Y. lipolytica alkaline extracellular proteinase is involved in the regulation of dimorphism in this species.
Collapse
Affiliation(s)
- R Szabo
- Department of Biochemistry, Faculty of Science, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
10
|
Abstract
The ascomycetous yeast Yarrowia lipolytica (formerly Candida, Endomycopsis, or Saccharomyces lipolytica) is one of the more intensively studied 'non-conventional' yeast species. This yeast is quite different from the well-studied yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe with respect to its phylogenetic evolution, physiology, genetics, and molecular biology. However, Y. lipolytica is not only of interest for fundamental research, but also for biotechnological applications. It secretes several metabolites in large amounts (i.e. organic acids, extracellular proteins) and the tools are available for overproduction and secretion of foreign proteins. This review presents a comprehensive overview on the available data on physiology, cell biology, molecular biology and genetics of Y. lipolytica.
Collapse
Affiliation(s)
- G Barth
- Institut für Mikrobiologie, Technische Universität Dresden, Germany.
| | | |
Collapse
|