1
|
Iwasaki S, Kosugi Y, Zhu AZX, Nakagawa S, Sano N, Funami M, Kosaka M, Furuta A, Hirabayashi H, Amano N. Application of unbound liver-to-plasma concentration ratio to quantitative projection of cytochrome P450-mediated drug-drug interactions using physiologically based pharmacokinetic modelling approach. Xenobiotica 2019; 49:1251-1259. [PMID: 30516093 DOI: 10.1080/00498254.2018.1547461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. This study evaluated the prediction accuracy of cytochrome P450 (CYP)-mediated drug-drug interaction (DDI) using minimal physiologically-based pharmacokinetic (PBPK) modelling incorporating the hepatic accumulation factor of an inhibitor (i.e. unbound liver/unbound plasma concentration ratio [Kp,uu,liver]) based on 22 clinical DDI studies. 2. Kp,uu,liver values were estimated using three methods: (1) ratio of cell-to-medium ratio in human cryopreserved hepatocytes (C/Mu) at 37 °C to that on ice (Kp,uu,C/M), (2) multiplication of total liver/unbound plasma concentration ratio (Kp,u,liver) estimated from C/Mu at 37 °C with unbound fraction in human liver homogenate (Kp,uu,cell) and (3) observed Kp,uu,liver in rats after intravenous infusion (Kp,uu,rat). 3. PBPK model using each Kp,uu,liver projected the area under the curve (AUC) increase of substrates more accurately than the model assuming a Kp,uu,liver of 1 for the average fold error and root mean square error did. Particularly, the model with a Kp,uu,liver of 1 underestimated the AUC increase of triazolam following co-administration with CYP3A4 inhibitor itraconazole by five-fold, whereas the AUC increase projected using the model incorporating the Kp,uu,C/M, Kp,uu,cell, or Kp,uu,rat of itraconazole and hydroxyitraconazole was within approximately two-fold of the actual value. 4. The results indicated that incorporating Kp,uu,liver into the PBPK model improved the accuracy of DDI projection.
Collapse
Affiliation(s)
- Shinji Iwasaki
- a Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Co., Ltd. , Fujisawa , Kanagawa , Japan.,b Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co. , Cambridge , MA , USA
| | - Yohei Kosugi
- a Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Co., Ltd. , Fujisawa , Kanagawa , Japan
| | - Andy Z X Zhu
- b Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co. , Cambridge , MA , USA
| | - Sayaka Nakagawa
- a Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Co., Ltd. , Fujisawa , Kanagawa , Japan
| | - Noriyasu Sano
- a Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Co., Ltd. , Fujisawa , Kanagawa , Japan
| | - Miyuki Funami
- a Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Co., Ltd. , Fujisawa , Kanagawa , Japan
| | - Mai Kosaka
- a Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Co., Ltd. , Fujisawa , Kanagawa , Japan
| | - Atsutoshi Furuta
- a Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Co., Ltd. , Fujisawa , Kanagawa , Japan
| | - Hideki Hirabayashi
- a Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Co., Ltd. , Fujisawa , Kanagawa , Japan
| | - Nobuyuki Amano
- a Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Co., Ltd. , Fujisawa , Kanagawa , Japan
| |
Collapse
|
2
|
Abstract
Proton pump inhibitors (PPIs) are used extensively for the treatment of gastric acid-related disorders, often over the long term, which raises the potential for clinically significant drug interactions in patients receiving concomitant medications. These drug–drug interactions have been previously reviewed. However, the current knowledge is likely to have advanced, so a thorough review of the literature published since 2006 was conducted. This identified new studies of drug interactions that are modulated by gastric pH. These studies showed the effect of a PPI-induced increase in intragastric pH on mycophenolate mofetil pharmacokinetics, which were characterised by a decrease in the maximum exposure and availability of mycophenolic acid, at least at early time points. Post-2006 data were also available outlining the altered pharmacokinetics of protease inhibitors with concomitant PPI exposure. New data for the more recently marketed dexlansoprazole suggest it has no impact on the pharmacokinetics of diazepam, phenytoin, theophylline and warfarin. The CYP2C19-mediated interaction that seems to exist between clopidogrel and omeprazole or esomeprazole has been shown to be clinically important in research published since the 2006 review; this effect is not seen as a class effect of PPIs. Finally, data suggest that coadministration of PPIs with methotrexate may affect methotrexate pharmacokinetics, although the mechanism of interaction is not well understood. As was shown in the previous review, individual PPIs differ in their propensities to interact with other drugs and the extent to which their interaction profiles have been defined. The interaction profiles of omeprazole and pantoprazole sodium (pantoprazole-Na) have been studied most extensively. Several studies have shown that omeprazole carries a considerable potential for drug interactions because of its high affinity for CYP2C19 and moderate affinity for CYP3A4. In contrast, pantoprazole-Na appears to have lower potential for interactions with other medications. Lansoprazole and rabeprazole also seem to have a weaker potential for interactions than omeprazole, although their interaction profiles, along with those of esomeprazole and dexlansoprazole, have been less extensively investigated. Only a few drug interactions involving PPIs are of clinical significance. Nonetheless, the potential for drug interactions should be considered when choosing a PPI to manage gastric acid-related disorders. This is particularly relevant for elderly patients taking multiple medications, or for those receiving a concomitant medication with a narrow therapeutic index.
Collapse
|
3
|
Kosugi Y, Hirabayashi H, Igari T, Fujioka Y, Okuda T, Moriwaki T. Risk assessment of drug–drug interactions using hepatocytes suspended in serum during the drug discovery process. Xenobiotica 2013; 44:336-44. [PMID: 24074236 DOI: 10.3109/00498254.2013.837988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
|
5
|
Turpault S, Brian W, Van Horn R, Santoni A, Poitiers F, Donazzolo Y, Boulenc X. Pharmacokinetic assessment of a five-probe cocktail for CYPs 1A2, 2C9, 2C19, 2D6 and 3A. Br J Clin Pharmacol 2010; 68:928-35. [PMID: 20002088 DOI: 10.1111/j.1365-2125.2009.03548.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT * Numerous cocktails using concurrent administration of several cytochrome P450 (CYP) isoform-selective probe drugs have been reported to investigate drug-drug interactions in vivo. * This approach has several advantages: characterize the inhibitory or induction potential of compounds in development toward the CYP enzymes identified in vitro in an in vivo situation, assess several enzymes in the same trial, and have complete in vivo information about potential CYP-based drug interactions. WHAT THIS STUDY ADDS * This study describes a new cocktail containing five probe drugs that has never been published. * This cocktail can be used to test the effects of a new chemical entity on multiple CYP isoforms in a single clinical study: CYP1A2 (caffeine), CYP2C9 (warfarin), CYP2C19 (omeprazole), CYP2D6 (metoprolol), and CYP3A (midazolam) and was designed to overcome potential liabilities of other reported cocktails. AIMS To assess the pharmacokinetics (PK) of selective substrates of CYP1A2 (caffeine), CYP2C9 (S-warfarin), CYP2C19 (omeprazole), CYP2D6 (metoprolol) and CYP3A (midazolam) when administered orally and concurrently as a cocktail relative to the drugs administered alone. METHODS This was an open-label, single-dose, randomized, six-treatment six-period six-sequence William's design study with a wash-out of 7 or 14 days. Thirty healthy male subjects received 100 mg caffeine, 100 mg metoprolol, 0.03 mg kg(-1) midazolam, 20 mg omeprazole and 10 mg warfarin individually and in combination (cocktail). Poor metabolizers of CYP2C9, 2C19 and 2D6 were excluded. Plasma samples were obtained up to 48 h for caffeine, metoprolol and omeprazole, 12 h for midazolam, 312 h for warfarin and the cocktail. Three different validated liquid chromatography tandem mass spectrometry methods were used. Noncompartmental PK parameters were calculated. Log-transformed C(max), AUC(last) and AUC for each analyte were analysed with a linear mixed effects model with fixed term for treatment, sequence and period, and random term for subject within sequence. Point estimates (90% CI) for treatment ratios (individual/cocktail) were computed for each analyte C(max), AUC(last) and AUC. RESULTS There was no PK interaction between the probe drugs when administered in combination as a cocktail, relative to the probes administered alone, as the 90% CI of the PK parameters was within the prespecified bioequivalence limits of 0.80, 1.25. CONCLUSION The lack of interaction between probes indicates that this cocktail could be used to evaluate the potential for multiple drug-drug interactions in vivo.
Collapse
Affiliation(s)
- Sandrine Turpault
- Global Metabolism and Pharmacokinetics, Sanofi-Aventis, Malvern, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Liu KH, Kim MJ, Shon JH, Moon YS, Seol SY, Kang W, Cha IJ, Shin JG. Stereoselective inhibition of cytochrome P450 forms by lansoprazole and omeprazolein vitro. Xenobiotica 2008; 35:27-38. [PMID: 15788366 DOI: 10.1080/00498250400026472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The stereoselectivity of the inhibitory interaction potential of lansoprazole and omeprazole isomers on six human cytochrome P450 forms was evaluated using human liver microsomes. Lansoprazole enantiomers showed stereoselective inhibition of CYP2C9-catalysed tolbutamide 4-methylhydroxylation, CYP2C19-catalysed S-mephenytoin 4'-hydroxylation, CYP2D6-catalysed dextromethorphan O-demethylation, CYP2E1-catalysed chlorzoxazone 6-hydroxylation and CYP3A4-catalysed midazolam 1-hydroxylation, whereas omeprazole only inhibited CYP2C19 stereoselectively. Of the P450 forms tested, CYP2C19-catalysed S-mephenytoin 4'-hydroxylation was extensively inhibited by both the lansoprazole and omeprazole enantiomers in a competitive and stereoselective manner; the S-enantiomers of both drugs inhibited the hydroxylation more than the R-enantiomers. The estimated K(i) values determined for CYP2C19-catalysed S-mephenytoin 4'-hydroxylation were 0.6, 6.1, 3.4 and 5.7 microM for S-lansoprazole, R-lansoprazole, S-omeprazole and R-omeprazole, respectively. The results indicate that although both lansoprazole and omeprazole are strong inhibitors of CYP2C19, the inhibition of CYP2C19 by lansoprazole is highly stereoselective, whereas the inhibition by omeprazole is less stereoselective. In addition, S-lansoprazole, the most potent CYP2C19 inhibitor, is not a good CYP2C19-selective inhibitor owing to its inhibition of other P450 forms.
Collapse
Affiliation(s)
- K H Liu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine and Clinical Pharmacology Center, Busan Paik Hospital, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
McGinnity DF, Waters NJ, Tucker J, Riley RJ. Integrated in vitro analysis for the in vivo prediction of cytochrome P450-mediated drug-drug interactions. Drug Metab Dispos 2008; 36:1126-34. [PMID: 18356267 DOI: 10.1124/dmd.108.020446] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unbound IC(50) (IC(50,u)) values of 15 drugs were determined in eight recombinantly expressed human cytochromes P450 (P450s) and human hepatocytes, and the data were used to simulate clinical area under the plasma concentration-time curve changes (deltaAUC) on coadministration with prototypic CYP2D6 substrates. Significant differences in IC(50,u) values between enzyme sources were observed for quinidine (0.02 microM in recombinant CYP2D6 versus 0.5 microM in hepatocytes) and propafenone (0.02 versus 4.1 microM). The relative contribution of individual P450s toward the oxidative metabolism of clinical probes desipramine, imipramine, tolterodine, propranolol, and metoprolol was estimated via determinations of intrinsic clearance using recombinant P450s (rP450s). Simulated deltaAUC were compared with those observed in vivo via the ratios of unbound inhibitor concentration at the entrance to the liver to inhibition constants determined against rP450s ([I](in,u)/K(i)) and incorporating parallel substrate elimination pathways. For this dataset, there were 20% false negatives (observed deltaAUC >or= 2, predicted deltaAUC < 2), 77% correct predictions, and 3% false positives. Thus, the [I](in,u)/K(i) approach appears relatively successful at estimating the degree of clinical interactions and can be incorporated into drug discovery strategies. Using a Simcyp ADME (absorption, metabolism, distribution, elimination) simulator (Simcyp Ltd., Sheffield, UK), there were 3% false negatives, 94% correct simulations, and 3% false positives. False-negative predictions were rationalized as a result of mechanism-based inhibition, production of inhibitory metabolites, and/or hepatic uptake. Integrating inhibition and reaction phenotyping data from automated rP450 screens have shown applicability to predict the occurrence and degree of in vivo drug-drug interactions, and such data may identify the clinical consequences for candidate drugs as both "perpetrators" and "victims" of P450-mediated interactions.
Collapse
Affiliation(s)
- Dermot F McGinnity
- Discovery Drug Metabolism and Pharmacokinetics, AstraZeneca R&D Charnwood, Loughborough, Leicestershire, United Kingdom.
| | | | | | | |
Collapse
|
8
|
Abstract
Medications to address gastrointestinal disorders are among the most commonly dispensed somatic medications. The authors examine proton pump inhibitors, H(2) blockers, 5-HT(3) receptor-antagonists, and a few other drugs that are used to address this domain of medical concerns. The metabolic pathways, interactions with the P-glycoprotein transporter, and capabilities of inhibiting or inducing metabolic enzymes are elucidated for each drug. Specific drug-drug interactions with each agent are also detailed, including both psychotropic and non-psychotropic agents. Also, the article explores how different genotypic variants for specific cytochrome P450 enzymes have an impact on the effectiveness and likelihood of drug-drug interactions relating to specific gastro-intestinal medications.
Collapse
Affiliation(s)
- Gary H Wynn
- Walter Reed Army Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
9
|
Abstract
Proton pump inhibitors are used extensively for the treatment of gastric acid-related disorders because they produce a greater degree and longer duration of gastric acid suppression and, thus, better healing rates, than histamine H(2) receptor antagonists. The need for long-term treatment of these disorders raises the potential for clinically significant drug interactions in patients receiving proton pump inhibitors and other medications. Therefore, it is important to understand the mechanisms for drug interactions in this setting. Proton pump inhibitors can modify the intragastric release of other drugs from their dosage forms by elevating pH (e.g. reducing the antifungal activity of ketoconazole). Proton pump inhibitors also influence drug absorption and metabolism by interacting with adenosine triphosphate-dependent P-glycoprotein (e.g. inhibiting digoxin efflux) or with the cytochrome P450 (CYP) enzyme system (e.g. decreasing simvastatin metabolism), thereby affecting both intestinal first-pass metabolism and hepatic clearance. Although interactions based on the change of gastric pH are a group-specific effect and thus may occur with all proton pump inhibitors, individual proton pump inhibitors differ in their propensities to interact with other drugs and the extent to which their interaction profiles have been defined. The interaction profiles of omeprazole and pantoprazole have been studied most extensively. A number of studies have shown that omeprazole carries a considerable potential for drug interactions, since it has a high affinity for CYP2C19 and a somewhat lower affinity for CYP3A4. In contrast, pantoprazole appears to have lower potential for interactions with other medications. Although the interaction profiles of esomeprazole, lansoprazole and rabeprazole have been less extensively investigated, evidence suggests that lansoprazole and rabeprazole seem to have a weaker potential for interactions than omeprazole. Although only a few drug interactions involving proton pump inhibitors have been shown to be of clinical significance, the potential for drug interactions should be taken into account when choosing a therapy for gastric acid-related disorders, especially for elderly patients in whom polypharmacy is common, or in those receiving a concomitant medication with a narrow therapeutic index.
Collapse
|
10
|
Cerqueira PM, Cesarino EJ, Bertucci C, Bonato PS, Lanchote VL. Stereoselective metabolism of metoprolol: enantioselectivity of alpha-hydroxymetoprolol in plasma and urine. Chirality 2003; 15:542-9. [PMID: 12774293 DOI: 10.1002/chir.10244] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Direct stereoselective separation on chiral stationary phase was developed for HPLC analysis of the four stereoisomers of alpha-hydroxymetoprolol in human plasma and urine. Plasma samples were prepared using solid-phase extraction columns and urine samples were prepared by liquid-liquid extraction. The stereoisomers were separated on a Chiralpak AD column at 24 degrees C with fluorescence detection and a mobile phase consisting of a mixture of hexane:ethanol:isopropanol:diethylamine (88:10.2:1.8:0.2) for plasma samples and hexane:ethanol:diethylamine (88:12:0.2) for urine samples. Calibration curves for the individual stereoisomers were linear within the concentration range of 2.0-200 ng/ml plasma or 0.125-25 microg/ml urine. The methods were validated with intra- and interday variations less than 15%. The absolute configuration of the pure stereoisomers were assigned by circular dichroism spectra. The methods were employed to determine the concentrations of alpha-hydroxymetoprolol stereoisomers in a metabolism study of multiple-dose administration of racemic metoprolol to hypertensive patients phenotyped as extensive metabolizers of debrisoquine. We observed stereo-selectivity in the alpha-hydroxymetoprolol formation favoring the new 1'R chiral center from both metoprolol enantiomers (AUC(0-24) (1'R1'S) = 3.02). The similar renal clearances (Cl(R)) of the four stereoisomers demonstrated absence of stereoselectivity in their renal excretion. (-)-(S)-metoprolol was slightly more alpha-hydroxylated than its antipode (AUC(0-24) (2S/2R) = 1.19), suggesting that this pathway is not responsible for plasma accumulation of this enantiomer in humans.
Collapse
|
11
|
Andersson T, Hassan-Alin M, Hasselgren G, Röhss K. Drug interaction studies with esomeprazole, the (S)-isomer of omeprazole. Clin Pharmacokinet 2002; 40:523-37. [PMID: 11510629 DOI: 10.2165/00003088-200140070-00004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Esomeprazole, the (S)-isomer of omeprazole, is the first proton pump inhibitor (PPI) developed as a single isomer for the treatment of patients with acid related diseases. Because of the extensive use of PPIs, the documentation of the potential for drug interactions with esomeprazole is of great importance. Altered absorption or metabolism are 2 of the major mechanisms for drug-drug interactions. Since intragastric pH will increase with esomeprazole treatment, it can be hypothesised that the absorption of drugs with pH-sensitive absorption (e.g. digoxin and ketoconazole) may be affected. Esomeprazole does not seem to have any potential to interact with drugs that are metabolised by cytochrome P450 (CYP) 1 A2, 2A6, 2C9, 2D6 or 2E1. In drug interaction studies with diazepam, phenytoin and (R)-warfarin, it was shown that esomeprazole has the potential to interact with CYP2C19. The slightly altered metabolism of cisapride was also suggested to be the result of inhibition of a minor metabolic pathway for cisapride mediated by CYP2C19. Esomeprazole did not interact with the CYP3A4 substrates clarithromycin (2 studies) or quinidine. Since the slightly increased area under the concentration-time curve (AUC) of cisapride could be explained as an inhibition of CYP2C19, the data on these 3 CYP3A4 substrates indicate that esomeprazole does not have the potential to inhibit this enzyme. The minor effects reported for diazepam, phenytoin, (R)-warfarin, and cisapride are unlikely to be of clinical relevance. Clarithromycin interacts with the metabolism of esomeprazole resulting in a doubling of the AUC of esomeprazole. The increased plasma concentrations of esomeprazole are unlikely to have any safety implications. It can be concluded that the potential for drug-drug interactions with esomeprazole is low, and similar to that reported for omeprazole.
Collapse
Affiliation(s)
- T Andersson
- Clinical Pharmacology, AstraZeneca LP, Wayne, Pennsylvania 19087, USA
| | | | | | | |
Collapse
|
12
|
Cerqueira PM, Cesarino EJ, Mateus FH, Mere Y, Santos SR, Lanchote VL. Enantioselectivity in the steady-state pharmacokinetics of metoprolol in hypertensive patients. Chirality 2001; 11:591-7. [PMID: 10423287 DOI: 10.1002/(sici)1520-636x(1999)11:7<591::aid-chir12>3.0.co;2-t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present study we investigated the enantioselectivity in the pharmacokinetics of metoprolol administered in a multiple-dose regimen as the racemate. The study was conducted on 10 patients of both sexes with mild to severe essential hypertension, aged 28 to 76 years, with normal hepatic and renal function and phenotyped as extensive metabolizers of debrisoquine (urine debrisoquine to 4-hydroxydebrisoquine ratios of 0.28 to 6.56). The patients were treated with racemic metoprolol (two 100 mg tablets every 24 h) for 7 days. Serial blood samples were collected at times zero, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, 20, 22, and 24 h and urine at each 6 h period until 24 h after metoprolol administration. The plasma concentrations of the (-)-(S)- and (+)-(R)-metoprolol enantiomers were determined by HPLC using a chiral stationary phase (Chiralpak AD, 4.6 x 250 mm) and fluorescence detection. The enantiomeric ratios differing from one were evaluated by the paired t test and the results are reported as means (95% CI). No differences were observed between metoprolol enantiomers in half-lives and absorption, distribution and elimination rate constants. However, the following differences (p < 0.05) were observed between the (-)-(S) and (+)-(R) enantiomers: maximum plasma concentration, C(max), 179.99 (123. 33-236.64) versus 151.30 (95.04-207.57) ng/mL; area under the plasma concentration versus time curve, AUC(0-24)(SS), 929.85 (458.02-1401. 70) versus 782.11 (329.80-1234.40) ng h/mL; apparent total clearance, Cl(T)/f, 1.70 (0.79-2.61) versus 2.21 (1.06-3.36) L/h/kg, apparent distribution volume, Vd/f, 10.51 (6.35-14.68) versus 13.80 (6.93-20. 68) L/kg, and renal clearance, Cl(R), 0.06 (0.05-0.08) versus 0.07 (0.05-0.09) L/kg. The enantiomeric ratios AUC((-)-(S))/AUC((+)-(R)) ranged from 1.14 to 1.44, with a mean of 1.29. The data obtained demonstrate enantioselectivity in the kinetic disposition of metoprolol, with plasma accumulation of the pharmacologically more active (-)-(S)-metoprolol enantiomer in hypertensive patients phenotyped as extensive metabolizers of debrisoquine.
Collapse
Affiliation(s)
- P M Cerqueira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Karol MD, Locke CS, Cavanaugh JH. Lack of interaction between lansoprazole and propranolol, a pharmacokinetic and safety assessment. J Clin Pharmacol 2000; 40:301-8. [PMID: 10709160 DOI: 10.1177/00912700022008856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the prevalence of both gastrointestinal and cardiovascular diseases, it is likely that patients may be coprescribed gastric parietal cell proton pump inhibitors and beta-adrenergic antagonists. Therefore, the objectives of this phase I study were to assess the potential effects of the coadministration of lansoprazole on the pharmacokinetics of propranolol and to evaluate the safety of propranolol with concomitant lansoprazole dosing. In a double-blind fashion, 18 healthy male nonsmokers were initially randomized to receive either 60 mg oral lansoprazole, each morning for 7 days, or an identical placebo (period 1). On day 7, all subjects were concomitantly administered oral propranolol, 80 mg. After a minimum of 1 week following the last dose of either lansoprazole or placebo, subjects were crossed over to the opposite treatment for another 7 days (period 2). Subjects were again administered oral propranolol on day 7. During both treatment periods, blood samples for the determination of plasma propranolol and 4-hydroxy-propranolol were obtained just before the dose and at 0.5, 1, 2, 3, 4, 6, 8 12, 16, 20, and 24 hours postdose. Plasma propranolol and 4-hydroxy-propranolol concentrations were determined by using HPLC with fluorescence detection. The Cmax, tmax, AUC0-infinity, and t1/2 values for propranolol, as well as the AUC0-infinity for 4-hydroxy-propranolol, were calculated and compared between the lansoprazole and placebo regimens. The mean age of the 15 subjects who successfully completed the study was 31 years (range: 24-38 years), and their average weight was 174.8 pounds (range: 145-203 pounds). There were no statistically significant differences between the lansoprazole and placebo regimens for the propranolol Cmax, tmax, AUC0-infinity, and t1/2 values. Also, there were no statistically significant differences between regimens for the 4-OH-propranolol AUC0-infinity. Safety evaluations, which included adverse events, vital signs, clinical laboratory determinations, ECG, and physical examinations, revealed no unexpected clinically significant findings and did not suggest a drug-drug interaction. In conclusion, lansoprazole does not significantly alter the pharmacokinetics of propranolol, suggesting that it does not interact with the CYP2D6- or CYP2C19-mediated metabolism of propranolol. Modification of a propranolol dosage regimen in the presence of lansoprazole is not indicated, based on the pharmacokinetic analysis and the lack of a clinically significant alteration in the pharmacodynamic response.
Collapse
Affiliation(s)
- M D Karol
- Abbott Laboratories, Abbott Park, Illinois 60064-6104, USA
| | | | | |
Collapse
|
14
|
Abstract
As Helicobacter pylori plays an important role in the aetiopathogenesis of peptic ulcer, therapeutic strategies aimed at maintaining long term remission have shifted from the control of intragastric pH to targeting H. pylori. According to recent international guidelines the clinical goals--rapid ulcer healing and prevention of relapse--can be best accomplished by combination therapy consisting of an antisecretory drug (proton pump inhibitor or ranitidine) and 2 antimicrobial agents (preferable amoxicillin, clarithromycin or metronidazole). When applying such multidrug regimens, possible synergy between the agents suggests that pharmacokinetic considerations might help to improve H. pylori eradication rates, which should be above 85 to 90% on an intention-to-treat basis. The present review summarises the pharmacokinetic properties and interaction potential of all drugs presently used in the various H. pylori eradication regimens, with emphasis on particular patient populations such as the elderly and those with renal impairment. The drugs considered are omeprazole, lansoprazole, pantoprazole, rabeprazole, ranitidine and ranitidine bismutrex, bismuth salts, amoxicillin, clarithromycin, azithromycin, roxithromycin, metronidazole, tinidazole and tetracycline. When addressing the clinically important questions of the efficacy, safety and costs of the recommended regimens, the impact of drug disposition on H. pylori eradication should not be neglected.
Collapse
Affiliation(s)
- U Klotz
- Dr. Margarete Fischer-Bosch-Institut für Klinische Pharmakologie, Stuttgart, Germany.
| |
Collapse
|
15
|
Abstract
In human subjects, the assessment of renal function and of its changes by interventions is limited to the measurement of glomerular filtration rate (GFR), renal blood flow and the estimation of proteinuria. In humans, GFR can be determined exactly by measuring the clearance of an ideal filtration marker, such as inulin. The classic method of measuring inulin clearance in humans includes constant intravenous infusion of the compound and timed collections of urine. In order to avoid the need for timed urine collections, a number of alternative procedures have been devised. All these methods only use determinations of inulin in plasma or serum. From these, the total body inulin clearance is obtained using pharmacokinetic calculations. In order to measure total body clearance, usually called plasma clearance, inulin is either given as a constant intravenous infusion or as a bolus infusion. Both procedures overestimate GFR because of incomplete distribution of inulin during the study periods. The error may be minimized by using model-independent pharmacokinetic calculations. Unlike inulin, creatinine is not a perfect filtration marker. This is because the substance is not only eliminated by glomerular filtration but also by tubular secretion. The extent of tubular creatinine secretion is not constant in various individuals. Serum creatinine concentration is a commonly used measure of renal function in clinical practice. This parameter is determined both by the renal elimination and by the production of the compound. Differences in creatinine production among subjects and over time in a single individual may occur because of changes in muscle mass. Radioisotopic filtration markers can easily and accurately be measured in plasma and serum. Using this method, the plasma concentration-time curve of these compounds can easily be studied after intravenous bolus injection. From the plasma concentration-time curves obtained, the total body clearance (plasma clearance) of the substances can be calculated using pharmacokinetic models. Most frequently, 125l-iothalamate, 99mTc-diethylenethiaminepenta-acetic acid and 51Cr-ethylenediaminetetra-acetic acid are used for the estimation of GFR in humans. The total body clearance of all these filtration markers overestimates GFR. The error induced by this phenomenon is particularly relevant at low levels of GFR. In recent years, iohexol has been used as a filtration marker. The substance can be measured in plasma, serum and urine using high-performance liquid chromatography. So far, good agreement has been shown for GFR determined by the classic inulin clearance and by the iohexol plasma clearance. Screening for proteinuria is commonly performed using reagent test strips. Quantitative measurements of marker proteins can be used to estimate the extent and the site of damage in the nephron. These measurements may be used to estimate the progression of renal disease and the response to therapeutic interventions. Of particular interest is the degree of albuminuria which indicates nephropathy in diabetic patients and end-organ damage in patients with hypertension.
Collapse
Affiliation(s)
- K H Rahn
- Department of Medicine D, University of Münster, Germany
| | | | | |
Collapse
|
16
|
Abstract
The safety profile of any pharmacological agent is defined on the basis of its toxicity, tolerability and potential for pharmacokinetic and/or pharmacodynamic interactions with other compounds, which may belong to the same or to a different pharmacological class. Drug-drug interactions are important in clinical practice because short and long term therapeutic regimens frequently require coadministration of different drugs. The pharmacological treatment of gastric and duodenal ulcers (and of related syndromes) includes older and newer compounds, which have different mechanisms of action and exert different therapeutic effects. These compounds are widely prescribed in combination with other drugs being given for the treatment of concomitant diseases. This article reviews pharmacokinetic interactions with anti-ulcer drugs, paying particular attention to those which have clinically relevant adverse effects. Drugs mentioned in the literature as causing any pharmacokinetic interaction with anti-ulcer compounds are considered in this article.
Collapse
Affiliation(s)
- R D Negro
- Department of Lung Clinical Pathophysiology, Bussolengo General Hospital, Verona, Italy
| |
Collapse
|
17
|
Abstract
Omeprazole, lansoprazole and pantoprazole are all mainly metabolised by the polymorphically expressed cytochrome P450 (CYP) isoform CYP2C19 (S-mephenytoin hydroxylase). All 3 proton pump inhibitors have a very limited potential for drug interactions at the CYP level. Small effects on CYP reported for these compounds are usually of no clinical relevance. No dose related adverse effects have been identified, suggesting that the small proportion of slow metabolisers is at no additional risk for clinically important drug interactions. The absorption of some compounds, e.g. benzylpenicillin (penicillin G), are altered during treatment with proton pump inhibitors as a result of the increased intragastric pH. A synergy has been confirmed between omeprazole and amoxicillin or clarithromycin in the antibacterial effect against Helicobacter pylori.
Collapse
Affiliation(s)
- P Unge
- Department of Medicine, Sandviken Hospital, Sweden
| | | |
Collapse
|
18
|
Caraco Y, Wilkinson GR, Wood AJ. Differences between white subjects and Chinese subjects in the in vivo inhibition of cytochrome P450s 2C19, 2D6, and 3A by omeprazole. Clin Pharmacol Ther 1996; 60:396-404. [PMID: 8873687 DOI: 10.1016/s0009-9236(96)90196-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To determine the effects of omeprazole on indexes of CYP2D6, CYP2C19 and 3A in vivo activity and to compare these in white subjects and Chinese subjects. METHODS Omeprazole, 40 mg/day, or placebo were administered in a double-blind crossover study for 3 weeks to eight healthy white and seven Chinese male extensive metabolizers of mephenytoin and debrisoquin. Debrisoquin (10 mg), dapsone (100 mg), and mephenytoin (100 mg) were given 1 week before administration, on the last day of administration, and 3 weeks after administration, and urine was collected over 8 hours. Phenotypic trait values were obtained from the urinary recoveries of the probe drugs or their metabolites. RESULTS In the white subjects, omeprazole significantly inhibited CYP2C19-mediated S-mephenytoin metabolism as indicated by decreases in the urinary R/S enantiomeric ratio (63% +/- 13%; p < 0.02; mean +/- SD) and the excretion of 4'-hydroxymephenytoin (39% +/- 13%; p < 0.001). Similar but smaller changes were also noted in Chinese subjects, 22% +/- 25% (p = 0.08) and 29% +/- 13% (p < 0.002), respectively. The interracial differences in the extent of inhibition of metabolism were statistically significant (p < 0.01 and p < 0.05, respectively). In contrast, the debrisoquin urinary metabolic ratio, a measure of CYP2D6, was unaffected. The excretion of hydroxylamine dapsone-a putative probe of CYP3A activity-was reduced by 40% +/- 30% (p < 0.03) in white subjects but not in Chinese subjects. CONCLUSIONS Omeprazole selectively inhibits the in vivo metabolism of S-mephenytoin, consistent with the predictions based on in vitro studies. The extent of interaction is greater in subjects of white European ancestry. It is to be expected that similar situations would also occur when omeprazole is coadministered with other substrates of CYP2C19.
Collapse
Affiliation(s)
- Y Caraco
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6602, USA
| | | | | |
Collapse
|
19
|
Andersson T. Pharmacokinetics, metabolism and interactions of acid pump inhibitors. Focus on omeprazole, lansoprazole and pantoprazole. Clin Pharmacokinet 1996; 31:9-28. [PMID: 8827397 DOI: 10.2165/00003088-199631010-00002] [Citation(s) in RCA: 269] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review updates and evaluates the currently available information regarding the pharmacokinetics, metabolism and interactions of the acid pump inhibitors omeprazole, lansoprazole and pantoprazole. Differences and similarities between the compounds are discussed. Omeprazole, lansoprazole and pantoprazole are all mainly metabolished by the polymorphically expressed cytochrome P450 (CYP) isoform S-mephenytoin hydroxylase (CYP2C19), which means that within a population a few individuals (3% of Caucasians) metabolise the compounds slowly compared with the majority of the population. For all 3 compounds, the area under the plasma concentration-versus-time curve (AUC) for a slow metaboliser is, in general, approximately 5 times higher than that in an average patient. Since all 3 compounds are considered safe and well tolerated, and no dosage-related adverse drug reactions have been identified, this finding seems to be of no clinical relevance. The acid pump inhibitors seem to be similarly handled in the elderly, where a somewhat slower elimination can be demonstrated compared with young individuals. In patients with renal insufficiency, omeprazole is eliminated as in healthy individuals, whereas the data on lansoprazole and pantoprazole are unresolved. In patients with hepatic insufficiency, as expected, the elimination rates of all 3 compounds are substantially decreased. No clinically relevant effects on specific endogenous glandular functions, such as the adrenal (cortisol), the gonads or the thyroid, were demonstrated for omeprazole and pantoprazole, whereas a few minor concerns have been raised regarding lansoprazole. The absorption of some compounds, e.g. digoxin, might be altered as a result of the increased gastric pH obtained during treatment with acid pump inhibitors, and, accordingly, similar effects are expected irrespective of which acid pump inhibitor is given. The effect of the acid pump inhibitors on enzymes in the liver has been intensely debated, and some authors have claimed that lansoprazole and pantoprazole have less potential than omeprazole to interact with other drugs metabolised by CYP. However, after assessment of available data in this area, the conclusion is that all 3 acid pump inhibitors have a very limited potential for drug interactions at the CYP level. In addition, the small effects on CYP reported for these compounds are rarely of any clinical relevance, considering the normal intra- (and inter-)individual variations in metabolism observed for most drugs. In conclusion, omeprazole, lansoprazole and pantoprazole are structurally very similar, and an evaluation of available data indicates that also with respect to pharmacokinetics, metabolism and interactions in general they demonstrate very similar properties, even though omeprazole has been more thoroughly studied with regard to different effects.
Collapse
|
20
|
Smallwood RA, Berlin RG, Castagnoli N, Festen HP, Hawkey CJ, Lam SK, Langman MJ, Lundborg P, Parkinson A. Safety of acid-suppressing drugs. Dig Dis Sci 1995; 40:63S-80S. [PMID: 7859585 DOI: 10.1007/bf02214872] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is an extensive literature on the adverse effects of drugs that inhibit gastric acid secretion. This study presents a critical examination of interactions between antisecretory drugs and other compounds, the frequency of serious adverse effects relating to various body systems, the safety of antisecretory drugs in pregnancy, and longer-term safety data from postmarketing surveillance studies. While interactions with some other drugs, alcohol, and certain carcinogens are of potential concern, in practice clinically significant reactions appear to be rare if they occur at all. A small number of major side-effects have been documented, but they occur rarely, and postmarketing surveillance has not detected other longer-term sequelae. Safety of these drugs in pregnancy is not established, as data are so few. It is concluded that antisecretory agents, by comparison with most other classes of drugs, are remarkably well tolerated.
Collapse
Affiliation(s)
- R A Smallwood
- Department of Medicine, Heidelberg Repatriation Hospital, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Taburet AM, Geneve J, Bocquentin M, Simoneau G, Caulin C, Singlas E. Theophylline steady state pharmacokinetics is not altered by omeprazole. Eur J Clin Pharmacol 1992; 42:343-5. [PMID: 1577056 DOI: 10.1007/bf00266361] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of omeprazole treatment on theophylline pharmacokinetics was studied in eight, non-smoking healthy male volunteers during repeated administration of a slow release formulation of theophylline. In a randomized double-blind cross-over study, the subjects received theophylline 5 mg.kg-1 per day with omeprazole 20 mg per day or identical placebo during two periods, each of 7 days, separated by a washout period of 7 days. The oral clearance of theophylline remained unchanged whether it was administered alone or with omeprazole (54.2 ml.min-1). The average urinary excretion of theophylline and its metabolites, 1,3 dimethyluric acid (1,3-DMU), 3-methylxanthine (3-MX), 1-methyluric acid (1-MU) amounted to 9%, 32%, 12% and 22% of the administered dose, respectively, and no significant change occurred during concomitant treatment with omeprazole. Thus, the formation and clearance of the metabolites was not altered by omeprazole. Consequently, omeprazole in the recommended dose of 20 mg daily can safely be administered to patients on theophylline therapy.
Collapse
Affiliation(s)
- A M Taburet
- Pharmacie Clinique, Hôpital Bicêtre, Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Soons PA, van den Berg G, Danhof M, van Brummelen P, Jansen JB, Lamers CB, Breimer DD. Influence of single- and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. Eur J Clin Pharmacol 1992; 42:319-24. [PMID: 1577051 DOI: 10.1007/bf00266355] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of single dose (20 mg) and short-term (20 mg/day for 8 days) oral treatment with omeprazole on the pharmacokinetics and effects of oral nifedipine (10 mg capsule) and on gastric pH have been investigated in a randomized, double-blind, placebo-controlled cross-over study in 10 non-smoking healthy male subjects. The single dose of omeprazole had no significant effect on any pharmacokinetic parameter of nifedipine, nor on gastric pH, or blood pressure or heart rate. Short-term omeprazole treatment increased the AUC of nifedipine by 26% (95% confidence interval 9-46%), but all other pharmacokinetic parameters of nifedipine, including elimination half-life, Cmax, tmax, and recovery of the main urinary metabolite, were not significantly changed. The median gastric pH during the absorption phase of nifedipine was increased by short-term omeprazole (pH 4.2) compared to placebo treatment (pH 1.4). Blood pressure and heart rate did not differ between treatments. The interaction between nifedipine and omeprazole is not likely to be of major clinical relevance.
Collapse
Affiliation(s)
- P A Soons
- Division of Pharmacology, University of Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Jönsson KA, Jones AW, Boström H, Andersson T. Lack of effect of omeprazole, cimetidine, and ranitidine on the pharmacokinetics of ethanol in fasting male volunteers. Eur J Clin Pharmacol 1992; 42:209-12. [PMID: 1618254 DOI: 10.1007/bf00278486] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of three gastric antisecretory drugs on the pharmacokinetics of ethanol have been studied in a randomized crossover experiment. Male medical students (n = 12) took ethanol 0.8 g/kg body weight at 08.00 h after an overnight fast. On seven successive days before drinking ethanol they were given omeprazole 20 mg, cimetidine 800 mg, ranitidine 300 mg, or no drug, with a period of at least 7 days between treatments. The peak blood ethanol concentration of 21.9 to 22.8 mmol.l-1 occurred at 64 to 70 min after the end of drinking. The rate of disappearance of ethanol from the blood ranged from 3.0 to 3.3 mmol.l-1.h-1 and the rate of removal from the whole body ranged from 8.0 to 8.5 g.h-1. The apparent volume of distribution of ethanol was almost the same for all four treatments: mean 0.68 l.kg-1, corresponding to a mean total body water of 44 l (59% body weight). Mean areas under the concentration-time profiles of ethanol ranged from 83 to 87 mmol.l-1.h for the four treatments. It is concluded that omeprazole, cimetidine and ranitidine do not alter the kinetics of a moderate dose of ethanol.
Collapse
Affiliation(s)
- K A Jönsson
- Department of Internal Medicine, University Hospital, Linköping, Sweden
| | | | | | | |
Collapse
|
24
|
Andersson T, Bergstrand R, Cederberg C, Eriksson S, Lagerström PO, Skånberg I. Omeprazole treatment does not affect the metabolism of caffeine. Gastroenterology 1991; 101:943-7. [PMID: 1889718 DOI: 10.1016/0016-5085(91)90719-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study was performed to investigate the possible influence of repeated omeprazole dosing on the metabolism of caffeine, which has been shown to reflect the activity of one specific enzyme within the hepatic cytochrome P450 family, P450IA2. Ten healthy, nonsmoking young men participated in this placebo-controlled double-blind trial. Each subject was given omeprazole, 20 mg, every morning for 1 week and placebo every morning for 1 week in random order and separated by a 2-3 week washout period. On the sixth and seventh days of each period urine was collected twice daily, and urinary metabolites of caffeine were determined by high-performance liquid chromatography. The urinary metabolite ratio of three paraxanthine 7-demethylation products relative to a paraxanthine-hydroxylation product corresponds to caffeine clearance and, therefore, to P450IA2 activity. This calculated ratio was 4.8 (95% confidence interval, 3.9-5.6) in the placebo and 4.6 (95% confidence interval, 3.6-5.5) in the omeprazole period. These results show that the metabolism of caffeine was unaltered following omeprazole treatment, indicating that omeprazole treatment has no influence on cytochrome P450IA2 activity in the clinical situation.
Collapse
Affiliation(s)
- T Andersson
- Research Laboratories, AB Hässle, Mölndal, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
This review examines the literature on drug interactions with omeprazole. Different mechanisms have been proposed as potential causes for such interactions. First, the absorption of some drugs might be altered due to the decreased intragastric acidity resulting from omeprazole treatment. There was no effect of omeprazole on the absorption of amoxycillin, bacampicillin and alcohol, while the amount of digoxin and nifedipine absorbed was increased by 10 and 21%, respectively, both increases probably being of no clinical significance. Secondly, the metabolism of high clearance drugs might be altered by changes in liver blood flow, although that is not affected by omeprazole, as indicated by the unchanged elimination of indocyanine green. In addition, the clearance of intravenously administered lidocaine (lignocaine) [a high clearance drug] was unaffected by omeprazole, further indicating that the latter does not alter liver blood flow. Thirdly, since omeprazole is a substituted benzimidazole, it might have the potential to interfere with the metabolism of other drugs by altering the activity of drug metabolising enzymes in the cytochrome P450 system, through either induction or inhibition. There is no indication of induction of this enzyme system in any interaction study with omeprazole. As regards inhibition, on the other hand, there is now considerable information available which indicates that omeprazole has the potential to partly inhibit the metabolism of drugs metabolised to a great extent by the cytochrome P450 enzyme subfamily IIC (diazepam, phenytoin), but not of those metabolised by subfamilies IA (caffeine, theophylline), IID (metoprolol, propranolol) and IIIA (cyclosporin, lidocaine, quinidine). Since relatively few drugs are metabolised mainly by IIC compared with IID and IIIA, the potential for omeprazole to interfere with the metabolism of other drugs appears to be limited.
Collapse
Affiliation(s)
- T Andersson
- Department of Clinical Pharmacology, Hässle Research Laboratories, Mölndal, Sweden
| |
Collapse
|