1
|
Meira A, Byers JE, Sousa R. A global synthesis of predation on bivalves. Biol Rev Camb Philos Soc 2024; 99:1015-1057. [PMID: 38294132 DOI: 10.1111/brv.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Predation is a dominant structuring force in ecological communities. In aquatic environments, predation on bivalves has long been an important focal interaction for ecological study because bivalves have central roles as ecosystem engineers, basal components of food webs, and commercial commodities. Studies of bivalves are common, not only because of bivalves' central roles, but also due to the relative ease of studying predatory effects on this taxonomic group. To understand patterns in the interactions of bivalves and their predators we synthesised data from 52 years of peer-reviewed studies on bivalve predation. Using a systematic search, we compiled 1334 studies from 75 countries, comprising 61 bivalve families (N = 2259), dominated by Mytilidae (29% of bivalves), Veneridae (14%), Ostreidae (8%), Unionidae (7%), and Dreissenidae and Tellinidae (6% each). A total of 2036 predators were studied, with crustaceans the most studied predator group (34% of predators), followed by fishes (24%), molluscs (17%), echinoderms (10%) and birds (6%). The majority of studies (86%) were conducted in marine systems, in part driven by the high commercial value of marine bivalves. Studies in freshwater ecosystems were dominated by non-native bivalves and non-native predator species, which probably reflects the important role of biological invasions affecting freshwater biodiversity. In fact, while 81% of the studied marine bivalve species were native, only 50% of the freshwater species were native to the system. In terms of approach, most studies used predation trials, visual analysis of digested contents and exclusion experiments to assess the effects of predation. These studies reflect that many factors influence bivalve predation depending on the species studied, including (i) species traits (e.g. behaviour, morphology, defence mechanisms), (ii) other biotic interactions (e.g. presence of competitors, parasites or diseases), and (iii) environmental context (e.g. temperature, current velocity, beach exposure, habitat complexity). There is a lack of research on the effects of bivalve predation at the population and community and ecosystem levels (only 7% and 0.5% of studies respectively examined impacts at these levels). At the population level, the available studies demonstrate that predation can decrease bivalve density through consumption or the reduction of recruitment. At the community and ecosystem level, predation can trigger effects that cascade through trophic levels or effects that alter the ecological functions bivalves perform. Given the conservation and commercial importance of many bivalve species, studies of predation should be pursued in the context of global change, particularly climate change, acidification and biological invasions.
Collapse
Affiliation(s)
- Alexandra Meira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St, Athens, GA, 30602, USA
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
2
|
Rennolds CW, Bely AE. Integrative biology of injury in animals. Biol Rev Camb Philos Soc 2023; 98:34-62. [PMID: 36176189 PMCID: PMC10087827 DOI: 10.1111/brv.12894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Mechanical injury is a prevalent challenge in the lives of animals with myriad potential consequences for organisms, including reduced fitness and death. Research on animal injury has focused on many aspects, including the frequency and severity of wounding in wild populations, the short- and long-term consequences of injury at different biological scales, and the variation in the response to injury within or among individuals, species, ontogenies, and environmental contexts. However, relevant research is scattered across diverse biological subdisciplines, and the study of the effects of injury has lacked synthesis and coherence. Furthermore, the depth of knowledge across injury biology is highly uneven in terms of scope and taxonomic coverage: much injury research is biomedical in focus, using mammalian model systems and investigating cellular and molecular processes, while research at organismal and higher scales, research that is explicitly comparative, and research on invertebrate and non-mammalian vertebrate species is less common and often less well integrated into the core body of knowledge about injury. The current state of injury research presents an opportunity to unify conceptually work focusing on a range of relevant questions, to synthesize progress to date, and to identify fruitful avenues for future research. The central aim of this review is to synthesize research concerning the broad range of effects of mechanical injury in animals. We organize reviewed work by four broad and loosely defined levels of biological organization: molecular and cellular effects, physiological and organismal effects, behavioural effects, and ecological and evolutionary effects of injury. Throughout, we highlight the diversity of injury consequences within and among taxonomic groups while emphasizing the gaps in taxonomic coverage, causal understanding, and biological endpoints considered. We additionally discuss the importance of integrating knowledge within and across biological levels, including how initial, localized responses to injury can lead to long-term consequences at the scale of the individual animal and beyond. We also suggest important avenues for future injury biology research, including distinguishing better between related yet distinct injury phenomena, expanding the subjects of injury research to include a greater variety of species, and testing how intrinsic and extrinsic conditions affect the scope and sensitivity of injury responses. It is our hope that this review will not only strengthen understanding of animal injury but will contribute to building a foundation for a more cohesive field of 'injury biology'.
Collapse
|
3
|
Hayman NT, Hentschel BT, Renick VC, Anderson TW. Combined effects of flow speed and sub-lethal insecticide exposure on predator-prey interactions between the California killifish and an infaunal polychaete. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:117-131. [PMID: 30547329 DOI: 10.1007/s10646-018-2005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrodynamics and pollution affect estuarine populations, but their ecological effects have rarely been studied in combination. We conducted two laboratory experiments to quantify whether predator-prey interactions between California killifish, Fundulus parvipinnis, and the polychaete Polydora cornuta vary with flow speed and chlorpyrifos exposure. In one experiment, only F. parvipinnis was exposed to chlorpyrifos; in the other, only P. cornuta was exposed. The flume included a 300-cm2 area of sediment with 24 P. cornuta in a central patch (98 cm2). We videotaped groups of three killifish for 50 min at one of four flow speeds (6, 9, 12, or 15 cm/s) and recorded the proportion of bites directed at the prey patch. Unexposed killifish directed 70% of their bites at the prey patch at 6 cm/s, and prey-patch selection decreased as flow increased. Killifish exposed to chlorpyrifos directed 41% of their bites at the prey patch at 6 cm/s with reduced prey-patch selection relative to unexposed fish at 9 and 12 cm/s. At 15 cm/s, both exposed and unexposed fish displayed non-selective biting. Worms were videotaped to quantify their deposit- and suspension-feeding activities. Exposing worms to chlorpyrifos reduced total feeding activity by ~30%. Suspension feeding was more common at faster flow speeds, but the time worms spent suspension feeding relative to deposit feeding was unaffected by chlorpyrifos. No behavioral changes were noted in either species when the other was exposed to chlorpyrifos. This study highlights how hydrodynamic conditions can alter the relative importance of a toxicant's effects on predator-prey interactions.
Collapse
Affiliation(s)
- Nicholas T Hayman
- Department of Biology and Coastal and Marine Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA.
| | - Brian T Hentschel
- Department of Biology and Coastal and Marine Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| | - Violet C Renick
- Department of Biology and Coastal and Marine Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| | - Todd W Anderson
- Department of Biology and Coastal and Marine Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| |
Collapse
|
4
|
Setälä O, Norkko J, Lehtiniemi M. Feeding type affects microplastic ingestion in a coastal invertebrate community. MARINE POLLUTION BULLETIN 2016; 102:95-101. [PMID: 26700887 DOI: 10.1016/j.marpolbul.2015.11.053] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 05/24/2023]
Abstract
Marine litter is one of the problems marine ecosystems face at present, coastal habitats and food webs being the most vulnerable as they are closest to the sources of litter. A range of animals (bivalves, free swimming crustaceans and benthic, deposit-feeding animals), of a coastal community of the northern Baltic Sea were exposed to relatively low concentrations of 10 μm microbeads. The experiment was carried out as a small scale mesocosm study to mimic natural habitat. The beads were ingested by all animals in all experimental concentrations (5, 50 and 250 beads mL(-1)). Bivalves (Mytilus trossulus, Macoma balthica) contained significantly higher amounts of beads compared with the other groups. Free-swimming crustaceans ingested more beads compared with the benthic animals that were feeding only on the sediment surface. Ingestion of the beads was concluded to be the result of particle concentration, feeding mode and the encounter rate in a patchy environment.
Collapse
Affiliation(s)
- Outi Setälä
- Marine Research Centre, Finnish Environment Institute, P. O. Box 140, FI-00251 Helsinki, Finland.
| | - Joanna Norkko
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
| | - Maiju Lehtiniemi
- Marine Research Centre, Finnish Environment Institute, P. O. Box 140, FI-00251 Helsinki, Finland
| |
Collapse
|
5
|
Wang S, Jin B, Qin H, Sheng Q, Wu J. Trophic Dynamics of Filter Feeding Bivalves in the Yangtze Estuarine Intertidal Marsh: Stable Isotope and Fatty Acid Analyses. PLoS One 2015; 10:e0135604. [PMID: 26261984 PMCID: PMC4532420 DOI: 10.1371/journal.pone.0135604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/24/2015] [Indexed: 11/18/2022] Open
Abstract
Benthic bivalves are important links between primary production and consumers, and are essential intermediates in the flow of energy through estuarine systems. However, information on the diet of filter feeding bivalves in estuarine ecosystems is uncertain, as estuarine waters contain particulate matter from a range of sources and as bivalves are opportunistic feeders. We surveyed bivalves at different distances from the creek mouth at the Yangtze estuarine marsh in winter and summer, and analyzed trophic dynamics using stable isotope (SI) and fatty acid (FA) techniques. Different bivalve species had different spatial distributions in the estuary. Glauconome chinensis mainly occurred in marshes near the creek mouth, while Sinonovacula constricta preferred the creek. Differences were found in the diets of different species. S. constricta consumed more diatoms and bacteria than G. chinensis, while G. chinensis assimilated more macrophyte material. FA markers showed that plants contributed the most (38.86 ± 4.25%) to particular organic matter (POM) in summer, while diatoms contributed the most (12.68 ± 1.17%) during winter. Diatoms made the largest contribution to the diet of S. constricta in both summer (24.73 ± 0.44%) and winter (25.51 ± 0.59%), and plants contributed no more than 4%. This inconsistency indicates seasonal changes in food availability and the active feeding habits of the bivalve. Similar FA profiles for S. constricta indicated that the bivalve had a similar diet composition at different sites, while different δ13C results suggested the diet was derived from different carbon sources (C4 plant Spartina alterniflora and C3 plant Phragmites australis and Scirpus mariqueter) at different sites. Species-specific and temporal and/or spatial variability in bivalve feeding may affect their ecological functions in intertidal marshes, which should be considered in the study of food webs and material flows in estuarine ecosystems.
Collapse
Affiliation(s)
- Sikai Wang
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Binsong Jin
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Haiming Qin
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Qiang Sheng
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jihua Wu
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- * E-mail:
| |
Collapse
|
6
|
Thrush SF, Hewitt JE, Parkes S, Lohrer AM, Pilditch C, Woodin SA, Wethey DS, Chiantore M, Asnaghi V, De Juan S, Kraan C, Rodil I, Savage C, Van Colen C. Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems. Ecology 2014; 95:1451-7. [PMID: 25039209 DOI: 10.1890/13-1879.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition.
Collapse
|
7
|
Lindsay SM. Frequency of Injury and the Ecology of Regeneration in Marine Benthic Invertebrates. Integr Comp Biol 2010; 50:479-93. [DOI: 10.1093/icb/icq099] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Nuñez JD, Scelzo MA, Cledón M. Regeneration of the Inhalant Siphon ofMesodesma mactroides(Deshayes, 1854) (Mollusca: Bivalvia). MALACOLOGIA 2010. [DOI: 10.4002/040.052.0112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
|
10
|
Seitz RD, Lipcius RN, Hines AH, Eggleston DB. DENSITY-DEPENDENT PREDATION, HABITAT VARIATION, AND THE PERSISTENCE OF MARINE BIVALVE PREY. Ecology 2001. [DOI: 10.1890/0012-9658(2001)082[2435:ddphva]2.0.co;2] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Kraeuter JN. Chapter 11 Predators and predation. DEVELOPMENTS IN AQUACULTURE AND FISHERIES SCIENCE 2001. [DOI: 10.1016/s0167-9309(01)80039-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
|
13
|
|
14
|
Constable AJ. Ecology of benthic macro-invertebrates in soft-sediment environments: A review of progress towards quantitative models and predictions. AUSTRAL ECOL 1999. [DOI: 10.1046/j.1442-9993.1999.00977.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Thrush SF. Complex role of predators in structuring soft-sediment macrobenthic communities: Implications of changes in spatial scale for experimental studies. AUSTRAL ECOL 1999. [DOI: 10.1046/j.1442-9993.1999.00981.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
|
17
|
Lima SL. Stress and Decision Making under the Risk of Predation: Recent Developments from Behavioral, Reproductive, and Ecological Perspectives. ADVANCES IN THE STUDY OF BEHAVIOR 1998. [DOI: 10.1016/s0065-3454(08)60366-6] [Citation(s) in RCA: 880] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
18
|
Abstract
A mathematical model is presented for the dynamics of predator-prey interactions when predators do not consume prey (or clumps of prey) in their entirety. Using a combination of analytical and numerical methods, I demonstrate that predator-mediated changes in the distribution of intact and partially consumed prey can affect the outcome of competition between predators in unexpected ways. In come cases, two predators can coexist on a single prey species owing to tradeoffs between the ability to consume prey completely and other competitive abilities. In other cases, predators exhibit frequency-dependent dynamics in which the first predator to occupy the habitat can prevent the other from invading. Conditions for stable coexistence usually expand if the larger predator scatters uneaten prey parts, if prey renewal includes both small and large items, or if the predator with the smaller retrieval capacity is poor at catching intact prey relative to the other predator.
Collapse
Affiliation(s)
- J Mittler
- Center for Nonlinear Studies, Los Alamos National Laboratory, New Mexico 87545, USA
| |
Collapse
|
19
|
|
20
|
Control of foraging behavior of individuals within an ecosystem context: the clam Macoma balthica and interactions between competition and siphon cropping. Oecologia 1994; 100:268-278. [DOI: 10.1007/bf00316954] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/1994] [Accepted: 08/05/1994] [Indexed: 11/25/2022]
|