1
|
Kondo A, Ito M, Takeda Y, Kurahashi Y, Toh S, Funaguma T. Morphological and antioxidant responses of Nopalea cochenillifera cv. Maya (edible Opuntia sp. "Kasugai Saboten") to chilling acclimatization. JOURNAL OF PLANT RESEARCH 2023; 136:211-225. [PMID: 36690846 PMCID: PMC9988806 DOI: 10.1007/s10265-023-01437-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
To clarify the wintering ability of the cactus Nopalea cochenillifera cv. Maya (edible Opuntia sp., common name "Kasugai Saboten"), we investigated the effects of temperature and antioxidant capacity on chilling acclimatization. We analyzed the anatomy of cladode chlorenchyma tissue of plants exposed to light under chilling. We found that chilling acclimatization can be achieved by exposure to approximately 15 °C for 2 weeks and suggest that it is affected by whether or not antioxidant capacity can recover. The overwintering cacti had the thinnest cuticle but firm cuticular wax, which is important in the acquisition of low temperature tolerance under strong light. In cacti with severe chilling injury, round swollen nuclei with clumping chloroplasts were localized in the upper part (axial side) of the cell, as though pushed up by large vacuoles in the lower part. In overwintering cacti, chloroplasts were arranged on the lateral side of the cell as in control plants, but they formed pockets: invaginations with a thin layer of chloroplast stroma that surrounded mitochondria and peroxisomes. Specific cellular structural changes depended on the degree of chilling stress and provide useful insights linking chloroplast behavior and structural changes to the environmental stress response.
Collapse
Affiliation(s)
- Ayumu Kondo
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan.
| | - Masashi Ito
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| | - Yusaku Takeda
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| | - Yuka Kurahashi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| | - Shigeo Toh
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| | - Toru Funaguma
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| |
Collapse
|
2
|
Zhong S, Xu Y, Meng B, Loik ME, Ma JY, Sun W. Nitrogen Addition Increases the Sensitivity of Photosynthesis to Drought and Re-watering Differentially in C 3 Versus C 4 Grass Species. FRONTIERS IN PLANT SCIENCE 2019; 10:815. [PMID: 31333687 PMCID: PMC6616207 DOI: 10.3389/fpls.2019.00815] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/06/2019] [Indexed: 05/03/2023]
Abstract
Global change factors, such as variation in precipitation regimes and nitrogen (N) deposition, are likely to occur simultaneously and may have profound impacts on the relative abundance of grasses differing in functional traits, such as C3 and C4 species. We conducted an extreme drought and re-watering experiment to understand differences in the resistance and recovery abilities of C3 and C4 grasses under different N deposition scenarios. A C3 perennial grass (Leymus chinensis) and two C4 grasses (annual species Chloris virgata and perennial species Hemarthria altissima) that co-occur in Northeast China were selected as experimental plants. For both C3 and C4 grasses, N addition caused a strong increase in biomass and resulted in more severe drought stress, leading to a change in the dominant photosynthetic limitation during the drought periods. Although N addition increased antioxidant enzyme activities and protective solute concentrations, the carbon fixing capacity did not fully recover to pre-drought levels by the end of the re-watering period. N addition resulted in lower resilience under the drought conditions and lower resistance at the end of the re-watering. However, N addition led to faster recovery of photosynthesis, especially in the C3 grass, which indicate that the effect of N addition on photosynthesis during drought was asymmetric, especially in the plants with different photosynthetic nitrogen use efficiency (PNUE). These findings demonstrated that nitrogen deposition may significant alter the susceptibility of C3 and C4 grass species to drought stress and re-watering, highlighting the asymmetry between resistance and resilience and to improve our understanding about plant responses to climate change.
Collapse
Affiliation(s)
- Shangzhi Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yueqiao Xu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Bo Meng
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Michael E Loik
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jian-Ying Ma
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
3
|
Zimmermann U, Zhu JJ, Meinzer FC, Goldstein G, Schneider H, Zimmermann G, Benkert R, Thürmer F, Melcher P, Webb D, Haase A. High Molecular Weight Organic Compounds in the Xylem Sap of Mangroves: Implications for Long-Distance Water Transport. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1994.tb00789.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Scholz FG, Bucci SJ, Arias N, Meinzer FC, Goldstein G. Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures. Oecologia 2012; 170:885-97. [DOI: 10.1007/s00442-012-2368-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|
5
|
Bartlett MK, Scoffoni C, Sack L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 2012; 15:393-405. [DOI: 10.1111/j.1461-0248.2012.01751.x] [Citation(s) in RCA: 542] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Garrett TY, Huynh CV, North GB. Root contraction helps protect the "living rock" cactus Ariocarpus fissuratus from lethal high temperatures when growing in rocky soil. AMERICAN JOURNAL OF BOTANY 2010; 97:1951-1960. [PMID: 21616844 DOI: 10.3732/ajb.1000286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY We investigated how the "living rock" cactus Ariocarpus fissuratus, like other low-growing desert plants, can endure potentially lethal high temperatures at the soil surface. Specifically, we examined how shoot descent by root contraction in the presence or absence of soil rocks influences shoot temperatures and transpiration. • METHODS Root contraction was identified by measuring shoot descent and anatomical analysis. Temperatures and transpiration were measured for plants at two heights in sandy and rocky soil, and temperature tolerances were determined by vital staining. • KEY RESULTS Plants embedded in rocky soil survived an extreme heat episode, unlike plants in sandy soil, though rocks did not moderate low temperatures. Root contraction occurred regardless of season and soil moisture. Xylem conduits (wide-band tracheids) formed a compressible lattice that decreased root length as rays enlarged the root base radially. Plant position in the soil did not affect transpiration. • CONCLUSIONS Contractile roots pulled plants of A. fissuratus into the soil at rates of 6-30 mm yr(-1). Maintaining shoots level with the soil surface kept plant temperatures below the high lethal temperature and improved survivorship in soil shaded by surface rocks.
Collapse
Affiliation(s)
- Tadao Y Garrett
- Department of Biology, Occidental College, Los Angeles, California 90041 USA
| | | | | |
Collapse
|
7
|
Zimmermann U, Schneider H, Wegner LH, Haase A. Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? THE NEW PHYTOLOGIST 2004; 162:575-615. [PMID: 33873767 DOI: 10.1111/j.1469-8137.2004.01083.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Cohesion Theory considers plant xylem as a 'vulnerable pipeline' isolated from the osmotically connected tissue cells, phloem and mycorrhizas living in symbiosis with plant roots. It is believed that water is pulled exclusively by transpiration-induced negative pressure gradients of several megapascals through continuous water columns from the roots to the foliage. Water under such negative pressures is extremely unstable, particularly given the hydrophobicity of the inner xylem walls and sap composition (lipids, proteins, mucopolysaccharides, etc.) that prevents the development of stable negative pressures larger than about -1 MPa. However, many plant physiologists still view the Cohesion Theory as the absolute and universal truth because clever wording from the proponents of this theory has concealed the recent breakdown of the Scholander pressure bomb (and other indirect methods) as qualified tools for measuring negative pressures in transpiring plants. Here we show that the arguments of the proponents of the Cohesion Theory are completely misleading. We further present an enormous bulk of evidence supporting the view that - depending on the species and ecophysiological context - many other forces, additional to low tensions, can be involved in water ascent and that water can be lifted by a series of watergates (like ships in staircase locks). Contents I. Introduction 576 II. Can water sustain negative pressures? 577 III. Negative xylem pressures of several megapascals: fact or mystery? 579 IV. The continuity of the xylem water columns: fact or hypothesis? 588 V. The 'Multi-Force' or 'Watergate' Theory 590 VI. Conclusions 604 Acknowledgements 605 References 605 Appendix 1 612 Appendix 2 613.
Collapse
Affiliation(s)
- Ulrich Zimmermann
- Lehrstuhl für Biotechnologie, Biozentrum, Am Hubland, Universität Würzburg, 97074 Würzburg, Germany
| | - Heike Schneider
- Lehrstuhl für Biotechnologie, Biozentrum, Am Hubland, Universität Würzburg, 97074 Würzburg, Germany
| | - Lars H Wegner
- Lehrstuhl für Biotechnologie, Biozentrum, Am Hubland, Universität Würzburg, 97074 Würzburg, Germany
| | - Axel Haase
- Lehrstuhl für Experimentelle Physik V, Am Hubland, Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Lüttge U. The role of crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. THE NEW PHYTOLOGIST 1993; 125:59-71. [PMID: 33874606 DOI: 10.1111/j.1469-8137.1993.tb03864.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two case studies are presented illustrating how the behaviour of plants using crassulacean acid metabolism (CAM) provides adaptation to salinity. Perennial cacti having constitutive CAM show adaptation at the whole-plant level, engaging regulation of stomata, internal CO2 -recycling and root physiology with salt exclusion. They are stress avoiders. Annual plants such as Mesembryanthemum crystallinum, with inducible CAM, are salt includers. They are stress-tolerant and show reactions at an array of levels: (i) regulation of turgor and gas exchange at the whole-plant level; (ii) metabolic adjustments at the cellular level; (iii) adapptive transport proteins at the membrane level and also (iv) at the macromolecular level; and (v) inductive changes at the gene expression level of the enzyme complement for metabolism (in particular involving glycolysis and malic-acid synthesis with phosphoenolpyruvate carboxylase (PEPC) as the key enzyme, and gluconeogenesis (with pyruvate-phosphate dikinase (PPDK) as a key enzyme) and membrane transport (in particular involving the tonoplast ATPase).
Collapse
Affiliation(s)
- Ulrich Lüttge
- Institut für Botanik, Technische Hochschule Darmstadt, Schnittspahnstraße 3-5, D-64287 Darmstadt, Germany
| |
Collapse
|